У вас вопросы?
У нас ответы:) SamZan.net

по теме- История ЭВМ.

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

Реферат по предмету компьютерные технологии по теме: «История ЭВМ. Понятие информатика».

Смолякова Элла

1 курс РиСО

Содержание

  1.  Раздел  I

Понятие ЭВМ……………………………………………………………………………………………………………………1

Функции и структура ЭВМ……………………………………………………………………………………………….1

Периоды развития ЭВМ…………………………………………………………………………………………………..2

  1.  Раздел II

Понятие информатика………………………….…………………………………………………………………………3

История развития информатики…………………………………………………………………………………….4

  1.  Список используемой литературы и источников………………………….5

1.Понятие ЭВМ

Толковый словарь по вычислительной технике и программированию утверждает, что ЭВМ есть цифровая вычислительная машина, основные узлы которой реализованы средствами электроники.

ЭВМ, как считают авторы одного из комментариев к УК РФ, — это «устройство или система, способная выполнить заданную, четко определенную последовательность операций по преобразованию или обработке данных».

Другие комментарии рассматривают ЭВМ как вычислительную машину, преобразующую информацию в ходе своего функционирования в числовую форму.

Общероссийский классификатор основных фондов ввел понятие «информационное оборудование» и его определил следующим образом: «Информационное оборудование предназначено для преобразования и хранения информации. К информационному оборудованию отнесено оборудование систем связи, средства измерения и управления, средства вычислительной техники и оргтехники, средства визуального и акустического отображения информации, средства хранения информации, театрально-сценическое оборудование».

К вычислительной технике классификатором относятся аналоговые и аналого-цифровые машины для автоматической обработки данных, вычислительные электронные, электромеханические и механические комплексы и машины, устройства, предназначенные для автоматизации процессов хранения, поиска и обработки данных, связанных с решением различных задач.

Учитывая разнообразие и различие оснований приведенных определений, а также продолжающееся совершенствование средств компьютерной техники, полагаем, что любое определение ЭВМ будет небесспорным, однако в криминалистических целях, оно, тем не менее, необходимо.

2.Функции и структура ЭВМ

Основной тенденцией в развитии структуры ЭВМ является разделение функций системы и максимальная специализация подсистем для выполнения этих функций.

Обобщенная структура ЭВМ состоит из следующих составных частей:

- обрабатывающей подсистемы;

- подсистемы памяти;

- подсистемы ввода-вывода;

- подсистемы управления и обслуживания.

Для каждой подсистемы выделены основные направления их развития.

  1.  Обрабатывающая подсистема

Развитие обрабатывающей подсистемы в большей степени, чем всех остальных подсистем, идет по пути разделения функций и повышения специализации составляющих ее устройств. Создаются специальные средства, которые осуществляют функции управления системой, освобождая от этих функций средства обработки. Такое распределение функций сокращает эффективное время обработки информации и повышает производительность ЭВМ. В то же время средства управления, как и средства обработки, становятся более специализированными. Устройство управления памятью реализует эффективные методы передачи данных между средствами обработки и подсистемой памяти. Меняются функции центрального устройства управления. С одной стороны, ряд функций передается в другие подсистемы (например, функции ввода-вывода), с другой - развиваются средства организации параллельной обработки нескольких команд (суперскалярная обработка) с одновременным повышением темпа исполнения последовательности команд. Для повышения темпа выполнения последовательности команд применяются методы конвейерной обработки наряду с совершенствованием алгоритмов диспетчеризации и исполнения команд. Бурно развивается управление межпроцессорным обменом как эффективное средство передачи информации между несколькими центральными процессорами, входящими в состав вычислительной системы или комплекса.

  1.  Подсистема памяти

Подсистема памяти современных компьютеров имеет иерархическую структуру, состоящую из нескольких уровней:

- сверхоперативный уровень (локальная память процессора, кэшпамять первого и второго уровня);

- оперативный уровень (оперативная память, дисковый кэш);

- внешний уровень (внешние ЗУ на дисках, лентах и т.д.). Эффективными методами повышения производительности ЭВМ являются увеличение количества регистров общего назначения процессора, использование многоуровневой кэш-памяти, увеличение объема и пропускной способности оперативной памяти, буферизация передачи информации между ОП и внешней памятью. Увеличение пропускной способности оперативной памяти достигается за счет увеличения их расслоения и секционирования.

