У вас вопросы?
У нас ответы:) SamZan.net

Анализ производственных функций

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

Курсовая  работа :

“Анализ производственных функций”

Группа: ДИ 302

Студент: Шеломанов Р.Б.

Руководитель: Зуев Г.М

Москва 1999


Содержание


Теоретическая часть

Мультипликативная производственная функция

Производственная функция (ПФ) выражает зависимость результата производства от затрат ресурсов. При описании экономики (точнее, ее производственной подсистемы) с помощью ПФ эта подсистема рассматривается как «черный ящик», на вход которого поступают ресурсы R1, ..., Rn, а на выходе получается результат в виде годовых объемов производства различных видов продукции Х1, ..., Хm .

В качестве ресурсов (факторов производства) на макроуровне наиболее часто рассматриваются накопленный труд в форме производственных фондов (капитал) К и настоящий (живой) труд L, а в качестве результата - валовой выпуск Х (либо валовой внутренний продукт Y, либо национальный доход N). Во всех случаях результат коротко будем называть выпуском и обозначать X, хотя это может быть и валовой выпуск, и ВВП, и национальный доход.

Остановимся несколько подробнее на обосновании состава фактора К. Накопленный прошлый труд проявляется в основных и оборотных, производственных и непроизводственных фондах. Выбор того или иного состава K определяется целью исследования, а также характером развития производственной и непроизводственной сфер в изучаемый период. Если в этот период в непроизводственную сферу вкладывается примерно постоянная доля вновь созданной стоимости и непроизводственная сфера оказывает на производство примерно одинаковое влияние, это служит основанием напрямую учитывать в ПФ только производственные фонды.

Но производственные фонды состоят из основных и оборотных производственных фондов. Если соотношение между этими составными частями производственных фондов примерно постоянное в течение всего изучаемого периода, то достаточно напрямую учитывать в ПФ только основные производственные фонды.

Если изучаемый период достаточно продолжителен и однороден по влиянию на производство указанных выше составных частей, следует испробовать все варианты включения их в модель (от всех вместе до какого-то одного из них). Чтобы не вдаваться в детали, далее будем К называть фондами.

Таким образом, экономика замещается своей моделью в форме нелинейной ПФ

Х= F(K, L),

т.е. выпуск (продукции) есть функция от затрат ресурсов (фондов и труда).

Теперь рассмотрим экономическую интерпретацию основных характеристик ПФ на примере мультипликативной функции (в частности, функции Кобба—Дугласа), некоторые другие ПФ, используемые в экономике, разберем в конце работы.

Производственная функция  Х= F(K, L) называется неоклассической, если она является гладкой и удовлетворяет следующим условиям, поддающимся естественной экономической интерпретации:

1) F(0, L) = F(K, 0) = 0

- при отсутствии одного из ресурсов производство невозможно;

2)

  •  с ростом ресурсов выпуск растет;

3)  

- с увеличением ресурсов скорость роста выпуска замедляется;

4) f(+, L) = F(K, +) = +

- при неограниченном увеличении одного из ресурсов выпуск неограниченно растет.

Мультипликативная ПФ задается выражением

a1>0 a2>0

где А — коэффициент нейтрального технического прогресса; а1, a2 -коэффициенты эластичности по труду и фондам .

Таким образом, ПФ обладает свойством 1, адекватным реальной экономике: при отсутствии одного из ресурсов производство невозможно. Частным случаем этой функции служит функция Кобба-Дугласа

 Где  a1=a, a2=1-a

Мультипликативная ПФ определяется по временному ряду выпусков и затрат ресурсов t, Кt, Lt,), t= 1, ..., Т, где T- длина временного ряда, при этом предполагается, что имеет место Т соотношений

где t — корректировочный случайный коэффициент, который приводит в соответствие фактический и расчетный выпуск и отражает флюктуацию результата под воздействием других факторов, Мt = 1. Поскольку в логарифмах эта функция линейна:

In Хt = In A + atIn Kt+ a2InLt + t, где t = In t, Мt= 0,

получаем модель линейной множественной регрессии. Параметры функции А, a1, a2 могут быть определены по методу наименьших квадратов с помощью стандартных пакетов прикладных программ, содержащих метод множественной регрессии (например, STATGRAF или SAS для персональных ЭВМ).

