Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ
О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы №1
Автоматизированный априорный анализ статистической совокупности
в среде MS Excel
Вариант № 13
Выполнил: ст. III курса
ФИО .
Проверил: Голикова Анна Викторовна
ФИО
Москва, 2007 г.
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однородную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий Среднегодовая стоимость основных производственных фондов и Выпуск продукции изучаемые признаки единиц совокупности.
Для автоматизации статистических расчетов используются средства электронных таблиц процессора Excel.
Выборочные данные представлены в диапазоне ячеек B4:C35 рабочего листа 1 (табл.1):
Таблица 1 |
||
Исходные данные |
||
Номер предприятия |
Среднегодовая стоимость основных производственных фондов, млн.руб. |
Выпуск продукции, млн. руб. |
1 |
1190,00 |
2027,00 |
2 |
1332,50 |
2167,00 |
3 |
1362,50 |
2349,00 |
4 |
1415,00 |
2545,00 |
5 |
1055,00 |
1565,00 |
6 |
1467,50 |
2265,00 |
7 |
1497,50 |
2853,00 |
8 |
1220,00 |
2125,00 |
9 |
1407,50 |
2391,00 |
10 |
1565,00 |
2839,00 |
12 |
1677,50 |
2965,00 |
13 |
1370,00 |
2461,00 |
14 |
1467,50 |
2629,00 |
15 |
1625,00 |
3063,00 |
16 |
1805,00 |
3245,00 |
17 |
1445,00 |
2377,00 |
18 |
1557,50 |
2713,00 |
19 |
1317,50 |
1915,00 |
20 |
1572,50 |
2405,00 |
21 |
1707,50 |
3035,00 |
22 |
1295,00 |
1971,00 |
23 |
1107,50 |
1887,00 |
24 |
1595,00 |
2671,00 |
25 |
1467,50 |
2405,00 |
26 |
1392,50 |
2307,00 |
27 |
1167,50 |
1705,00 |
28 |
1437,50 |
2335,00 |
29 |
1602,50 |
2503,00 |
31 |
1542,50 |
2405,00 |
32 |
1235,00 |
2209,00 |
В процессе исследования совокупности необходимо решить ряд задач.
I. Статистический анализ выборочной совокупности
а) степень колеблемости значений признаков в совокупности;
б) степень однородности совокупности по изучаемым признакам;
в) устойчивость индивидуальных значений признаков;
г) количество попаданий индивидуальных значений признаков в диапазоны (), (), ()..
а) колеблемости признаков;
б) однородности единиц;
в) надежности (типичности) средних значений признаков;
г) симметричности распределений в центральной части ряда.
II. Статистический анализ генеральной совокупности
а) среднюю ошибку выборки;
б) предельные ошибки выборки для уровней надежности P=0,683, P=0,954, P=0,997 и границы, в которых будут находиться средние значения признака в генеральной совокупности при заданных уровнях надежности.
2. Выводы по результатам выполнения лабораторной работы1
I. Статистический анализ выборочной совокупности
Задача 1. Количество аномальных единиц наблюдения (табл.2) равно ............., номера предприятий .............................................................................................................
Задача 2. Рассчитанные выборочные показатели представлены в двух таблицах табл.3 и табл.5. На основе этих таблиц формируется единая таблица (табл.8) значений выборочных показателей, перечисленных в условии Задачи 2.
Таблица 8
Описательные статистики выборочной совокупности
Обобщающие статистические показатели совокупности по изучаемым признакам |
Признаки |
|
Среднегодовая стоимость основных производственных фондов, млн. руб. |
Выпуск продукции, млн. руб. |
|
Средняя арифметическая () |
||
Мода (Мо) |
||
Медиана (Ме) |
||
Размах вариации(R) |
||
Дисперсия() |
||
Среднее линейное отклонение () |
||
Среднее квадратическое отклонение (σn) |
||
Коэффициент вариации (Vσ) |
||
Коэффициент асимметрии К.Пирсона (Asп) |
Задача 3.
3а). Степень колеблемости признака определяется по значению коэффициента вариации V в соответствии с оценочной шкалой колеблемости признака:
0%<V40% - колеблемость незначительная;
40%< V60% - колеблемость средняя (умеренная);
V>60% - колеблемость значительная.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов показатель V =…………. . Так как значение показателя лежит в диапазоне ……………………….. оценочной шкалы, следовательно, колеблемость ………………………………. .
Для признака Выпуск продукции показатель V =………… . Так как значение показателя лежит в диапазоне ……………………….. оценочной шкалы, следовательно, колеблемость ………………………………. .
3б). Степень однородности совокупности по изучаемому признаку для нормального и близких к нормальному распределений устанавливается по значению коэффициента вариации V. Если V33%, то по данному признаку расхождения между значениями признака невелико, единицы наблюдения количественно однородны.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов показатель V 33% (>33%), следовательно, по данному признаку выборочная совокупность …………………………. .
Для признака Выпуск продукции показатель V 33% (>33%), следовательно, по данному признаку выборочная совокупность …………………………. .
3в). Сопоставление средних отклонений квадратического и линейного позволяет сделать вывод об устойчивости индивидуальных значений признака, т.е. об отсутствии среди них «аномальных» вариантов значений.
В условиях симметричного и нормального, а также близких к ним распределений между показателями и имеют место равенства 1,25, 0,8, поэтому отношение показателей и может служить индикатором устойчивости данных.
