Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
ВОПРОС № 13
МЕТОДЫ ЭМПИРИЧЕСКОГО ИССЛЕДОВАНИЯ
Человек может получать новое знание о действительности прежде всего непосредственно, т. е. без применения специальных познавательных средств - путем восприятия и обыденного наблюдения. Однако в науке, как правило, используется опосредствованный способ постижения истины. Существуют четыре основных метода опосредствованного получения нового знания:
В данном вопросе мы рассмотрим первые три из этих методов.
I
На операциональном уровне используются такие процедуры, как систематическое наблюдение, сравнение, измерение и некоторые другие. Принципиальная методологическая важность операциональной методики в развитии естественных наук была осознана лишь в первой четверти XX века в свете новаторских достижений ученых при создании теории относительности и квантовой механики. Прежде всего был ясно понят тот фундаментальный факт, что познавательные операции являются не только средством добывания знания о мире, но и важнейшим способом придания точного физического смысла научным понятиям. Отсюда возникла потребность заново, в свете новых фактов развития науки, проанализировать логико-методологический статус основных эмпирических процедур в научном исследовании. Такая работа впервые была осуществлена Н. Кэмпбеллом (1920) и Р. Бриджменом (1927). Последний ввел в науку понятие операционального определения как конструирования понятия через описание совокупности экспериментально-измерительных операций («понятие синонимично с известной совокупностью операций»). Например:
- температуру мы можем определить как состояние предмета или среды, числовая характеристика которого может быть установлена с помощью термометра;
- к этому же виду будет относиться и определение кислоты, как жидкости, окрашивающей лакмусовую бумажку в красный цвет.
Первоначальная версия операционализма содержала жесткое требование определения всех понятий науки в терминах измерения и внешней (эмпирически-экспериментальной) деятельности. Не выдерживающие такой процедурной проверки понятия признавались «пустыми определениями» и подлежали элиминации из системы научного знания. Под воздействием критики Бриджмен предложил в дальнейшем «мягкий» («ослабленный») вариант операционализма.
Во-первых, было снято требование обязательной «внешней» (эмпирической) процедуры. В работе «Размышления физика» наряду со способом образования понятия на основе практических схем действия рассматривается и вариант его задания через совокупность умственных операций, подобных операциям счета, иначе - «карандашно-бумажных операций». Например, лингвистике операциональный характер имеют определения тех или иных выражений путем указания вопросов, на которые они отвечают, что «существительное находится в именительном падеже, если (и только если) оно отвечает на какой-нибудь из вопросов "кто?", "что?".
Во-вторых, было признано, что часть теоретических конструктов сама по себе лишена значения; она не соотносима напрямую с наблюдаемыми объектами и задается внутри какой-либо принятой теоретической схемы.
В-третьих, было установлено, что полное содержание понятия не сводимо к сумме свернутых операции любою рода, не схватывается «без остатка» в конвенциях ученых и может включать в себя «неонерациональные значения» хотя бы в силу уникальности личного опыта исследователя и изначальной уникальности каждой отдельно взятой операции.
Таким образом, очевидно, что эмпирическая процедура может выступать как средство выявления точного и однозначного физического смысла тех или иных ключевых понятий, для чего в их определение должен входить метод, позволяющий в каждом конкретном случае на основе (возможно мысленного) эксперимента решить, осмысленно (правильно ли) применение этого понятия в дайной познавательной ситуации или нет. Иначе говоря, каждое такое понятие приобретает строгий смысл лишь в операциональном контексте, т. е. тогда, когда указана последовательность актуально (или потенциально) осуществимых операций (действий), фактическое выполнение которых (или мысленное их прослеживание) позволяет шаг за шагом выявить реальный смысл этого понятия и таким образом гарантировать его непустоту.
****
1. НАУЧНОЕ НАБЛЮДЕНИЕ
Наблюдение целенаправленное изучение предметов, опирающееся в основном на данные органов чувств (ощущения, восприятия, представления
К научному наблюдению предъявляются жесткие требования:
■ четкая постановка цели наблюдения;
■ выбор методики и разработка плана;
■ систематичность осуществления наблюдения;
■ контроль за корректностью и надежностью результатов наблюдения;
■ обработка, осмысление и истолкование полученного массива данных.
Если мы зафиксируем результаты проведенного наблюдения средствами некоторого принятого языка (это может быть обыденный язык, либо язык физики, либо какой-нибудь еще), то мы получим так называемые эмпирические высказывания, например:
1. Книга, купленная мною вчера, лежит на моем письменном столе.
2. Стрелка гальванометра остановилась против деления «10».
3. Два данных предмета уравновешены между собой на чашечных весах.
Каждое эмпирическое высказывание характеризуется следующими свойствами:
- во-первых, оно отражает некоторое, независимое от наблюдателя существующее событие и, следовательно, заключает в себе объективное содержание;
- во-вторых, оно способно выражать наблюдаемые события некоторым контролируемым способом. Вот почему, если принят один и тот же язык, то разные и независимые друг от друга наблюдатели выразят одно и то же наблюдаемое событие в идентичных ситуациях или в одной и той же системе отсчета однозначным образом.
Как же достигается объективность и однозначность эмпирических предложений? Прежде всего путем уточнения той наблюдаемой ситуации, относительно которой мы формулируем эти предложения. Такое уточнение заключается в указании места, времени, конкретных условий протекания наблюдаемого события. Но для этого мы должны, как правило, осуществлять некоторые материальные операции, применять инструменты и т. д. Наиболее важные из них это сравнение, измерение и эксперимент. Именно систематическим применением специально разработанных процедур и различаются наблюдения в научном познании и обыденной жизни.
Важно отметить фундаментальную гносеологическую функцию наблюдения, заключающуюся в том, что с его помощью мы переводим наблюдаемую объективную ситуацию в область сознания, превращаем ее в нечто идеальное. Этот перенос внешнего во внутренний план является предпосылкой для различных когнитивных операций, для превращения исследуемого объекта в эмпирический предмет нашего знания.
Наблюдения бывают непосредственные и опосредованные. Последние с помощью приборов.
****
Введение приборов в процесс познания обусловлено целым рядом важных обстоятельств, связанных с необходимостью:
1) преодоления ограниченности органов чувств;
2) преобразования информации об исследуемом объекте в форму, доступную чувственному отражению;
3) создания экспериментальных условий для обнаружения объекта;
4) получения количественного выражения тех или иных характеристик объекта. Таким образом, перед нами особый тип гносеологической ситуации, который коротко можно назвать приборным.
Что же такое прибор? Прибором можно назвать познавательное средство, представляющее собой искусственное устройство или естественное материальное образование, которое человек в процессе познания приводит в специфическое взаимодействие с исследуемым объектом с целью получения о последнем полезной информации.
Все приборы могут быть разделены на четыре типа: 1) усилители, 2) анализаторы, 3) преобразователи; 4) регистраторы. Рассмотрим каждый из этих типов в отдельности.