  1.  Подсистема ввода-вывода

В состав подсистемы ввода-вывода входит набор специализированных устройств, между которыми распределены функции ввода-вывода, что позволяет свести к минимуму потери производительности системы при операциях ввода-вывода. Эти устройства можно условно разделить на критичные и некритичные по быстродействию. К критичным по быстродействию устройствам относятся обработчики команд ввода-вывода и контроллеры интерфейсов. Эти устройства определяют пропускную способность подсистемы ввода-вывода. Некритичные по быстродействию устройства управляют распределением линий в подсистеме ввода-вывода.

Основными направлениями развития подсистем ввода-вывода являются канальная технология ввода-вывода, матричная топология коммутации периферийных устройств (ПУ), увеличение количества и пропускной способности каналов.

  1.  Подсистема управления и обслуживания

Подсистема управления и обслуживания — это совокупность аппаратно-программных средств, предназначенных для обеспечения максимальной производительности, заданной надежности, ремонтопригодности, удобства настройки и эксплуатации. Она обеспечивает проблемную ориентацию и заданное время наработки на отказ, подготовку и накопление статистических сведений о загрузке и прохождении вычислительного процесса, выполняет функции "интеллектуального" интерфейса с различными категориями обслуживающего персонала, осуществляет инициализацию, тестирование и отладку. Подсистема управления и обслуживания позволяет поднять на качественно новый уровень эксплуатацию современных ЭВМ.

При разработке структуры ЭВМ все подсистемы должны быть сбалансированы между собой. Только оптимальное согласование быстродействия обрабатывающей подсистемы с объемами и скоростью передачи информации подсистемы памяти, с пропускной способностью подсистемы ввода-вывода позволяет добиться максимальной эффективности использования ЭВМ.

Важнейшими факторами, определяющими функциональную и структурную организацию ЭВМ, являются выбор системы и форматов команд, типов данных и способов адресации.

3.Периоды развития ЭВМ

Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг от друга элементной базой и математическим обеспечением.

  1.  Первое поколение ЭВМ

Первое поколение (1945-1954) - ЭВМ на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой.

Первой серийно выпускавшейся ЭВМ 1-го поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчики: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Он был первым электронным цифровым компьютером общего назначения. UNIVAC, работа по созданию которого началась в 1946 году и завершилась в 1951-м, имел время сложения 120 мкс, умножения -1800 мкс и деления - 3600 мкс. UNIVAC мог сохранять 1000 слов, 12000 цифр со временем доступа до 400 мкс максимально. Магнитная лента несла 120000 слов и 1440000 цифр. Ввод/вывод осуществлялся с магнитной ленты, перфокарт и перфоратора. Его первый экземпляр был передан в Бюро переписи населения США.

Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм.

Машины этого поколения: « ENIAC », «МЭСМ», «БЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал», «Урал-2», «Минск-1», «Минск-12», «М-20» и др. Эти машины занимали большую площадь, использовали много электроэнергии и состояли из очень большого числа электронных ламп. Их быстродействие не превышало 2—3 тыс. операций в секунду, оперативная память не превышала 2 Кб. Только у машины «М-2» (1958) оперативная память была 4 Кб, а быстродействие 20 тыс. операций в секунду.

  1.  Второе поколение ЭВМ

ЭВМ 2-го поколения были разработаны в 1950-60 гг. В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Второе отличие этих машин - это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров. Программирование, оставаясь наукой, приобретает черты ремесла. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

Машины этого поколения: «РАЗДАН-2», «IВМ-7090», «Минск-22,-32», «Урал- 14,-16», «БЭСМ-3,-4,-6», «М-220, -222» и др.

Применение полупроводников в электронных схемах ЭВМ привели к увеличению достоверности, производительности до 30 тыс. операций в секунду, и оперативной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.

  1.  Третье поколение ЭВМ

Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независимо друг от друга, оперативно взаимодействовать с машиной.

В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM.

Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб. К ЭВМ этого поколения также относится «IВМ-370», «Электроника — 100/25», «Электроника — 79», «СМ-3», «СМ-4» и др.

Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры.

Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.

Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов.

В 1969 г. зародилась первая глобальная компьютерная сеть и одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

  1.  Четвертое поколение ЭВМ

К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрировано до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ. Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени).
Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

Развитие ЭВМ 4-го поколения пошло по 2 направлениям:

1-ое направление — создание суперЭВМ - комплексов многопроцессорных машин.