Если >0,8, то значения признака неустойчивы, в них имеются «аномальные» выбросы. Следовательно, несмотря на визуальное обнаружение и исключение нетипичных единиц наблюдения при выполнении Задания 1, некоторые аномалии в первичных данных продолжают сохраняться. В этом случае их следует выявить (например, путем поиска значений, выходящих за границы диапазона (), приведенного в табл. 9) и рассматривать в качестве возможных «кандидатов» на исключение из выборки.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов показатель =…….0,8 (>0,8). Следовательно, значения признака устойчивы (неустойчивы).
«Кандидаты» на исключение из выборки: ……………………………………………………………………………………………….
Для признака Выпуск продукции показатель =……0,8 (>0,8). Следовательно, значения признака устойчивы (неустойчивы).
«Кандидаты» на исключение из выборки: ……………………………………………………………………………………………….
3г). Для оценки количества попаданий индивидуальных значений признаков xi в тот или иной диапазон отклонения от средней , а также для выявления структуры рассеяния значений xi по 3-м диапазонам формируется табл.9 (с конкретными числовыми значениями границ диапазонов).
Распределение значений признака по диапазонам рассеяния признака относительно
Границы диапазонов, млн. руб. |
Количество значений xi, находящихся в диапазоне |
Процентное соотношение рассеяния значений xi по диапазонам, % |
||||
Первый признак |
Второй признак |
Первый признак |
Второй признак |
Первый признак |
Второй признак |
|
А |
1 |
2 |
3 |
4 |
5 |
6 |
[………….;………….] |
[………….;……….] |
|||||
[………….;………….] |
[………….;……….] |
|||||
[………….;………….] |
[………….;……….] |
На основе данных табл.9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм», справедливому для нормальных и близких к нему распределений:
68,3% значений располагаются в диапазоне (),
95,4% значений располагаются в диапазоне (),
99,7% значений располагаются в диапазоне ().
Если полученная в табл. 9 структура рассеяния хi по 3-м диапазонам незначительно расходится с правилом «3-х сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.
Расхождение с правилом «3-х сигм» может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон () или значительно более 5% значения хi выходит за диапазон (). В этих случаях распределение нельзя считать близким к нормальному.
Вывод:
Сравнение данных графы 5 табл.9 с правилом «3-х сигм» показывает на их незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно (нельзя) считать близким к нормальному.
Сравнение данных графы 6 табл.9 с правилом «3-х сигм» показывает на незначительное (существенное) расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно (нельзя) считать близким к нормальному.
Задача 4. Для ответа на вопросы 4а) 4г) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.
4а)-в). Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации V признаков.
Вывод:
Так как V для первого признака больше (меньше), чем V для второго признака, то колеблемость значений первого признака больше (меньше) колеблемости значений второго признака, совокупность более однородна по первому (второму) признаку, среднее значение первого признака является более (менее) надежным, чем у второго признака.
4г). Сравнение симметричности распределений в центральной части ряда.
В нормальных и близких к нему распределениях основная масса единиц (68,3 %) располагается в центральной части ряда, в диапазоне (). Для оценки асимметрии распределения в этом центральном диапазоне служит коэффициент К.Пирсона Asп.
При правосторонней асимметрии Asп>0, при левосторонней Asп<0. Если Asп=0, вариационный ряд симметричен.
Вывод:
Асимметрия распределения признака Среднегодовая стоимость основных производственных фондов в центральной части ряда является правосторонней (левосторонней), так как Asп=………. Асимметрия признака Выпуск продукции является правосторонней (левосторонней), так как Asп=…………. Сравнение абсолютных величин |Аsп| для обоих рядов показывает, что ряд распределения по признаку Среднегодовая стоимость основных производственных фондов более (менее) асимметричен, чем ряд распределения по признаку Выпуск продукции.
Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята на рис.2.
Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ().
1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.
Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.
2. Для дальнейшего анализа формы распределения используются описательные параметры выборки - показатели центра распределения (, Mo, Me), вариации (), асимметрии в центральной части распределения (AsП). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.
Нормальное распределение является симметричным, и для него выполняются соотношения:
=Mo=Me, Asп=0.
Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.
3. Согласно правилу «3-х сигм» в нормальном и близким к нему распределениях крайние значения признака (близкие к хmin и хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне (). Следовательно, по проценту выхода значений признака за пределы диапазона () можно судить о соответствии длины «хвостов» распределения нормальному закону.
Вывод:
1. Гистограмма является одновершинной (многовершинной).
2. Распределение приблизительно симметрично (существенно асимметрично), так как Asп=…… параметры , Mo, Me отличаются незначительно (значительно):
= .............., Mo=.............., Me=..............
3. “Хвосты” распределения не очень длинны (являются длинными), т.к. согласно графе 5 табл.9…..……% вариантов лежат за пределами интервала ()=……………………..
Следовательно, на основании п.п. 1,2,3, можно (нельзя) сделать заключение о близости изучаемого распределения к нормальному.
II. Статистический анализ генеральной совокупности
Задача 1. Рассчитанные в табл.3 генеральные показатели представлены в табл.10.