****
Приборы-усилители. Приборы данного типа применяются в тех случаях, когда идущие от объекта сигналы остаются в обычных условиях за порогом ощущений или когда особенности среды затрудняют их непосредственное отражение. Очевидно, что воздействие прибора на сигнал изменяет в последнем лишь его характеристики как физического носителя информации. Другими словами, прибор-усилитель (например, микроскоп) должен так изменить сигнал, чтобы он стал доступен соответствующему органу чувств, при этом сохраняется инвариантной передаваемая сигналами информация. Во всех случаях техническая задача приборов-усилителей состоит в том, чтобы доставлять сигналы любым возможным способом от исследуемого объекта к органам чувств, не меняя при этом качественную определенность выходного сигнала по сравнению с сигналом на входе.
Применяя приборы-усилители в процессе познания, человек получает в каждом конкретном случае образ, который, будучи взятый с точки зрения конечного результата отражения, сохраняет гносеологический статус непосредственного чувственного образа исследуемого объекта. Из сказанного вытекает, что теоретическая картина явления, которую наблюдатель воссоздает с помощью приборов-усилителей, может быть на заключительной стадии описана без всякого упоминания о самом приборе. Другими словами, происходит элиминация прибора из конечного познавательного результата.
****
Приборы-анализаторы. Необходимость использования приборов-анализаторов связана с особенностями самого исследуемого объекта по отношению к поставленной задаче. В функцию прибора здесь не входит какое бы то ни было изменение сигналов, идущих от объекта; техническая задача приборов-анализаторов (например, спектроскоп, хроматографическая бумага и т. п.) состоит в том, чтобы путем непосредственного воздействия на исследуемый объект (в частности, путем механического, физического или химического его разложения) преобразовать его в такую форму, что появляется возможность получить с помощью органов чувств новую дополнительную информацию.
Рассмотрим в связи с этим один конкретный пример. Допустим, требуется определить химический состав вещества спектральным методом. Для этого прежде всего получают спектрограмму визуально наблюдаемое распределение спектральных линий вещества на пластинке. Расшифровка спектрограммы осуществляется путем сравнения ее со стандартной спектрограммой, на которой против каждой линии указана соответствующая длина волны. Очевидно, что эталонный образец заключает в себе лишь ранее полученное знание и как таковой не может дать экспериментатору никакой новой информации. Сравниваемый образец, взятый сам по себе, также не может доставить интересующую исследователя информацию. Лишь соединение обоих образцов в рамках особой познавательной операции сравнения (и лишь в том случае, когда названная операция позволяет произвести идентификацию образцов) приводит к получению новой информации.
В чем суть идентификации с гносеологической точки зрения? Непосредственно поступающая при сопоставлении образцов сенсорная информация позволяет лишь установить тождество или различие тех или иных сравниваемых линий. То обстоятельство, что две какие-либо линии оказались в результате сравнения отождествлены, ведет, однако, к важным следствиям. Дело в том, что в отношении линий на стандартной спектрограмме наблюдатель располагает дополнительной информацией (ведь каждая линия здесь однозначно связана с соответствующей длиной волны, а длина волны с соответствующим химическим элементом). В результате идентификации вся дополнительная информация необходимо переносится на опознаваемый объект. Значит, новая информация возникает в результате переноса (посредством умозаключения) накопленной ранее информации (так называемой априорной информации) на исследуемый объект.
Таким образом, хотя восприятие, полученное с помощью прибора-анализатора, возникает в результате непосредственного воздействия выходного сигнала на соответствующий орган чувств, его соотнесение с исходным объектом оказывается опосредованным.
Из сказанного можно сделать вывод о том, что картина явления, которую воссоздает исследователь с помощью прибора-анализатора, предполагает в известной степени необходимость учитывать тот вклад, который вносит прибор в конечный результат познания (опосредование второго порядка).
****
Приборы-преобразователи. Для получения информации о таких явлениях, как электромагнитное поле, радиация и т. п., необходимо найти или создать искусственное материальное образование, которое обладало бы свойством характерным образом изменяться под влиянием изучаемого явления. Частным случаем приборов такого типа являются приборы-индикаторы, функция которых давать сведения о присутствии либо отсутствии искомого явления в исследуемой среде.
При конструировании приборов-преобразователей обычно используют достаточно известные и простые зависимости между физическими величинами, например, механическое воздействие электрического тока и магнитного потока, расширение тел при нагревании, упругая деформация материалов под действием силы. Показания прибора, на основании которых экспериментатор судит об исследуемом свойстве или явлении, представляет собой конечное звено причинно-следственной связи «объект прибор». При этом предполагается, что связь причины и следствия носит однозначный характер, т. е. изменения в приборе (вторичная структура) строго соотносятся с однозначно определенным классом явлений, вызывающих это изменение (первичная структура). Очевидно, что показания прибора (следствие) интересуют наблюдателя не сами по себе в качестве чувственного образа регистрирующего устройства, а лишь как сигналы, несущие информацию об исследуемом объекте (причине). Так, в электроскопе, служащем для обнаружения заряда на телах, можно визуально наблюдать по поведению листочков алюминия или станиоля присутствие или отсутствие электрических зарядов.
Каковы условия использования любого природного объекта в качестве прибора-преобразователя? Взаимодействие прибора и исследуемого предмета может быть эффективно использовано в целях познания лишь при наличии предварительного знания о свойствах и принципе действия прибора так называемых титульных данных. Фиксируя изменения, произошедшие в приборе в процессе эксперимента, с помощью наблюдения за регистрирующим устройством, ученый получает такой материал чувственных данных, значение и смысл которого он может расшифровать лишь опираясь на уже имеющуюся у него информацию о тех каузальных связях и закономерностях, которые положены в основу функционирования прибора. Получение информации с помощью прибора-преобразователя связано с «умозаключением» от следствия к причине.
В приборах-преобразователях сигналы о тех или иных характеристиках исследуемого объекта хотя и носят чувственно воспринимаемый характер, но не воссоздают никакого чувственного образа самого объекта познания и поэтому не доставляют какой-либо дополнительной информации, на основании которой можно было бы судить об истинности показаний прибора. Чувственные данные по отношению к объекту опосредованы принятыми посылками, что можно было бы назвать опосредование третьего порядка. Воспринимается не само изучаемое явление, а его изоморфное отображение в виде некоторой структуры. Например, наблюдаемый трек элементарной частицы в камере Вильсона есть не более чем «макрослед» микропроцесса. При анализе показаний прибора экспериментатор исходит из того, что существует известный изоморфизм между структурой следа и самим микрособытием. О структуре следа можно судить по координатам следа, его длине, радиусе кривизны, изменению направления и другим характеристикам. Наличие изоморфизма и представляет собой средство перевода языка чувственных данных на язык теории.
В отличие от приборов-усилителей здесь уровень процесса восприятия и процесса интерпретации качественно различны. На уровне восприятия показания прибора выступают как сама отраженная реальность, на уровне же интерпретации эти показания есть лишь форма кодирования идущей от отображаемого объекта информации. Поэтому перед субъектом возникает познавательная задача найти с помощью концептуальных средств объективное соответствие между исследуемым явлением и его отображением в виде приборных данных, поскольку такое соответствие не дано субъекту непосредственно. Установив способ перекодировки, субъект может от показаний прибора перейти к самому явлению.
В большинстве случаев при применении приборов-преобразователей мы сталкиваемся с ситуацией, когда нельзя описать сущность изучаемого явления, не упоминая о приборе. Таким образом, прибор-преобразователь не может быть элиминирован ни на уровне восприятия (ибо как посредник он никогда не дан «изнутри» по отношению к наблюдателю), ни на уровне интерпретации (ибо упоминание о нем входит в само определение явления).