В качестве примера приведем мультипликативную функцию валового выпуска Российской Федерации (млрд. руб.) в зависимости от стоимости основных производственных фондов (млрд. руб.) и числа занятых в народном хозяйстве (млн. чел.) по данным за 1960-1994 гг. (все стоимостные показатели даны в сопоставимых ценах для этого периода):

X=0,931K0,539L0,594

Мультипликативная функция обладает также свойством 2, адекватным реальной экономике: с ростом затрат ресурсов выпуск увеличивается, т.е.

Так как a1 >0

Так как  a2>0

Частные производные выпуска по факторам называются предельными продуктами или предельными (маржинальными) эффективностями факторов и представляют собой прирост выпуска на малую единицу прироста фактора:

- предельный продукт фондов, предельная фондоотдача (предельная  эффективность фондов);

- предельный продукт труда, предельная производительность (предельная эффективность труда).

Для мультипликативной функции указанной выше  вытекает, что предельная  фондоотдача пропорциональна средней фондоотдаче —  с коэффициентом a1 , а предельная производительность труда — средней производительности труда  — с коэффициентом а2:

,  

Из чего вытекает, что при а1 < 1, a2 < 1 предельные отдачи факторов меньше средних; при этих же условиях мультипликативная функции обладает свойством 3, которое очень часто наблюдается в реальной экономике: с ростом затрат ресурса его предельная отдача падает, т.е.

так как а1<1

 так как а2<1

Из   также видно, что мультипликативная функция обладает свойством 4 , т.е. при неограниченном увеличении одного из ресурсов выпуск неограниченно растет. Таким образом, мультипликативная функция при 0 < а1 < 1, 0<а2 < 1 является неоклассической.

Перейдем теперь к экономической интерпретации параметров А, а1, а2 мультипликативной ПФ. Параметр А обычно интерпретируется   как параметр нейтрального технического прогресса: при тех же а1, а2  выпуск в точке (К, L) тем больше, чем больше А. Для интерпретации а1, а2  необходимо ввести понятие эластичностей как логарифмических производных факторов:

Поскольку в нашем случае In Х = In А + a1ln К + a1ln L, то

 

 

т.е. а1  — эластичность выпуска по основным фондам, а a2 - эластичность выпуска по труду.

Из  

видно, что коэффициент эластичности фактора показывает, на сколько процентов увеличится выпуск, если фактор возрастет на 1%. Например, согласно ПФ X=0,931K0,539L0,594

при увеличении основных фондов (ОФ) на 1% валовой выпуск повысится на 0,539%, а при увеличении занятых на 1% — на 0,594%.

Если а1 >a2 имеет место трудосберегающий (интенсивный) рост, в противном случае - фондосберегающчй (экстенсивный) рост.

Рассмотрим темп роста выпуска

Если возвести обе части уравнения в степень , получим соотношение

в котором справа — взвешенное среднее геометрическое темпов роста затрат ресурсов, при этом в качестве весов выступают относительные эластичности факторов

 

При а1+ а2 > 1 выпуск растет быстрее, чем в среднем растут факторы , а при а1+ а2 < 1 - медленнее. В самом деле, если факторы растут (т.е. Kt+1>Kt, Lt+1>Lt)  то согласно  растет и выпуск (т.е. Xt+1>Xt), следовательно, при а1+ а2 > 1

т.е.   действительно, темп роста выпуска больше среднего темпа роста факторов . Таким образом, при а1+ а2 > 1 ПФ описывает растущую экономику.

Линией уровня на плоскости К, L, или изоквантой, называется множество тех точек плоскости, для которых F(K, L) =Х0=const. Для мультипликативной  ПФ изокванта имеет вид :

или

т.е.  является степенной гиперболой, асимптотами которой служат оси координат.