Таблица 10
Описательные статистики генеральной совокупности
Обобщающие статистические показатели совокупности по изучаемым признакам |
Признаки |
|
Среднегодовая стоимость основных производственных фондов, млн. руб. |
Выпуск продукции, млн. руб. |
|
Стандартное отклонение |
||
Дисперсия |
||
Асимметричность As |
||
Эксцесс Ek |
Для нормального распределения справедливо равенство RN=6N.
В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.
Ожидаемый размах вариации признаков RN:
- для первого признака RN =………,
- для второго признака RN =……….
Соотношение между генеральной и выборочной дисперсиями:
- для первого признака =……………, т.е. расхождение между дисперсиями незначительное (значительное);
-для второго признака =…………….., т.е. расхождение между дисперсиями незначительное (значительное).
Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.
Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности). Ошибка выборки это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность
= |-|
определяет ошибку репрезентативности для средней величины признака.
Для среднего значения признака средняя ошибка выборки (ее называют также стандартной ошибкой) выражает среднее квадратическое отклонение выборочной средней от математического ожидания M[] генеральной средней .
Для изучаемых признаков средние ошибки выборки даны в табл. 3:
- для признака Среднегодовая стоимость основных производственных фондов
=………,
- для признака Выпуск продукции
=………
Предельная ошибка выборки определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.
Для уровней надежности P=0,954; P=0,683, P=0,997 оценки предельных ошибок выборки даны в табл. 3, табл. 4а и табл. 4б.
Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:
,
Предельные ошибки выборки и ожидаемые границы для генеральных средних представлены в табл. 11.
Таблица 11
Предельные ошибки выборки и ожидаемые границы для генеральных средних
Доверительная вероятность Р |
Коэффициент доверия t |
Предельные ошибки выборки, млн. руб. |
Ожидаемые границы для средних , млн. руб. |
||
для первого признака |
для второго признака |
для первого признака |
для второго признака |
||
0,683 |
1 |
||||
0,954 |
2 |
||||
0,997 |
3 |
Вывод:
Увеличение уровня надежности ведет к расширению (сужению) ожидаемых границ для генеральных средних.
Задача 3. Рассчитанные в табл.3 значения коэффициентов асимметрии As и эксцесса Ek даны в табл.10.
1.Показатель асимметрии As оценивает смещение ряда распределения влево или вправо по отношению к оси симметрии нормального распределения.
Если асимметрия правосторонняя (As>0) то правая часть эмпирической кривой оказывается длиннее левой, т.е. имеет место неравенство >Me>Mo, что означает преимущественное появление в распределении более высоких значений признака. (среднее значение больше серединного Me и модального Mo).
Если асимметрия левосторонняя (As<0), то левая часть эмпирической кривой оказывается длиннее правой и выполняется неравенство <Me<Mo, означающее, что в распределении чаще встречаются более низкие значения признака (среднее значение меньше серединного Me и модального Mo).
Чем больше величина |As|, тем более асимметрично распределение. Оценочная шкала асимметрии:
|As| 0,25 - асимметрия незначительная;
0,25<|As|0.5 - асимметрия заметная (умеренная);
|As|>0,5 - асимметрия существенная.
Вывод:
Для признака Среднегодовая стоимость основных производственных фондов наблюдается незначительная (заметная, существенная) левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают ……………………………………………………………………………………………….
Для признака Выпуск продукции наблюдается незначительная (заметная, существенная) левосторонняя (правосторонняя) асимметрия. Следовательно, в распределении преобладают ………………………………………………………………
……………………………………………………………………………………………….
2.Показатель эксцесса Ek характеризует крутизну кривой распределения - ее заостренность или пологость по сравнению с нормальной кривой.
Как правило, коэффициент эксцесса вычисляется только для симметричных или близких к ним распределений.
Если Ek>0, то вершина кривой распределения располагается выше вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средней величине.
Если Ek<0, то вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а достаточно равномерно рассеяны по всему диапазону от xmax до xmin.
Для нормального распределения Ek=0. При незначительном отклонении Ek от нуля форма кривой эмпирического распределения незначительно отличается от формы нормального распределения. Чем больше абсолютная величина |Ek|, тем существеннее распределение отличается от нормального.
Вывод:
1. Так как для признака Среднегодовая стоимость основных производственных фондов Ek>0 (Ek<0), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek=|…........|) .Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения.
2.Так как для признака Выпуск продукции Ek>0 (Ek<0), то кривая распределения является более островершинной (пологовершинной) по сравнению с нормальной кривой. При этом Ek незначительно (значительно) отличается от нуля (Ek=|….........|) .Следовательно, по данному признаку форма кривой эмпирического распределения значительно (незначительно) отличается от формы нормального распределения
III. Экономическая интерпретация результатов статистического исследования предприятий2
В этой части исследования необходимо ответить на ряд вопросов.
Задача 1.
Вывод: В основной своей массе, за исключением 2 предприятий (№11 и №30), предприятия, образующие выборку типичны по значениям изучаемых показателей.
Задача 2.
Вывод: По величине среднегодовой стоимости основных производственных фондов 20 предприятий (значительная часть) входят в диапазон от 1251,64 млн. руб. до 1608,36 млн. руб., характеризующий предприятия с наиболее характерными значениями показателя.
По размеру выпуска продукции 19 предприятий (значительная часть) входят в диапазон от 2013,19 млн. руб. до 2808,23 млн. руб., характеризующий предприятия с наиболее характерными значениями показателя.
Задача 3.