****
Приборы-регистраторы. Их основная функция регистрация и хранение полезной информации в форме, допускающей последующее ее восприятие (в том числе с помощью приборов-усилителей), анализ, сравнение и измерение. Самый типичный пример фоторегистрация на чувствительной эмульсии.
Регистратор (так же, как и измеритель) может быть прибором каждого из рассмотренных выше трех типов. Так, хронограмма является одновременно и анализатором и регистратором. В отличие от приборов первых двух классов регистраторы обязательно предполагают получение показаний прибора в виде документа (фотопленки, магнитофонная лента, перфокарта и т. п.).
Что нового несут с собой приборы-регистраторы с гносеологической точки зрения? Их отличительная черта состоит в том, что они позволяют многократно воспринимать одно и то же явление, зафиксированное на фотографии, кинопленке, осциллограмме и т. п. Это свойство становится особенно важным, когда возникает задача изучить какое-либо уникально и быстро протекающее событие (падение метеорита, распад элементарной частицы и т. п.). Возможность длительного хранения информации, полученной с помощью регистраторов, создает ряд других преимуществ в восприятии и переработке информации.
2. НАУЧНОЕ СРАВНЕНИЕ
Сравнение познавательная операция, выявляющая сходство или различие объектов (либо ступеней развития одного и того же объекта), т.е. их тождество и различия. Когда мы сравниваем два каких-либо предмета А и В, то мы имеем две логические возможности: 1) А и В тождественны, 2) А и В различны.
Отношение тождества может выступать в виде равенства, подобия, изоморфизма и т. д. Отношение различия можно, в частности, детализировать, имея в виду такие две возможности: 1) А больше В, 2) А меньше В.
В реальном мире отношения и связи между предметами исключительно разнообразны. В самом деле, два предмета могут быть равными по весу, но различаться по объему, или иметь одинаковую длину, но быть несходными по физическим свойствам. Вот почему, когда мы говорим «А тождественно В» или «А и В различны», но не уточняем, в каком именно смысле это верно, то наши высказывания неопределенны и, следовательно, лишены познавательной ценности.
Отсюда ясно, что сравнивать предметы можно только по какому-либо точному выделенному в них признаку, свойству или отношению, т. е. в рамках заданного интервала абстракции. Лишь то, что однородно, можно сравнивать, отождествлять или различать. Сведение к определенному единству является необходимым условием процедуры сравнения. Сравнение имеет смысл лишь в границах некоторого качества, а последнее всегда актуализировано лишь в том или ином контексте.
Аналогия. Сравнение лежит в основе такого широко распространенного в науке логического приема как аналогия.
Умозаключение по аналогии, или просто аналогия, индуктивное умозаключение о принадлежности определенного признака предмету на основе того, что сходный с ним иной предмет обладает этим признаком. Схема умозаключения по аналогии:
Предмет А имеет признаки а, b, с, d.
Предмет В имеет признаки а, b, с.
Следовательно, предмет В также имеет, по-видимому, признак d.
Данное умозаключение по ходу мысли является чрезвычайно простым. Ставший уже классическим пример о жизни на Марсе особенно наглядно демонстрирует эту простоту. Сторонники гипотезы о возможности жизни на Марсе рассуждают так. Между Марсом и Землей много общего: это две расположенные рядом планеты Солнечной системы, на обеих есть вода и атмосфера, не очень существенно различается температура на их поверхности и т. д. На Земле имеется жизнь. Поскольку Марс очень похож па Землю с точки зрения условий, необходимых для существования живого, значит, и на Марсе, по всей вероятности, есть жизнь. Этот пример подчеркивает принципиальную особенность умозаключения по аналогии: оно не дает достоверного знания. Есть ли жизнь на Марсе, нет ли там жизни современной науке не известно.
Виды аналогии: аналогия свойств и аналогия отношений. Аналогия старое понятие, известное еще греческой науке и средневековому мышлению. И уже в древности было замечено, что уподобляться друг другу, соответствовать и быть сходными по своим свойствам могут не только предметы, но и отношения между ними.
1. Аналогия свойств. Пионеры воздухоплавания не могли справиться с проблемой продольного изгиба крыльев своих летательных аппаратов. В 1895 г. Ф. Шаню сделал биплан с крыльями, соединенными стойками (подпорками). Конструкция была похожа на ажурный мост, и не удивительно: Шаню был инженером-мостостроителем и увидел аналогию между своим делом и проблемой укрепления крыльев аэроплана без их утяжеления. Изобретатель первой турбины Ч. Парсонс начал свою работу, исходи из аналогии между потоком пара и потоком воды в гидравлической турбине.
Уподобление крыла аэроплана мосту и потока пара потоку воды это выявление сходных свойств разных объектов. Заметив это сходство, можно продолжить его и заключить, что сравниваемые предметы подобны и в других своих свойствах.
2. Аналогия отношений. В хорошо известной планетарной модели атома его строение уподобляется строению Солнечной системы. Вокруг массивного ядра на разном расстоянии от него движутся по замкнутым траекториям легкие электроны, подобно тому, как вокруг Солнца обращаются планеты. В этой аналогии устанавливается, как и обычно, сходство, но не самих предметов, а отношений между ними. Атомное ядро не похоже на Солнце, а электроны на планеты. Но отношение между ядром и электронами во многом подобно отношении) между Солнцем и планетами. Заметив это сходство, можно попытаться развить его и высказать, например, предположение, что электроны, как и планеты, движутся не по круговым, а по эллиптическим траекториям. Это будет умозаключение по аналогии, но опирающееся уже не на сходство свойств предметов, а на сходство отношений между, в общем-то, совершенно разными предметами.
При аналогии отношений уподобляются отношения. Сами же предметы, между которыми эти отношения имеют место, могут быть совершенно разными. Могущество такой аналогии, освобожденной от груза «предметности», необычайно велико. Используя ее, можно установить неограниченное число черт сходства между самыми отдаленными областями. Выявляемые при этом подобия будут не массивными, зримыми подобиями вещей самих но себе, а более тонкими сходствами их отношений.
При поверхностном применении аналогия отношений превращается в орудие безудержной, непродуктивной фантазии, обрывающей связи с реальным миром и пренебрегающей существующими в нем связями и отношениями. Около трехсот лет назад, на заре современной науки, аналогия и особенно аналогия отношений была чрезвычайно популярна. Однако устанавливаемые с ее помощью подобия оказывались, как правило, поверхностными и легковесными. Ученые XVII в. любили сопоставлять человеческое тело с земным шаром: кожа человека это поверхность земли, его кости скалы, вены большие потоки, а семь главных частей тела соответствуют семи металлам.
Для повышения степени вероятности выводов по нестрогой аналогии следует выполнить ряд условий:
а)число общих признаков должно быть возможно большим, хотя само по себе количество не обеспечивает надежности вывода;
б)сходные признаки должны быть существенными. Аналогия на основе сходства несущественных признаков типична для ненаучного и неразвитого мышления;
в) общие признаки должны быть по возможности более разнородными;
г) необходимо учитывать количество и существенность пунктов различия;
д) переносимые признаки должны быть того же типа, что и сходные признаки.