Для разных К, L, лежащих на конкретной изокванте, выпуск равен  одному и тому же значению X0, что эквивалентно утверждению о взаимозаменяемости ресурсов.

Поскольку на изокванте F(K, L) = Х0 = const, то

В этом соотношении ,  поэтому dK и dL имеют разные знаки: если dL<0  что означает сокращение объема труда, то dK>0, т.е выбывший в объеме  труд замещается фондами в объеме dK.

Поэтому естественно следующее определение, вытекающее из . 

Предельной нормой замены SK труда фондами называется отношение модулей дифференциалов ОФ и труда:

соответственно , предельная норма замены SL фондов трудом

 при этом Sk SL=1

Для мультипликативной функции норма замещения труда фондами пропорциональна фондовооруженности:

,  

что совершенно естественно: недостаток труда можно компенсировать его лучшей фондовооруженностью.

Изоклиналями называются линии наибольшего роста ПФ. Изоклинали ортогональны линиям нулевого роста, т.е. изоквантам. Поскольку направление наибольшего роста в каждой точке (К, L) задается градиентом

grad   , то уравнение изоклинали записывается в форме

В частности, для мультипликативной ПФ получаем,

поэтому изоклиналь задается дифференциальным уравнением,

, которое имеет решение

,   

где (L0; К0) - координаты точки, через которую проходит изоклиналь. Наиболее простая изоклиналь при а = 0 представляет собой прямую

На рис. 1 изображены изокванты и изоклинали мультипликативной ПФ. 

При изучении факторов роста экономики выделяют экстенсивные факторы роста (за счет увеличения затрат ресурсов, т.е. увеличения масштаба производства) и

рис. 1

интенсивные факторы роста (за счет повышения эффективности использования ресурсов).

Возникает вопрос: как с помощью ПФ выразить масштаб и эффективность производства? Это сравнительно легко сделать, если выпуск и затраты выражены в соизмеримых единицах, например представлены в соизмеримой стоимостной форме. Однако проблема соизмерения настоящего и прошлого труда до сих пор не решена удовлетворительным образом. Поэтому воспользуемся переходом к относительным (безразмерным) показателям.В относительных показателях мультипликативная ПФ записывается следующим образом:

те X0, K0 L0 значения выпуска и затрат фондов и труда в базовый год.

Безразмерная форма , указанная выше , легко приводится к первоначальному виду

Таким образом, коэффициент

получает естественную интерпретацию - это коэффициент, который соизмеряет ресурсы с выпуском. Если обозначить выпуск и ресурсы в относительных (безразмерных) единицах измерения через x, k, l, то ПФ в форме

запишется так:

Найдем теперь эффективность экономики, представленной ПФ . Напомним, что эффективность — это отношение результата к затратам. В нашем случае два вида затрат: затраты прошлого труда в виде фондов k и настоящего труда l. Поэтому имеются два частных  показателя эффективности:  -фондоотдача ,  -  производитель труда.

Поскольку частные показатели эффективности имеют одинаковую размерность (точнее, одинаково безразмерны), то можно находить любые средние из них. Так как ПФ выражена в мультипликативной форме, то и среднее естественно взять в такой же форме, т.е. среднегеометрическое значение.

Итак, обобщенный показатель экономической эффективности есть взвешенное среднее геометрическое частных показателей экономической эффективности:

в котором роль весов выполняют относительные эластичности

  т.е. частные эффективности участвуют в образовании обобщенной эффективности с такими же приоритетами, с какими входят в ПФ соответствующие ресурсы.

Из  вытекает, что с помощью коэффициента экономической эффективности ПФ преобразуется в форму, внешне совпадающую с функцией Кобба-Дугласа:

k=Eka l1-a

в соотношении с чем  Е - не постоянный коэффициент, а функция от (К, L).

Поскольку масштаб производства М проявляется в объеме затраченных ресурсов, то по тем же соображениям, которые были приведены при расчете обобщенного показателя экономической эффективности, средний размер использованных ресурсов (т.е. масштаб производства)

M=kal1-a

В результате получаем , что выпуск Х есть произведение экономической эффективности и масштаба производства:

Х=ЕМ.                     