Вывод: Для признака Среднегодовая стоимость основных производственных фондов показатель V=12,47 33%, следовательно, по данному признаку выборочная совокупность количественна однородна.
Для признака Выпуск продукции показатель V =16,4733%, следовательно, по данному признаку выборочная совокупность количественна однородна.
Максимальное расхождение в значениях показателей для признака "Среднегодовая стоимость основных производственных фондов" - 750 млн.руб.; для признака "Выпуск продукции" 1680 млн.руб.
На основании изучения данной совокупности и полученных расчетных значений показателей можно сделать вывод о том, что различия в экономических характеристиках предприятий выборочной совокупности не сильны, и можно утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей.
Задача 4.
Интервальный ряд распределения предприятий |
||
Группы предприятий по стоимости основных фондов |
Число предприятий в группе |
Накопленная частость группы, % |
1055-1205 |
4 |
13,33% |
1205-1355 |
5 |
30,00% |
1355-1505 |
11 |
66,67% |
1505-1655 |
7 |
90,00% |
1655-1805 |
3 |
100,00% |
|
|
|
Итого |
30 |
|
Вывод: Модальный интервал - /1355-1505/ - в него входит наибольшее число предприятий по изучаемому признаку.
- Типичные предприятия, входящие в модальный интервал: № 3,4,6, 7,9,13,14,17,25,26,28 (всего 11 предприятий)
- Предприятия, входящие в группу с наименьшей стоимостью основных фондов : № - 1, 5, 23,27 (всего 4 предприятия)
- Предприятия, входящие в группу с наибольшей стоимостью основных фондов : № - 12,16, 21 (всего 3 предприятия)
- Удельный вес предприятий модального интервала: Р = 11/30 = 0,367 или 36,7%.
- Удельный вес предприятий модального интервала c наименьшими значениями Р = 4/30 = 0,133 или 13,3%.
- Удельный вес предприятий модального интервала c наибольшими значениями Р = 3/30 = 0,1 или 10,0%.
Задача 5.
Вывод: На основании построенной гистограммы, визуально можно предположить, что в распределении имеется определенная закономерность.
Asп =, распределение близко к нормальному. В совокупности доминируют предприятия с более низкой стоимостью основных фондов.
Задача 6.
Вывод: Ожидаемый размах показателей:
Для признака "Среднегодовая стоимость основных производственных фондов:
R = 1088,46-1070,16=18,3 млн. руб.
Для признака "Выпуск продукции"
R = 2423,70-2382,96=40,74 млн. руб.
- Ожидаемые границы для средних:
Для признака "Среднегодовая стоимость основных производственных фондов"
Доверительная вероятность: 0,683 1396,28-1463,72 млн. руб.
0,954 1360,95-1499,05 млн. руб.
0,997 1322,71-1537,29 млн. руб.
Для признака "Выпуск продукции":
Доверительная 0,683 2335,98-2486,16 млн. руб.
вероятность 0,954 2257,31-2564,83 млн. руб.
0.997 2172,16-2649,98 млн. руб.
- Предельные ошибки выборки:
для первого признака: для второго признака:
Доверительная
вероятность: 0,683 33,72 млн. руб. 75,09 млн. руб.
0,954 69,05 млн. руб. 153,76 млн. руб.
0,997 107,29 млн. руб. 238,91 млн. руб.
ПРИЛОЖЕНИЕ 1
Рабочий файл Лист 1 с результативными таблицами и графиками
Таблица 1 |
||
Исходные данные |
||
Номер предприятия |
Среднегодовая стоимость основных производственных фондов, млн.руб. |
Выпуск продукции, млн. руб. |
1 |
1190,00 |
2027,00 |
2 |
1332,50 |
2167,00 |
3 |
1362,50 |
2349,00 |
4 |
1415,00 |
2545,00 |
5 |
1055,00 |
1565,00 |
6 |
1467,50 |
2265,00 |
7 |
1497,50 |
2853,00 |
8 |
1220,00 |
2125,00 |
9 |
1407,50 |
2391,00 |
10 |
1565,00 |
2839,00 |
12 |
1677,50 |
2965,00 |
13 |
1370,00 |
2461,00 |
14 |
1467,50 |
2629,00 |
15 |
1625,00 |
3063,00 |
16 |
1805,00 |
3245,00 |
17 |
1445,00 |
2377,00 |
18 |
1557,50 |
2713,00 |
19 |
1317,50 |
1915,00 |
20 |
1572,50 |
2405,00 |
21 |
1707,50 |
3035,00 |
22 |
1295,00 |
1971,00 |
23 |
1107,50 |
1887,00 |
24 |
1595,00 |
2671,00 |
25 |
1467,50 |
2405,00 |
26 |
1392,50 |
2307,00 |
27 |
1167,50 |
1705,00 |
28 |
1437,50 |
2335,00 |
29 |
1602,50 |
2503,00 |
31 |
1542,50 |
2405,00 |
32 |
1235,00 |
2209,00 |
Таблица 2 |
||
Аномальные единицы наблюдения |
||
Номер предприятия |
Среднегодовая стоимость основных производственных фондов, млн.руб. |
Выпуск продукции, млн. руб. |
11 |
830,00 |
2685,00 |
30 |
1805,00 |
1285,00 |