****
Рассуждение по аналогии дало в науке многие блестящие результаты, нередко совершенно неожиданные.
Д. Гершель обнаружил, что пламя спиртовки становится ярко-желтым, если поместить r него немного поваренной соли. А если посмотреть на него через спектроскоп, то можно увидеть две желтые полосы из-за присутствия натрия. Гершель высказал мысль, что сходным путем можно обнаружить присутствие и других химических элементов, и впоследствии его идея подтвердилась и возник новый раздел физикиспектроскопия.
И. Мечников размышлял о том, как человеческий организм борется с инфекцией. Однажды, наблюдая за прозрачными личинками морской звезды, он бросил несколько шипов розы в их скопление; личинки обнаружили эти шипы и «переварили» их. Мечников тут же связал этот феномен с тем, что происходит с занозой, попавшей в палец человека: занозу окружает гной, который растворяет и «переваривает» инородное тело. Так родилась теория о наличии у животных организмов защитного приспособления, заключающегося в захватывании и «переваривании» особыми клетками фагоцитами посторонних частиц, в том числе микробов и остатков разрушенных клеток.
Не менее важную роль играет аналогия и в технике. Это настолько очевидно, что в примерах почти нет нужды.
И. Гутенберг пришел к идее передвижного шрифта по аналогии с чеканкой монет.
В. Вестингауз долго бился над проблемой создании тормозом, которые одновременно действовали бы по всей длине поезда. Прочитав случайно в журнале, что на строительстве тоннеля в Швейцарии буровая установка приводится и движение сжатым воздухом, передаваемым от компрессора с помощью длинного шланга, Вестингауз увидел в этом ключ к решению своей проблемы.
3. НАУЧНОЕ ИЗМЕРЕНИЕ
1. Определение измерения. Измерение - совокупность действий, выполняемых при помощи определенных средств с целью нахождения числового значения измеряемой величины в принятых единицах измерения.
Оно предполагает наличие в средствах деятельности некоторого масштаба (единицы измерения), алгоритма (правил) процесса измерения и измерительного устройства. Измерение есть процедура установления одной величины с помощью другой, принятой за эталон. Первая из указанных величин называется измеряемой величиной, вторая единицей измерения. Отсюда под измерением можно понимать процедуру сравнения двух величин, в результате которой экспериментально устанавливается отношение между величиной измеряемой и принятой за единицу.
Следует подчеркнуть, что современное опытное естествознание, начало которому было положено трудами Леонардо да Винчи, Галилея и Ньютона, своим расцветом обязано применению именно измерений. Провозглашенный Галилеем принцип количественного подхода, согласно которому описание физических явлений должно опираться только на величины, имеющие количественную меру, станет методологическим фундаментом естествознания, его будущего прогресса.
2. Сущность процесса измерения. Измерение исторически развилось из операции сравнения, но в отличие от последней является более мощным и универсальным познавательным средством. Сравнение может быть как качественным, так и количественным. При количественном сравнении вопрос о принадлежности некоторого качества сравниваемым предметам А и В уже решен. Речь может идти лишь о сравнении в пределах данного качества. В таком случае имеются три логические возможности получить определенный результат 1) А = В; 2} А < В; 3) А > В. Возникает следующий вопрос: можно ли как-то детализировать ответ во втором и третьем случаях? Представим себе следующую задачу. Имеется деревянный брусок и деревянный стержень стандартной длины. Требуется узнать, сколько надо сделать разрезов бруска для того, чтобы из полученных кусков можно было изготовлять стандартные стержни.
Простое сравнение позволяет найти лишь самый общий ответ: брусок больше стержня.
Этот тривиальный ответ не обеспечивает, однако, решение поставленной задачи. Нам требуются более детальные сведения о соотношении сравниваемых предметов, а именно: во сколько раз один предмет больше другого. Для получения ответа на вопрос необходимо операционально установить посредством сравнения, сколько раз стержень укладывается вдоль бруска. Пусть проведенное сравнение даст следующий результат: брусок равен 5 стержням, или в общем случае, брусок равен n стержням.
Каков смысл этого записанного в виде уравнения эмпирического высказывания? В этом уравнении мы свойство одного предмета (длину бруска) выразили через аналогичное свойство другого. Уравнение, как мы видим, отражает экспериментально установленный факт, объективно существующее отношение вещей.
Что представляет собой это отношение и какова та операциональная ситуация, в рамках которой указанное отношение рассматривается? Прежде всего мы замечаем, что стороны этого отношения играют различные роли; брусок выступает как определяемое, стержень как определяющее. Стержень в рамках данного отношения фигурирует не как предмет во всем многообразии своих свойств, а как вещественное воплощение лишь одного вполне определенного свойства быть длиной, протяженностью. Все остальные свойства этого предмета не играют здесь никакой роли (вес, толщина и т. д.). Вот почему длину бруска можно было бы с равным успехом выразить через длину других предметов кусок рельса, отрезок веревки и т. д.
Далее мы видим, что стержень выступает в этом отношении не просто как воплощенная длина, но как длина вполне определенная, как некоторая «порция» длины, как величина. Значение этого обстоятельства заключается в том, что от него непосредственно зависит результат сравнения. Итак, стержень фигурирует в данной познавательной ситуации как величина, которая, во-первых, характеризует некоторое вполне определенное качество (протяженность), во вторых, содержит в себе количественную меру, выражает определенное количество. Далее. Указанная величина выступает как средство, с помощью которого мы можем выражать соответствующие величины других предметов (длину бруска, в частности), в то время как сама она не может быть выражена через другие величины. В этом смысле данная величина является абсолютной, а все другие величины, которые могут быть с помощью ее выражены, являются относительными. Это обстоятельство и зафиксировано в нашем уравнении: брусок = n стержням
Выясняя объективный смысл рассматриваемой нами ситуации, мы можем заметить, что наше уравнение выражает этот смысл грубо и неоднозначно. Неоднозначность его можно видеть, например, из следующего. С помощью нашего стандартного стержня мы можем, вообще говоря, выражать не только длину данного бруска, но и его вес. Если каждая часть бруска раскалывается на четыре стержня, то вес нашего бруска будет примерно равняться весу 4n стандартных стержней. Другими словами, из нашего уравнения не видно, какая именно качественно определенная величина выражается данным уравнением длина, вес или что-либо еще. Воспользуемся тем, что в нашей ситуации мы можем, не изменяя результат, подставлять вместо стержня любой другой равный ему по длине предмет. Получаем следующее уравнение: брусок nx, где х есть пустое место, на которое можно подставлять любой предмет, равный по длине стержню. Наше новое уравнение отражает объективно существующий факт взаимозаменяемости всех предметов, подставляемых вместо х, свидетельствующий о том, что во всех этих предметах, рассматриваемых в нашей экспериментальной ситуации, существует нечто общее, инвариантное. Это инвариантное и выражается понятием величины, имеющей качественную и количественную определенность. Поскольку наша величина является в некотором смысле абсолютной, то по отношению к другим выражаемым через нее величинам она выступает в функции эталона.