2-ое направление — дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ).

Начиная с этого поколения ЭВМ стали называть компьютерами.

  1.  Пятое поколение ЭВМ

Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом. Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области. Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире.

4.Понятие информатика

Термин информатика имеет 3 определения: рабочее, классическое и системное. Давайте рассмотри их.

  

  1.  Классическое. Информатика – наука, изучающая структуру, общие свойства, вопросы сбора, хранения, поиска, переработки, использования знаний.
  2.  Рабочее. Информатика – наука об информации и информационных процессов, о моделях и моделировании для различных классов исполнителей алгоритмов, в частности компьютеров, об их использовании в общественном развитии.
  3.  Системное. Информатика – наука, изучающая информационные аспекты системных процессов, и системные аспекты информационных процессов.

Предмет информатики как науки составляют:

  1.  аппаратное обеспечение средств вычислительной техники;
  2.  программное обеспечение средств вычислительной техники;
  3.  средства взаимодействия аппаратного и программного обеспечения;
  4.  средства взаимодействия человека с аппаратными и программными средствами.

Средства взаимодействия в информатике принято называть интерфейсом. Поэтому средства взаимодействия аппаратного и программного обеспечения иногда называют также программно-аппаратным интерфейсом, а средства взаимодействия человека с аппаратными и программными средствами - интерфейсом пользователя.

Основной задачей информатики как науки - это систематизация приемов и методов работы с аппаратными и программными средствами вычислительной техники. Цель систематизации состоит в том, чтобы выделять, внедрять и развивать передовые, более эффективные технологии автоматизации этапов работы с данными, а также методически обеспечивать новые технологические исследования.

Информатика - практическая наука. Ее достижения должны проходить проверку на практике и приниматься в тех случаях, если они отвечают критерию повышения эффективности. В составе основной задачи сегодня можно выделить такие основные направления информатики для практического применения :

  1.  архитектура вычислительных систем (приемы и методы построения систем, предназначенных для автоматической обработки данных);
  2.  интерфейсы вычислительных систем (приемы и методы управления аппаратным и программным обеспечением);
  3.  программирование (приемы, методы и средства разработки комплексных задач);
    преобразование данных (приемы и методы преобразования структур данных);
  4.  защита информации (обобщение приемов, разработка методов и средств защиты данных);
  5.  автоматизация (функционирование программно-аппаратных средств без участия человека);
  6.  стандартизация (обеспечение совместимости между аппаратными и программными средствами, между форматами представления данных, относящихся к разным типам вычислительных систем).

На всех этапах технического обеспечения информационных процессов для информатики ключевым вопросом есть эффективность. Для аппаратных средств под эффективностью понимают соотношение производительности оснащение к его стоимости. Для программного обеспечения под эффективностью принято понимать производительность работающих с ним пользователей. В программировании под эффективностью понимают объем программного кода, созданного программистами за единицу времени. В информатике всю жестко ориентированное на эффективность. Вопрос как осуществить ту или другую операцию, для информатики важный, но не основной. Основным есть вопрос как совершить данную операцию эффективно.

В рамках информатики, как технической науки можно сформулировать понятия информации, информационной системы и информационной технологии. 

5.История развития информатики.

Информатика как наука стала развиваться с середины прошлого столетия, что связано с появлением ЭВМ и начавшейся компьютерной революцией. Появление вычислительных машин в 1950-е гг. создало для информатики необходимую аппаратную поддержку, т.е. благоприятную среду для ее развития как науки. Всю историю информатики принято подразделять на два больших этапа: предысторию и историю.

Предыстория информатики такая же древняя, как и история развития человеческого общества. В предыстории также выделяют (весьма приближенно) ряд этапов. Каждый из них характеризуется резким возрастанием, по сравнению с предыдущим этапом, возможностей хранения, передачи и обработки информации.

Начальный этап предыстории информатики – освоение человеком развитой устной речи. Членораздельная речь, язык стали специфическим социальным средством хранения и передачи информации.

Второй этап – возникновение письменности. На этом этапе резко возросли возможности хранения информации. Человек получил искусственную внешнюю память. Организация почтовых служб позволила использовать письменность и как средство передачи информации. Кроме того, возникновение письменности было необходимым условием для начала развития наук (вспомним, например, Древнюю Грецию). С этим же этапом, по всей видимости, связано и возникновение понятия «натуральное число». Все народы, обладавшие письменностью, владели понятием числа и пользовались той или иной системой счисления.