Таблица 3 |
|||
Описательные статистики |
|||
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб." |
По столбцу "Выпуск продукции, млн.руб" |
||
Столбец1 |
|
Столбец2 |
|
|
|
|
|
Среднее |
1430 |
Среднее |
2411,066667 |
Стандартная ошибка |
33,12007934 |
Стандартная ошибка |
73,75089999 |
Медиана |
1441,25 |
Медиана |
2398 |
Мода |
1467,5 |
Мода |
2405 |
Стандартное отклонение |
181,4061456 |
Стандартное отклонение |
403,9503156 |
Дисперсия выборки |
32908,18966 |
Дисперсия выборки |
163175,8575 |
Эксцесс |
-0,344943844 |
Эксцесс |
-0,205332365 |
Асимметричность |
-0,152503649 |
Асимметричность |
0,042954448 |
Интервал |
750 |
Интервал |
1680 |
Минимум |
1055 |
Минимум |
1565 |
Максимум |
1805 |
Максимум |
3245 |
Сумма |
42900 |
Сумма |
72332 |
Счет |
30 |
Счет |
30 |
Уровень надежности(95,4%) |
69,04913776 |
Уровень надежности(95,4%) |
153,7567589 |
Таблица 4а |
|||
Предельные ошибки выборки |
|||
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб." |
По столбцу "Выпуск продукции, млн.руб" |
||
Столбец1 |
|
Столбец2 |
|
|
|
|
|
Уровень надежности(68,3%) |
33,72304583 |
Уровень надежности(68,3%) |
75,09356954 |
Таблица 4б |
|||
Предельные ошибки выборки |
|||
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб." |
По столбцу "Выпуск продукции, млн.руб" |
||
Столбец1 |
|
Столбец2 |
|
|
|
|
|
Уровень надежности(99,7%) |
107,2892462 |
Уровень надежности(99,7%) |
238,9088018 |
Таблица 5 |
|||
Выборочные показатели вариации и асимметрии |
|||
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб." |
По столбцу "Выпуск продукции, млн.руб" |
||
Стандартное отклонение |
178,3570856 |
Стандартное отклонение |
397,1607511 |
Дисперсия |
31811,25 |
Дисперсия |
157736,6622 |
Среднее линейное отклонение |
143,5 |
Среднее линейное отклонение |
305,9466667 |
Коэффициент вариации, % |
12,47252347 |
Коэффициент вариации, % |
16,47240852 |
Коэффициент асимметрии Asп |
-0,21025237 |
Коэффициент асимметрии Asп |
0,015275091 |
Таблица 6 |
|
Карман |
Частота |
|
1 |
1205 |
3 |
1355 |
5 |
1505 |
11 |
1655 |
7 |
1805 |
3 |
|
|
Таблица 7 |
||
Интервальный ряд распределения предприятий |
||
Группы предприятий по стоимости основных фондов |
Число предприятий в группе |
Накопленная частость группы, % |
1055-1205 |
4 |
13,33% |
1205-1355 |
5 |
30,00% |
1355-1505 |
11 |
66,67% |
1505-1655 |
7 |
90,00% |
1655-1805 |
3 |
100,00% |
|
|
|
Итого |
30 |
|
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ
О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы №2
Вариант № 13
Выполнил: ст. III курса гр. 24/1
Шалимов Ю.В.
Ф.И.О.
Проверил: Голикова Анна Викторовна
Ф.И.О.
Москва, 2007 г.
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования и частично использует результаты Лабораторной работы № 1.
В Лабораторной работе № 2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные Лабораторной работы № 1 после исключения из них аномальных значений.
Исходные данные |
||
Номер предприятия |
Среднегодовая стоимость основных производственных фондов, млн.руб. |
Выпуск продукции, млн. руб. |
1 |
1190,00 |
2027,00 |
2 |
1332,50 |
2167,00 |
3 |
1362,50 |
2349,00 |
4 |
1415,00 |
2545,00 |
5 |
1055,00 |
1565,00 |
6 |
1467,50 |
2265,00 |
7 |
1497,50 |
2853,00 |
8 |
1220,00 |
2125,00 |
9 |
1407,50 |
2391,00 |
10 |
1565,00 |
2839,00 |
12 |
1677,50 |
2965,00 |
13 |
1370,00 |
2461,00 |
14 |
1467,50 |
2629,00 |
15 |
1625,00 |
3063,00 |
16 |
1805,00 |
3245,00 |
17 |
1445,00 |
2377,00 |
18 |
1557,50 |
2713,00 |
19 |
1317,50 |
1915,00 |
20 |
1572,50 |
2405,00 |
21 |
1707,50 |
3035,00 |
22 |
1295,00 |
1971,00 |
23 |
1107,50 |
1887,00 |
24 |
1595,00 |
2671,00 |
25 |
1467,50 |
2405,00 |
26 |
1392,50 |
2307,00 |
27 |
1167,50 |
1705,00 |
28 |
1437,50 |
2335,00 |
29 |
1602,50 |
2503,00 |
31 |
1542,50 |
2405,00 |
32 |
1235,00 |
2209,00 |
В процессе статистического исследования необходимо решить ряд задач.
б) методом сопоставления параллельных рядов.
а) значимость и доверительные интервалы коэффициентов а0, а1;
б) индекс детерминации R2 и его значимость;
в) точность регрессионной модели.
а) коэффициента регрессии а1;
б) коэффициента эластичности КЭ;
в) остаточных величин i.
Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом и методом сопоставления параллельных рядов.
Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака закономерным образом изменяется какой либо из обобщающих статистических показателей распределения результативного признака.
Вывод:
Точечный график связи признаков (диаграмма рассеяния, полученная в Лабораторной работы №1 после удаления аномальных значений), а также табл.2.1, представляющая два параллельных ряда значений признаков X и Y с ранжированными значениями xi (В4:С33) показывают, что с увеличением значений факторного признака увеличиваются (уменьшаются) значения результативного признака, за исключением некоторых отклонений от общей тенденции (предприятия №№……………………………………). Это позволяет сделать вывод, что имеет (не имеет) место статистическая связь. Предположительный вид связи линейная (нелинейная) прямая (обратная).
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Корреляционная связь важнейший частный случай статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются средние значения результативного признака. Для выявления наличия корреляционной связи используется метод аналитической группировки.
Вывод:
Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением факторного признака Х ……………………………………………………………………
……………………………………………………………………………………………….
Задача 3.Оценка тесноты связи признаков Х и Y:
а) на основе эмпирического корреляционного отношения.
Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η - эмпирическое корреляционное отношение, задаваемое формулой
,
где и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции.
Результаты выполненных расчетов представляются табл. 2.4 Рабочего файла.
Вывод:
Значение коэффициента η=……………, что в соответствии с оценочной шкалой Чэддока говорит о …………………………степени связи изучаемых признаков.
б) на основе линейного коэффициента корреляции признаков.
В предположении, что связь между факторным и результативным признаками прямолинейная, для оценки тесноты связи на основе линейного коэффициента корреляции r был использован инструмент Корреляция надстройки Пакет анализа, в результате применения которого построена табл.2.5 Рабочего файла.
Вывод:
Значение коэффициента корреляции r=…………………….. , что в соответствии со шкалой Чэддока говорит о ..….…………………………степени связи изучаемых признаков.
Так как значение коэффициента корреляции r положительное (отрицательное), то связь между признаками ………………………………………………………………
Посредством показателя η измеряется теснота связи любой формы, а с помощью коэффициента корреляции r только прямолинейная, следовательно, значения η и r совпадают только при наличии прямолинейной связи. В теории статистики установлено, что если , то гипотезу о прямолинейности связи можно считать подтвержденной.
Вывод:
При η=….. ……и r= ………… величина = ………….., следовательно, связь между признаками X и Y предположительно прямолинейная (нелинейная).
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа.
Построение регрессионной модели заключается в определении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей для проверки адекватности построенного уравнения фактическим данным.
В результате работы инструмента Регрессия были получены четыре результативные таблицы 2.6 2.9 Рабочего файла.
Вывод:
Рассчитанные в табл.4.8 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения ……………………………………………………………………
Задача 5. Оценка адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.
Оценка соответствия регрессионной модели наблюдаемым фактическим значениям признаков X и Y выполняется в 4 этапа:
Так как коэффициенты уравнения а0, а1 рассчитывались, исходя из значений признаков только 30-ти пар (xi,yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0, а1. Поэтому необходимо: 1) вычислить средние ошибки , найденных коэффициентов а0, а1, 2) проверить значения коэффициентов на неслучайность (т.е.узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли), 3) (с заданной доверительной вероятностью) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.
Для анализа коэффициентов используется таблица, сгенерированная в диапазоне (А90:I92), в которой:
1.1. Определение значимости коэффициентов уравнения.
Уровень значимости это величина α=1-Р, где Р заданный уровень надежности (доверительная вероятность).
Если Р-значение коэффициента в результативной таблице меньше заданного уровня значимости α=1-0,95=0,05, то этот коэффициент признается неслучайным (типичным для генеральной совокупности).
Вывод:
Для свободного члена уравнения а0 уровень значимости есть …………… Так как этот уровень меньше(больше) заданного уровня значимости α=0,05, то коэффициент а0= ........... .... признается типичным (случайным).
Для коэффициента регрессии а1 уровень значимости есть …………… Так как этот уровень меньше(больше) заданного уровня значимости α=0,05, то коэффициент а1= .................. признается типичным (случайным).
1.2. Оценка доверительных интервалов коэффициентов уравнения регрессии.
Доверительные интервалы коэффициентов уравнения регрессии а0, а1 при уровнях надежности Р=0,95 и Р=0,683 приведены в следующей таблице:
Коэффициенты |
Границы доверительных интервалов, млн. руб. |
|||
с надежностью Р=0,95 |
с надежностью Р=0,683 |
|||
нижняя |
верхняя |
нижняя |
верхняя |
|
а0 |
||||
а1 |
Вывод:
Увеличение уровня надежности ведет к расширению (сужению) доверительных интервалов коэффициентов уравнения, в которых могут находиться коэффициенты а0, а1 уравнения связи признаков для генеральной совокупности предприятий.
В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по модели, используется линейный коэффициент корреляции r. По величине r можно охарактеризовать практическую пригодность модели:
Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации значений признака Y объясняется в модели вариацией фактора X:
Значение коэффициента корреляции r приводится в первой строке результативной таблицы "Регрессионная статистика" (термин "Множественный R"), значение индекса детерминации R2 - во второй строке этой таблицы.
Вывод:
Согласно таблице "Регрессионная статистика" r=……..., R2=………. Поскольку >0,7 (0,7) и R2>0,5 (R20,5), то построенная линейная регрессионная модель связи пригодна (не пригодна) для практического использования.