Для того, чтобы подчеркнуть, что эта величина является эталоном вполне определенного качества, эталоном длины и чтобы не спутать его с другими эталонами, мы должны придать этой величине однозначно соответствующее ей имя. Общепринятое название эталона длины метр (м).
Если наша величина х составляет одну десятимиллионную долю четверти парижского меридиана, то наше уравнение примет вид: брусок = n метрам.
Обозначая через х измеряемую величину, через а единицу измерения и через n их отношение, получим следующее уравнение: n = х/а или х = nа.
Полученное уравнение и есть основное уравнение измерения. Численное значение измеряемой величины выражено отвлеченным числом, напротив, результат измерения всегда является наименованным числом.
3. Структура процесса измерения. Способ измерения включает в себя три главных момента: 1) выбор единицы измерения и получение набора соответствующих мер; 2) установление правила сравнения измеряемой величины с мерой и правило сложения мер; 3) описание процедуры сравнения.
1. Выбор единицы измерения. Пусть это будет вес кубического дециметра дистиллированной воды в вакууме при температуре 4° С в месте, находящемся на уровне моря на широте 45°. Поскольку измерение есть процедура экспериментальная, то, помимо выбора единицы измерения, нам необходимо иметь воспроизведение этой единицы в некотором вещественном образце мере (например, в некоторой гире). Используя измерение в качестве познавательного средства, мы должны исследовать, насколько это средство является надежным в каждом конкретном случае, то есть выяснить, не нарушаем ли мы принцип объективности в познании, подготовляя данную экспериментальную ситуацию. Вот почему, хотя единица измерения в принципе может выбираться произвольно, тем не менее, ее вещественному представителю мере мы должны предъявить весьма жесткие требования. Мера средство получения информации, она должна обеспечить такое протекание познавательного процесса, который бы привел к объективным результатам. Если мы сделаем гирю, например, из необработанного особым образом дерева, то с течением времени вес гири будет меняться: дерево будет либо испарять влагу, либо адсорбировать ее из воздуха. В этом случае такое требование объективности, как однозначность результатов измерения, не будет обеспечено. Естественно поэтому делать гири из такого материала, физические свойства которого носят устойчивый в определенном отношении характер. Пусть, например, наши гири будут из латуни. Воспроизводя единицу измерения в виде латунных гирь, мы, конечно, не можем достигнуть абсолютной точности, и наши гири будут слегка отличаться друг от друга по весу. Однако для того, чтобы гири могли играть роль меры, погрешность не должна быть выше допустимой. Величина допустимой погрешности целиком зависит от характера той познавательной задачи, которую мы решаем и для решения которой нам потребовались данные измерения.
2. Рассмотрим теперь вопрос о способе измерения как неотъемлемой стороне всякой измерительной процедуры. Возьмем устройство, представляющее собой равноплечий рычаг весы. Опираясь на законы рычага и закон всемирного тяготения, можно сформулировать следующее правило сравнения весов: если тела уравновешиваются на равноплечем рычаге, то веса тел равны. Учитывая свойство аддитивности масс, можно сформулировать и правило сложения мер: вес гирь, положенных на одну чашку весов, равен арифметической сумме весов отдельных гирь. Тогда процедура сравнения измеряемой величины с мерой выглядит весьма просто. Уравновесим измеряемое тело на весах при помощи имеющихся у нас латунных гирь. Число гирь n, потребовавшееся для этой операции, будет как раз равно численному значению измеряемой величины. Применяя основное уравнение измерения, получаем р = n кг, где р вес измеряемого тела.
3. Интерпретация результата. Полученное в результате измерения отвлеченное число имеет с гносеологической точки зрения две важные особенности. Обе эти особенности связаны с диалектикой абсолютного и относительного в познании. Прежде всего число n есть не что иное как своеобразный «ответ» природы на экспериментально поставленный вопрос, то есть представляет собой новые объективные сведения о природе, некоторую информацию. Этот ответ мы получили на сконструированном нами и понятном для нас языке относительных величин, мы задавали вопрос природе таким образом, чтобы ее ответ был понятен для нас и мог быть выражен на принятом нами языке.
4. Виды измерения. До сих пор мы все время рассматривали так называемое прямое измерение. Однако с развитием науки все большее практическое и теоретическое значение приобретает метод косвенного измерения.
При прямом измерении результат получается путем непосредственного сравнения измеряемой величины с эталоном, а также с помощью измерительных приборов, позволяющих непосредственно получать значение измеряемой величины (например, амперметр).
При косвенном измерении искомая величина определяется на основании прямых измерений других величин, связанных с первой математически выраженной зависимостью. Возможность косвенного измерения как особой познавательной процедуры, ведущей к получению объективного знания, вытекает из того, что в объективном мире одни явления, свойства, качества связаны с другими. Взаимозависимость различных процессов, свойств, сторон может, в частности, выражаться в том, что изменение какой-либо одной исследуемой величины обусловливает изменение другой. В математике такая зависимость называется функциональной.
Из практики известно, например, что длина пути S, пройденного пешеходом, зависит от времени t, в течение которого пешеход находился в движении. Уже простое наблюдение, таким образом, может привести нас к установлению определенной функциональной зависимости: S = f(t).
Однако полученный вывод еще не позволяет делать какие-либо заключения о том, как именно изменение одной величины зависит от изменения другой, то есть мы не знаем правила, с помощью которого можно было бы каждому численному значению независимой величины I сопоставить соответствующее значение независимой величины S. Понятно, что такое правило и не может быть получено с помощью наблюдения. Это вытекает уже из того, что наш вопрос мы формулируем на языке величин, а о величинах можно что-либо утверждать лишь с помощью измерения. Величайшим достижением научного познания явилось как раз то, что люди научились определять значение той или иной величины, не прибегая к прямому измерению ее, то есть задачу измерения одних величин сводить к задаче измерения других.
Для случая равномерного и прямолинейного движения тела мы можем провести прямое измерение как t, так и S. Пусть, например, в результате измерения мы получили следующую таблицу:
T S
1 2
2 4
3 6
Из таблицы видно, что численное значение S можно получить путем умножения соответствующего численного значения t на 2. Итак, мы нашли правило преобразования любого численного значения независимой величины в соответствующее значение зависимой: S = 2t. Мы видим, что численное значение S зависит не только от численного значения t, но и от числа 2, которое представляет собой численное значение некоторой третьей величины, характеризующей само движущееся тело. Эта величина есть не что иное, как средняя скорость тела. В таком случае мы можем записать наше уравнение в виде физического закона: S = vt, или v = S/t.
Очевидно, что численное значение v, которое было нами найдено, справедливо только для нашего частного случая. Тем не менее, сам способ определения величины v является универсальным для данного вида движения.
Итак, от констатации связи между величинами мы перешли с помощью измерения к установлению закона. Измерение, как известно, является фундаментом всего физического знания. В свое время Бриджмен указал на опасность введения в теорию нсизмеряемых величин и операционально неопределяемых понятий. Разрабатываемая естествоиспытателями операциональная техника как раз и позволяет выявлять эмпирические условия и границы применимости научных понятий.