Третий этап – книгопечатание. Его можно смело назвать первой информационной технологией. Воспроизведение информации было поставлено на поток, на промышленную основу. По сравнению с предыдущим на этом этапе не столько увеличивалась возможность хранения информации (хотя и здесь был выигрыш: письменный источник – это часто один-единственный экземпляр, печатная книга – это целый тираж экземпляров, а следовательно, и малая вероятность потери информации при хранении), сколько повысилась доступность информации и точность ее воспроизведения.

Четвертый (последний) этап предыстории информатики связан с успехами точных наук(прежде всего математики и физики) и начинающейся научно-технической революцией. Этот этап характеризуется возникновением таких мощных средств связи, как радио, телефон и телеграф, а позднее и телевидение. Появились новые возможности получения и хранения информации – фотография и кино. К ним очень важно добавить разработку методов записи информации на магнитные носители (магнитные ленты, диски).

С разработкой первых ЭВМ принято связывать возникновение информатики как науки, начало ее истории. Для такой привязки имеется несколько причин. Во-первых, сам термин «информатика» появился благодаря развитию вычислительной техники, и поначалу под ним понималась наука о вычислениях (первые ЭВМ большей частью использовались для проведения числовых расчетов). Во-вторых, выделению информатики в отдельную науку способствовало такое важное свойство современной вычислительной техники, как единая форма представления обрабатываемой и хранимой информации. Вся информация, вне зависимости от ее вида, хранится и обрабатывается на ЭВМ в двоичной форме. Так получилось, что компьютер в одной системе объединил хранение и обработку числовой, текстовой (символьной) и аудиовизуальной (звук, изображение) информации. В этом состояла инициирующая роль вычислительной техники при возникновении и оформлении новой науки.

На сегодняшний день информатика представляет собой комплексную научно-техническую дисциплину. Под этим названием объединен довольно обширный комплекс наук, таких, как кибернетика, системотехника, программирование, моделирование и др. Каждая из них занимается изучением одного из аспектов понятия информатики. Учеными прилагаются интенсивные усилия по сближению наук, составляющих информатику. Однако процесс их сближения идет довольно медленно, и создание единой и всеохватывающей науки об информации представляется делом будущего.

6.Список используемой литературы и источников.

1. Ичбиа Д., Кнеппер С. Сотворение Microsoft. / Пер.Мовшовича Д.Я. -  Ростов-на-Дону: Феникс, 1999.

2. Караменс В.В., Григ Н.Р. Компьютер: прошлое, настоящее, будущее. - М., 2005.

3. Минасян У.К. История техники. - М., 2000.

4. Паулин К. Малый толковый словарь по вычислительной технике. - М., 1995.

5. Сайт http://victoria.lviv.ua

6. Сайт http://www.rusedu.info




1. Реферат- Характеристика экологических факторов Кунгурского района Пермского края
2. Вопросы для подготовки к экзамену и зачету по дисциплине «Общая и таможенная статистика»
3. Роль трудовой деятельности в коррекции личности школьника с нарушением интеллекта
4. Атопический дерматит
5. задание по истории- Февральская и Октябрьская революции 1917 года- проанализируйте какая ие из них была и н
6. Даруй мне тишь твоих библиотек Муниципальные библиотеки в уходящем году
7. 201402.02.2014 г. БУДНИ ВЫХОДНЫЕ ПН
8. Контрольная работа- Условные рефлексы и их характеристика
9. Солитоны в воде
10. Информатика и вычислительная техника второй половины XXI века Ваш прогноз
11. Реферат- Криминалистическая идентификация
12. Современное развитие гостиничного хозяйства Республики Беларус
13. справка B Матери выдается справка по уходу за больным ребенком на весь период болезни ребенка C Матери выд
14. Дубравушка комбинированного вида г
15. Теоретические вопросы усвоение которых необходимо для выполнения задания- Краткая географическая ха
16. PR буквально ~ публичные отношения чаще переводят как связи с общественностью первоначально сформиро
17. Основы энергоаудита
18. конструкторские ошибки а организационнопсихологические причины.html
19. Особые отметки и заверены подписью командира за которым закреплен образец ВТ Особенности безо
20. реферату- Антонов великий конструкторРозділ- Астрономія авіація космонавтика Антонов великий конструк