Адекватность построенной регрессионной модели фактическим данным (xi,yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.
Рассчитанная для уравнения оценка значимости R2 приведена в ячейке F86 (термин "Значимость F"). Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, уравнение регрессии …………………… может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.
Вывод:
Уровень значимости индекса детерминации R2 равен ……………… Так как этот уровень меньше(больше) заданного уровня значимости α=0,05, то значение R2 признается типичным (случайным) и построенная модель связи между признаками Х и Y применима (неприменима) для генеральной совокупности предприятий отрасли в целом.
Погрешность регрессионной модели можно оценить по средней квадратической ошибке построенного уравнения регрессии, представляющей собой среднее квадратическое отклонение эмпирических значений yi признака Y от его теоретических значений .
В адекватных моделях ошибка не должна превышать 12%-15%.
Значение приводится в четвертой строке выходной таблицы "Регрессионная статистика" (термин "Стандартная ошибка"), значение - в таблице описательных статистик (Лабораторная работа №1, табл.3).
Вывод:
Погрешность линейной регрессионной модели составляет …..%, что подтверждает (не подтверждает) адекватность модели.
Задача 6. Дать экономическую интерпретацию:
1) коэффициента регрессии а1;
2) коэффициента эластичности КЭ;
3) остаточных величин i.
1. Экономическая интерпретация коэффициента регрессии а1.
В случае линейного уравнения регрессии =a0+a1x величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значения результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.
Вывод:
Коэффициент регрессии а1=……….. показывает, что ……………………………………………………………………………………………….
………………………………………………………………………………………………
2. Экономическая интерпретация коэффициента эластичности.
С целью расширения возможностей экономического анализа используется коэффициент эластичности , который показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.
Среднее значение признаков X и Y даны в таблице описательных статистик
Вывод:
Коэффициент эластичности КЭ =…………… показывает, что ............................ ………………………………………………………………………………………………
……………………………………………………………………………………………….
3. Экономическая интерпретация остаточных величин i.
Каждый их остатков характеризует отклонение фактического значения yi от значения , рассчитанного по регрессионной модели и определяющего, какое среднее значение следует ожидать для факторного признака xi.
Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.
Значения остатков i (таблица остатков из диапазона А98:С128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции (которые в итоге уравновешиваются, т.е.).
Экономический интерес представляют наибольшие отклонения от среднего объема как в положительную, так и в отрицательную сторону.
Вывод:
Согласно таблице остатков, в построенной линейной регрессионной модели наибольшее превышение среднего объема выпускаемой продукции имеют три предприятия - с номерами……, ……, …….., а наибольшие отрицательные отклонения от среднего объема выпуска - три предприятия с номерами……, ……, …….. .Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемого продукта от ожидаемого среднего объема и выявления резервов роста производства.
Задача 7. Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм. Построение для этого уравнения теоретической кривой регрессии.
Уравнения регрессии и их графики построены для 4-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.
Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в следующей таблице:
Вид уравнения |
Уравнение регрессии |
Индекс детерминации R2 |
Полином 2-го порядка |
||
Полином 3-го порядка |
||
Степенное |
||
Экспоненциальное |
Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.
Вывод:
Максимальное значение индекса детерминации R2 =…………............, следовательно, наиболее адекватное нелинейное уравнения регрессии ………………………………………………………………………………………………
Это уравнение регрессии и его график приведены на рис.2.2 Рабочего файла.
ПРИЛОЖЕНИЕ 2
Таблица 2.1 |
||
Исходные данные |
||
Номер предприятия |
Среднегодовая стоимость основных производственных фондов, млн.руб. |
Выпуск продукции, млн. руб. |
5 |
1055,00 |
1565,00 |
23 |
1107,50 |
1887,00 |
27 |
1167,50 |
1705,00 |
1 |
1190,00 |
2027,00 |
8 |
1220,00 |
2125,00 |
32 |
1235,00 |
2209,00 |
22 |
1295,00 |
1971,00 |
19 |
1317,50 |
1915,00 |
2 |
1332,50 |
2167,00 |
3 |
1362,50 |
2349,00 |
13 |
1370,00 |
2461,00 |
26 |
1392,50 |
2307,00 |
9 |
1407,50 |