Линейная производственная функция

X=F(K,L)=EKK+ELL

Где  EK  и EL частные эффективности ресурсов.

EK = -фондоотдача , EL = -  производитель труда.

Поскольку частные показатели эффективности имеют одинаковую размерность (точнее, одинаково безразмерны), то можно находить любые средние из них.

Эластичности замены труда фондами для линейной ПФ =

эта величина показывает, на сколько процентов надо изменить фондовооруженность, чтобы добиться изменения нормы замены на 1%.

Производственная функция затраты-выпуск 

X= F(K,L)=

Где:

Коэффициенты эластичности представленные в виде логарифмических производных факторов показывают,  на сколько процентов увеличится выпуск, если фактор возрастет на 1%. Например, согласно ПФ X=0,931K0,539L0,594

при увеличении основных фондов (ОФ) на 1% валовой выпуск повысится на 0,539%, а при увеличении занятых на 1% — на 0,594%.

Практическая часть

 Задача  

Дана производственная функция валового внутреннего продукта США по данным 1960-1995 гг.

X=2,248K0,404L0,803

Валовой внутренний продукт США, измеренный в млрд. дол. в ценах 1987 г. возрос с 1960 по 1995 г. в 2,82 раза, основные производственные фонды за этот же период увеличились в 2,88 раза,  число занятых - в 1,93 раза.

Необходимо рассчитать  масштаб и эффективность производства.

Решение

Из условия x = 2,82 k=2,88 l=1,93;

('начала находим относительные эластичности по фондам и труду

Затем определяем частные эффективности ресурсов

после  чего находим обобщенный показатель эффективности как среднее геометрическое частных:

Масштаб устанавливаем как среднее геометрическое темпов роста  ресурсов

Таким образом , общий рост ВВП с 1960 по 1995 г. в 2,82 раза произошел за счет роста масштаба производства в 2,207 раза и за счет повышении эффективности производства в 1,278 раза (2,82 = 1,273 * 2,207).

Заключение

Выше достаточно подробно была изучена  мультипликативная ПФ F(K,L). В частности, был выяснен экономический смысл ее параметров , показано, что при 0 <а1<1, i= 1, 2… эта функция –неоклассическая , построены изокванты и изоклинали этой функции, найдены нормы замены ресурсов.. Рассмотрены и другие производственные функции.


Литература

В.А. Колемаев  «Математическая экономика»

Г.М. Зуев Ж.В. Самохвалова «Экономико-математические методы и модели. Межотраслевой анализ»




1. Налоговая система Канады
2. Реферат- Международная валютная система
3.  Теоретические основы учета и аудита затрат входящих в себестоимость продукции хлебопечения
4. тематическое планирование уроков математики во 2 классе Составила- Клеймёнова Ирина Юрьевна МОУ С
5. Русский язык и культура речи
6. тема- 1 1 Введение в менеджмент 1 2
7. КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ
8. Страховое законодательство России в исторической перспективе
9. Психология публичных выступлений
10. 2000 ГГ Т Р Бурдаева Новосибирский национальный исследовательский государственный университет М
11. Тема урока- Books Коммуникативные задачи- Научить учащихся высказывать свою точку зрения используя но
12. на тему- Розрахунок основних параметрів системи цифрового телевізійного мовлення Студента ки курс
13. при положительном Копрологический метод ~ макро и микроскопия кала явлся вспомогат и позволяет определ
14. Средние величины.html
15. Кино как новый элимент культуры XX века
16. докладываю что я курсант 6 курса 2 факультета рядовой Печальный Полллупокер Иванович прошёл повторный инстр
17. ВАРИАНТ 1 1 Вычислить определитель
18. Управление маркетингом на инструментальном уровне
19. Лекція 2- Фінансовоправові норми та фінансовоправові відносини План лекцій- Поняття і види фінан
20. тематика русский язык чтение окружающий мир проверка знаний Тема- Звездный час Продолжител