II
Обратимся теперь к рассмотрению экспериментального метода. При экспериментальном изучении действительности исследователь «задает» вопрос интересующему его объекту и «получает» на него ответ. При этом вопрос должен быть задан на языке, «понятном» природе, а ответ должен быть получен на языке, понятном человеку. Поэтому речь идет об особым образом организованном диалоге между человеком и природой. Такую деятельность в прошлые века было принято называть «испытанием природы», а самих ученых «естествоиспытателями». Главным средством здесь послужил метод экспериментирования. В истории опытных наук эксперимент как метод познания и эффективный способ получения фактуальной информации возникает в эпоху Ренессанса и перехода к Новому времени. Эксперимент входит в практику науки как следствие определенных социокультурных предпосылок. Как отмечает B.C. Степин, идея эксперимента могла утвердиться в научном сознании только при наличии следующих мировоззренческих установок:
- во-первых, понимания субъекта познания как противостоящего природе и активно изменяющего ее объекты,
- во-вторых, представления о том, что опытное вмешательство в протекание природных процессов создает феномены, подчиненные законам природы,
- в-третьих, рассмотрения природы как закономерно упорядоченного поля объектов, где неповторимость каждой вещи как бы растворяется в действии законов, которые одинаково действуют во всех точках пространства и во все моменты времени.
ЭКСПЕРИМЕНТ
Эксперимент - активное и целенаправленное вмешательство в протекание изучаемого процесса, соответствующее изменение объекта или его воспроизведение в специально созданных и контролируемых условиях с целью проверки гипотезы о причинно следственной связи явлений.
Исследователь прибегает к постановке эксперимента в тех случаях, когда необходимо изучить некоторое состояние предмета наблюдения, которое в естественных условиях далеко не всегда присуще объекту или доступно субъекту. Воздействуя на предмет в специально подобранных условиях, исследователь целенаправленно вызывает к жизни нужное ему состояние, а затем изучает его. В сравнении с наблюдением структура эксперимента как бы удваивается: один из его этапов представляет собой деятельность, цель которой достижение нужного состояния предмета, другой связан с собственно наблюдением.
Всякий научный эксперимент всегда направляется какой-либо идеей, концепцией, гипотезой. Без идеи в голове, говорил И. П. Павлов, не увидишь факта. Данные эксперимента всегда так или иначе «теоретически нагружены» от его постановки до интерпретации его результатов.
Основные особенности эксперимента:
а) более активное (чем при наблюдении) отношение к объекту, вплоть до его изменения и преобразования;
б) многократная воспроизводимость изучаемого объекта по желанию исследователя;
в) возможность обнаружения таких свойств явлений, которые не наблюдаются в естественных условиях;
г) возможность рассмотрения явления в «чистом виде» путем изоляции его от усложняющих и маскирующих его ход обстоятельств или путем изменения, варьирования условий эксперимента;
д) возможность контроля за «поведением» объекта исследования и проверки результатов.
Структура эксперимента (т. е. что и кто необходим, чтобы он состоялся):
а) экспериментаторы (например, физики-экспериментаторы);
б) объект эксперимента (т. е. явление, на которое осуществляется воздействие);
в) система приборов и другое научное оборудование;
г) методика проведения эксперимента;
д) гипотеза (идея), которая подлежит подтверждению или опровержению.
Эксперимент имеет две взаимосвязанные функции: опытная проверка гипотез и теорий, а также формирование новых научных концепций. В зависимости от этих функции выделяют эксперименты: исследовательские (поисковые), проверочные (контрольные).
По характеру объектов выделяют физические, химические, биологические, социальные и т. п. эксперименты. Важное значение в современной науке имеет решающий эксперимент, целью которого служит опровержение одной и подтверждение другой из двух (или нескольких) соперничающих концепций. Это различие относительно: эксперимент, задуманный как подтверждающий, может по результатам оказаться опровергающим, и наоборот. Но в любом случае эксперимент состоит в постановке конкретных вопросов природе, ответы на которые должны дать информацию о ее закономерностях.
Один из простых типов научного эксперимента качественный эксперимент, имеющий целью установить наличие или отсутствие предполагаемого гипотезой или теорией явления. Более сложен количественный эксперимент, выявляющий количественную определенность какого-либо свойства изучаемого явления.
Широкое распространение в современной науке получил мысленный эксперимент система мыслительных процедур, проводимых над идеализированными объектами. Мысленный эксперимент это теоретическая модель реальных экспериментальных ситуаций. Здесь ученый оперирует не реальными предметами и условиями их существования, а их концептуальными образами.
Важно помнить о теоретической нагруженности эксперимента. Всякому эксперименту предшествует подготовительная стадия. В основе предварительной деятельности лежит замысел эксперимента, представляющий собой некоторое предположение о тех связях, которые должны быть вскрыты в процессе его и которые уже предварительно выражены с помощью научных понятий, абстракций. В эксперименте, как правило, используются приборы искусственные или естественные материальные системы, принципы работы которых нам хорошо известны, ибо в противном случае их применение обесценивается, так как показания их не были бы для нас понятными. Таким образом, в рамках нашего эксперимента уже фигурирует в «материализованной» форме наше знание, некоторые теоретические представления. Без них немыслим эксперимент, по крайней мере, в рамках более или менее сложившейся науки. Это, разумеется, не исключает из рамок эксперимента процедуру наблюдения, которое дает нам тот материал, значение и смысл которого мы можем «расшифровать», опираясь на предшествующую деятельность, на уже имеющееся у нас знание. Особенно наглядно эта зависимость понимания эксперимента от уже имеющегося у нас знания выступает в современной физике. «Именно поэтому человек, незнакомый с атомной физикой, не может получить никакого опытного знания о микромире, если очутится в лаборатории ученого-физика. Он заметит щелканье счетчиков, вспышки на экранах, вычерченные кривые на бумаге и пр., но эти наблюдения будут для него совершенно пустым и ничего не значащим материалом. В силу этого несведущему в физике человеку никогда не будут доступны микрообъекты, их свойства, закономерности движения. Для него наблюдаемое не может служить материалом и источником познания сущности явлений».
Всякая попытка отделить эксперимент от теоретических знаний делает невозможным понимание его природы, познавательной сущности. Она перечеркивает по существу всю ту целесообразную деятельность, которая предшествует эксперименту и результатом которой он является. Вне ее эксперимент есть обычное материальное взаимодействие, взаимодействие, в принципе не отличающееся от тех, которые совершаются на наших глазах повсеместно, ежеминутно. Только тогда, когда последнее, будучи формой практической деятельности и, следовательно, деятельности целесообразной, превращается нами в познавательное средство, оно выступает как эксперимент.
III
Восхождение от конкретного к абстрактному (или расширение поля конкретного) сущность третей группы методов. Она является промежуточной между эмпирией и теорией.
АБСТРАГИРОВАНИЕ
Абстрагирование процесс мысленного отвлечения от ряда свойств и отношений изучаемого явления с одновременным выделением интересующих исследователя свойств (прежде всего существенных, общих). В результате этого процесса получаются различного рода «абстрактные предметы», которыми являются как отдельно взятые понятия и категории («белизна», «развитие», «противоречие», «мышление» и др.), так и их системы. Наиболее развитыми из них являются математика, логика, диалектика, философия. Таким образом, в основе построения абстракций две процедуры - отвлечения и пополнения, при которых, с одной стороны, в содержание конструкта включается лишь часть из множества соответствующих чувственных данных, с другой стороны, в это содержание привносится новая информация, никак не вытекающая из этих данных. Так, формируя такой абстрактный объект геометрии как треугольник, квадрат, куб и т. п., на первом этапе отвлекаются от всех чувственно данных характеристик пространственных объектов, кроме их формы и размеров, а на втором этапе наделяют их такими свойствами как абсолютная прямизна линий, неизменность, непрерывность и т. п. Результаты абстрагирования принято называть абстракциями.