2391,00 |
4 |
1415,00 |
2545,00 |
28 |
1437,50 |
2335,00 |
17 |
1445,00 |
2377,00 |
6 |
1467,50 |
2265,00 |
14 |
1467,50 |
2629,00 |
25 |
1467,50 |
2405,00 |
7 |
1497,50 |
2853,00 |
31 |
1542,50 |
2405,00 |
18 |
1557,50 |
2713,00 |
10 |
1565,00 |
2839,00 |
20 |
1572,50 |
2405,00 |
24 |
1595,00 |
2671,00 |
29 |
1602,50 |
2503,00 |
15 |
1625,00 |
3063,00 |
12 |
1677,50 |
2965,00 |
21 |
1707,50 |
3035,00 |
16 |
1805,00 |
3245,00 |
Таблица 2.2 |
||||
Зависимость выпуска продукции от среднегодовой стоимости основных фондов |
||||
Номер группы |
Группы предприятий по стоимости основеных фондов |
Число предприятий |
Выпуск продукции |
|
Всего |
В среднем |
|||
1 |
1055-1205 |
4 |
7184,00 |
1796,00 |
2 |
1205-1355 |
5 |
10387,00 |
2077,40 |
3 |
1355-1505 |
11 |
26917,00 |
2447,00 |
4 |
1505-1655 |
7 |
18599,00 |
2657,00 |
5 |
1655-1805 |
3 |
9245,00 |
3081,67 |
Итого |
|
30 |
72332,00 |
2411,066667 |
Таблица 2.3 |
|||
Показатели внутригрупповой вариации |
|||
Номер группы |
Группы предприятий по стоимости основеных фондов |
Число предприятий |
Внутригрупповая дисперсия |
1 |
1055-1205 |
4 |
30821,00 |
2 |
1205-1355 |
5 |
13061,44 |
3 |
1355-1505 |
11 |
26584,73 |
4 |
1505-1655 |
7 |
50288,00 |
5 |
1655-1805 |
3 |
14155,56 |
Итого |
|
30 |
|
Таблица 2.4 |
|||
Показатели дисперсии и эмпирического корреляционного отношения |
|||
Общая дисперсия |
Средняя из внутригрупповых дисперсия |
Межгрупповая дисперсия |
Эмпирическое корреляционное отношение |
157736,6622 |
29183,52889 |
128553,1333 |
0,902765617 |
Таблица 2.5 |
||
Линейный коэффициент корреляции признаков |
||
|
Столбец 1 |
Столбец 2 |
Столбец 1 |
1 |
|
Столбец 2 |
0,91318826 |
1 |
Выходные таблицы
ВЫВОД ИТОГОВ
Регрессионная статистика
|
|
Множественный R |
0,91318826 |
R-квадрат |
0,833912798 |
Нормированный R-квадрат |
0,827981112 |
Стандартная ошибка |
167,5390387 |
Наблюдения |
30 |
Дисперсионный анализ
|
df |
SS |
MS |
F |
Значимость F |
Регрессия |
1 |
3946158,641 |
3946158,641 |
140,5861384 |
1,97601E-12 |
Остаток |
28 |
785941,2256 |
28069,32949 |
|
|
Итого |
29 |
4732099,867 |
|
|
|
|
Коэффициенты |
Стандартная ошибка |
t-статистика |
P-Значение |
Y-пересечение |
-496,7854297 |
247,1457134 |
-2,010091224 |
0,054144585 |
Переменная X 1 |
2,033463004 |
0,171500355 |
11,85690257 |
1,97601E-12 |
Нижние 95% |
Верхние 95% |
Нижние 68,3% |
Верхние 68,3% |
-1003,041043 |
9,47018322 |
-748,5884525 |
-244,9824069 |
1,682160057 |
2,384765952 |
1,85873083 |
2,208195179 |
ВЫВОД ОСТАТКА
Наблюдение |
Предсказанное Y |
Остатки |
1 |
1648,51804 |
-83,51804 |
2 |
1755,274848 |
131,7251523 |
3 |
1877,282628 |
-172,282628 |
4 |
1923,035546 |
103,9644544 |
5 |
1984,039436 |
140,9605643 |
6 |
2014,541381 |
194,4586192 |
7 |
2136,549161 |
-165,5491611 |
8 |
2182,302079 |
-267,3020787 |
9 |
2212,804024 |
-45,80402373 |
10 |
2273,807914 |
75,19208613 |
11 |
2289,058886 |
171,9411136 |
12 |
2334,811804 |
-27,811804 |
13 |
2365,313749 |
25,68625093 |
14 |
2380,564722 |
164,4352784 |
15 |
2426,317639 |
-91,3176392 |
16 |
2441,568612 |
-64,56861173 |
17 |
2487,321529 |
-222,3215293 |
18 |
2487,321529 |
141,6784707 |
19 |
2487,321529 |
-82,32152933 |
20 |
2548,325419 |
304,6745805 |
21 |
2639,831255 |
-234,8312547 |
22 |
2670,3332 |
42,66680027 |
23 |
2685,584172 |
153,4158277 |
24 |
2700,835145 |
-295,8351448 |
25 |
2746,588062 |
-75,5880624 |
26 |
2761,839035 |
-258,8390349 |
27 |
2807,591953 |
255,4080475 |
28 |
2914,34876 |
50,65123973 |
29 |
2975,35265 |
59,6473496 |
30 |
3173,615293 |
71,38470667 |
Рис. 2.
Рис. 2.1 Рис. 2.2
1 Все статистические показатели необходимо представить в таблицах с точностью до 2-х знаков после запятой. Таблицы и пробелы в формулировках выводов заполнять вручную. В выводах при выборе альтернативного варианта ответа ненужное зачеркнуть.
2 Выводы должны раскрывать экономический смысл результатов проведенного статистического анализа совокупности предприятий, поэтому ответы на поставленные вопросы задач 1-6, должны носить экономический характер со ссылками на результаты анализа статистических свойств совокупности (п. 1-5 для выборочной совокупности и п. 1-3 для генеральной совокупности). В Методических указаниях к лабораторной работе №1 (стр.7-9) разяснено, на основании каких статистических показателей делаются соответствующие экономические выводы. Отчет по данному разделу лабораторной работы выполняется в машинописном виде в произвольном формате.
3 Коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел.
4 Все рисунки и графики должны быть подписаны и пронумерованы