В ходе своего исторического развития наука восходит от одного уровня абстрактности к другому, более высокому. Развитие науки в данном аспекте это, по выражению Гейзенберга, «развертывание абстрактных структур». Решающий шаг в сферу абстракции был сделан тогда, когда люди освоили счет и тем самым открыли путь, ведущий к математике и математическому естествознанию.
Хотя наука всегда пользовалась абстракциями, однако их особое место в концептуальной структуре научных теорий стало достаточно очевидным лишь в свете тенденций современной научной революции. Наука прошлого, в сущности, была «земной» наукой, т. е. эмпирическим обобщением обыденного опыта людей, окружающих человека макроскопических условий. В числе исходных принципов этой науки поэтому важную роль играл принцип наглядности. Используемые абстракции легко находили более или менее прямую интерпретацию или аналогию на языке чувственных восприятий. Выход научного познания за рамки макромира и земных условий (обычных скоростей, давлений, температур и т. п.) породил процесс элиминации наглядности из содержания научных теорий. С этого момента знание становится все более «абстрактным», все более удаленным по своему содержанию от мира непосредственно воспринимаемых вещей и явлений. Прогресс знания во многих областях науки характеризуется переходом к построению теоретических систем все более высокого уровня абстракции с использованием абстракций первого, второго, третьего и т. д. порядков. Таким образом, в силу самой логики развития современного знания ученый оказывается перед необходимостью задумываться над природой используемых им абстракций, равно как и других элементов теоретической системы.
Различают несколько типов абстракции:
1) абстракция отождествления, или обобщающая абстракция, в результате которой выделяется обшее свойство исследуемых объектов. Данный вид абстракции считается основным в математике и математической логике. Например, взаимнооднозначное соответствие между множествами характеризуется тремя важнейшими свойствами; симметричностью, транзитивностью и рефлексивностью. Если между определенными объектами существуют отношения с данными свойствами, то с помощью такого отношения, аналогичного равенству, выделяется некоторое общее свойство, присущее всем этим объектам;
2) абстракция аналитическая, или изолирующая, в результате которой четко фиксируются свойства объектов, обозначаемые определенным именем («теплоемкость», «растворимость», «непрерывность», «четность», «наследственность» и др.);
3) абстракция идеализирующая, или идеализация, в результате которой образуются понятия идеализированных (идеальных) объектов («идеальный газ», «абсолютно черное тело», «прямая» и др.);
4) абстракция актуальной бесконечности (отвлечение от принципиальной невозможности зафиксировать каждый элемент бесконечного множества, т. е. бесконечные множества рассматриваются как конечные);
5) абстракция потенциальной осуществимости (отвлечение от реальных границ наших возможностей, нашей ограниченности собственной конечностью, т. е. предполагается, что может быть осуществлено любое, но конечное число операций в процессе деятельности).
Важнейший вопрос каковы границы абстрагирования, ее пределы (интервалы)? Необходимость введения в методологию понятия интервала абстракции связана с идеей обоснования научной абстракции как самого процесса абстрагирования, так и его результата. Абстрагируя в процессе познания, исследователь действует отнюдь не произвольно, а по определенным правилам и согласно поставленной познавательной задаче. Поскольку цель любых актов отвлечения и пополнения связана в науке в конечном счете с достижением истины, то возникает необходимость учитывать в познавательной деятельности те ограничения и те регулятивы, которые имеют место в отношении самой человеческой способности к абстракции.
Во-первых, то, отчего отвлекаются в процессе постижения объекта, должно быть посторонним (по четко оговоренным критериям) для результата абстракции, а то, чем пополняется содержание абстрактного объекта, должно быть релевантным.
Во-вторых, исследователь должен знать, до какого предела данное отвлечение имеет законную силу (т.е. не переходит в иное качество).
В-третьих, при исследовании сложных объектов следует производить концептуальную развертку объекта в виде совокупности его проекций в многомерном пространстве интервалов. Концептуальная развертка отображение одного и того же исходного объекта исследования в разных теоретических плоскостях (картинах) и соответственно нахождение множества интервалов абстракции. Так, например, в квантовой механике один и тот же объект (элементарная частица) может быть попеременно представлен в рамках двух картин то как корпускула (в одних условиях эксперимента), то как волна (в других условиях). Эти картины логически несовместимы между собой, но лишь взятые вместе они исчерпывают всю необходимую информацию о поведении микрочастиц. Подобно этому в социологии индивид может рассматриваться в разных социокультурных контекстах, в которых он играет разные социальные роли. Каждый такой контекст может быть основанием для выработки понятия с соответствующим интервалом абстракции.
В-четвертых, на определенном этапе необходимо осуществлять концептуальную сборку относящихся к делу интервалов абстракции в единую конфигурацию и отвлечение от посторонних перспектив видения данного объекта. Концептуальная сборка представление объекта в многомерном когнитивном пространстве путем установления логических связей и переходов между разными интервалами, образующими единую смысловую конфигурацию. Так, в классической механике одно и то же физическое событие может быть отображено наблюдателями в разных системах отсчета в виде соответствующей совокупности экспериментальных истин. Эти разные картины тем не менее могут образовывать некое концептуальное целое благодаря «правилам преобразования» Галилея, регулирующим способы перехода от одной группы высказываний к другой.
ИНДУКЦИЯ
Индукция это метод движения мысли от менее общего знания к более общему. В качестве посылок индуктивных выводов обычно выступают или множество высказываний, фиксирующих единичные наблюдения (протокольные предложения) или множество фактов (в форме универсальных или статистических высказываний). Заключением же индуктивных выводов часто являются универсальные высказывания об эмпирических законах (причинных или функциональных).
Виды индукции: 1) перечислительная (полная и неполная) 2) неперечислительная (индукция через элиминацию, индукция как обратная дедукция и подтверждающая индукция).
ПЕРЕЧИСЛИТЕЛЬНАЯ ИНДУКЦИЯ
Так, в XVIII веке Лавуазье на основе многочисленных наблюдений того, что ряд веществ, подобно воде и ртути, может находиться в твердом, жидком и газообразном состоянии, делает очень значимый для химической науки индуктивный вывод, что все вещества могут находиться в трех указанных выше состояниях. Указанный выше пример индуктивного вывода относится к такому их классу, который называется перечислительной индукцией. Перечислительная индукция это умозаключение, в котором осуществляется переход от знания об отдельных предметах класса к знанию обо всех предметах этого класса или от знания о подклассе класса к знанию о классе в целом (в частности, это могут быть статистические выводы от образца ко всей популяции).
Имеются две основных разновидности перечислительной индукции: полная и неполная.
1. В случае полной индукции мы имеем дело, во-первых, с исследованием конечного и обозримого класса. Во-вторых, в посылках полной индукции содержится информация о наличии или отсутствии интересующего исследователя свойства у каждого элемента класса. Например, посылки утверждают, что каждая планета Солнечной системы движется вокруг Солнца по эллиптической орбите. Заключением полной индукции является общее утверждение закон «Все планеты Солнечной системы движутся вокруг Солнца по эллиптическим орбитам», которое относится ко всему классу планет. Очевидно, что заключение полной индукции с необходимостью следует из посылок. Однако, очевидно и другое. А именно, что наука очень редко имеет дело с исследованием конечных и обозримых классов.
2. Как правило, формулируемые в науке законы относятся либо к конечным, но необозримым в силу огромного числа составляющих их элементов классов, либо к бесконечным классам. В таком случае ученый вынужден делать индуктивные заключения обо всем классе на основе множества утверждений о наличии какого-либо интересующего его свойства только у части элементов этого класса. Такая разновидность перечислительной индукции называется неполной индукцией. Очевидно, что заключения выводов по неполной индукции не следуют с логической необходимостью из посылок, а только, в лучшем случае, подтверждаются последними. Все такие заключения могут быть опровергнуты в будущем в ходе фиксации отсутствия интересующего нас свойства у остальных, неисследованных ранее элементов данного класса. Таких примеров наука знает огромное множество (доказательство ложности индуктивных заключений о том, что «все рыбы дышат жабрами» или что «все лебеди белые» и т. д. и т. п.).
Заключения по неполной индукции всегда являются незаконными с логической точки зрения и гипотезами в гносеологическом плане. При неполной индукции ученый сталкивается с явной ассиметрией подтверждения и опровержения. Любой вновь обнаруженный подтверждающий (верифицирующий) факт не добавляет ничего эпистемологически нового, но единственный опровергающий (фальсифицирующий) факт ведет к отрицанию обобщения в целом.
НЕПЕРЕЧИСЛИТЕЛЬНАЯ ИНДУКЦИЯ
1. Индукция через элиминацию. Идея индукции через элиминацию впервые была высказана в работах Ф. Бэкона, который противопоставил ее перечислительной индукции как более надежный вид научного метода. Согласно Бэкону, главная цель науки нахождение причин явлений, а не их обобщение. А потому научный метод должен служить открытию причинно-следственных зависимостей и доказательству утверждений об истинных причинах явлений. Смысл индукции через элиминацию заключается в том, что ученый сначала выдвигает на основе наблюдений за интересующим его явлением несколько гипотез о его причинах. В качестве таковых могут выступать только предшествующие ему явления. Затем в ходе дальнейших экспериментов, наблюдений и рассуждений он должен опровергнуть все неверные предположения о причине интересующего его явления. Оставшаяся неопровергнутой гипотеза и должна считаться истинной. Высказав идею индукции через элиминацию, Бэкон, однако, не предложил конкретных логических схем этого вида индуктивного рассуждения.
Эту работу осуществил в середине XIX века английский логик Дж.Ст. Милль. Разработанные им различные логические схемы элиминативной индукции впоследствии получили название методов установления причинных связей Милля (методы сходства, различия, объединенный метод сходства и различия, метод сопутствующих изменений и метод остатков).
****
2. Следующей формой индукции является понимание и определение ее как обратной дедукции. Такое истолкование индуктивного метода в науке было предложено Ст. Джевонсом и В. Уэвеллом, заложившими основы гипототико-дедуктивной модели научного познания. Согласно этим ученым, индуктивный путь мысли от наблюдений и фактов к выдвижению объясняющих их гипотез, научных законов всегда включает в себя индуктивный скачок, основанный на вне-логической, интуитивной компоненте исследования. Однако, в науке интуиция должна в конечном счете проверяться и контролироваться логикой, которая может быть только дедуктивной и никакой другой по своей сути. И Джевонс и Уэвелл, четко сознавая неоднозначный характер движения мысли от частного к общему, от фактов к законам, считали логически правомерным выдвижение различных гипотез, отправляясь от одних и тех же данных (посылок). Однако, они полагали, что после того, как гипотезы выдвинуты, можно отделить индуктивно правильные гипотезы от индуктивно неправильных. С их точки зрения, те и только те гипотезы являются индуктивно правильными, из которых дедуктивно следуют те основания (посылки), которые лежали в основе их выдвижения. Таким образом, критерием правильной индукции выступает дедукция: только то индуктивное восхождение мысли от частного к общему является логически правильным, которое в обратном направлении является строго логическим (дедуктивным) .
Особенностью истолкования индукции как обратной дедукции по сравнению с ее перечислительным и элиминативным пониманием (определением) является прежде всего то, что оно резко расширила объем понятия «индукция» и «индуктивный вывод», не налагая каких-либо ограничений на логическую форму посылок и заключения индукции. Во-вторых, при понимании индукции как обратной дедукции появилась возможность не ограничивать применение индукции только эмпирическим уровнем познания, а понимать ее как общенаучную процедуру, которая может быть использована на любых уровнях научного познания и в любых науках. Главным же недостатком понимания индукции как обратной дедукции является то, что она разрешает бесконечное число «правильных» индуктивных восхождений от одних и тех же фактов к их «обобщениям» (законам). Это резко обостряет вопрос о существовании или выработке научных критериев предпочтения одной «правильной» индуктивной гипотезы другой. Хотя, заявлял Ст. Джевонс, все «теории суть в сущности сложные гипотезы, и их так и нужно называть», однако, должен быть предложен внутринаучный критерий, позволяющий осуществлять рациональный выбор наиболее предпочтительной из индуктивно правильно полученных научных гипотез. Таким критерием Джевонс предложил считать количество фактов и наблюдений, дедуктивно выводимых из различных гипотез, то есть их объяснительную силу. Та индуктивная гипотеза является более предпочтительной, из которой логически следует большее количество известных науке определенного периода данных.
****
3. В XX веке в философии науки были предприняты существенные усилия по исследованию индукции как метода подтверждения научных законов и теорий. Одна из первых попыток построить индуктивную логику как логику подтверждения, основанную на вероятностной интерпретации меры подтверждения гипотез, принадлежит Г. Рейхенбаху. Все человеческое знание, считал он, по своей природе имеет принципиально вероятностный характер. Черно-белая шкала оценки истинности знания классической эпистемологии как либо истинного, либо ложного является, по его мнению, слишком сильной и методологически неоправданной идеализацией, так как подавляющее большинство научных утверждений имеет некоторое промежуточное значение между истиной (1) и ложью (0) из бесконечного числа возможных значений истинности в интервале (0,1).
Понимание Г. Рейхенбахом индукции как степени подтверждения эмпирической гипотезы данными наблюдения основано на принятии следующих допущений:
1) перечислительной концепции индукции;
2) статистической (частотной) интерпретации вероятности как степени подтверждения гипотезы данными наблюдения.
Как известно, при частотной интерпретации вероятности (р) она понимается как относительная частота появления одних событий (m) в классе других событий (n). При предельно-частотном определении вероятности ее значение записывается следующим образом:
При определении вероятности гипотезы в качестве n Рейхенбах предлагал рассматривать число известных фактов определенной области явлений, а качестве m те из них, которые выводятся из данной гипотезы. Например, если имеются 100 фактов из области оптических явлений, то вероятность истинности гипотезы, из которой логически следует 80 из этих фактов, имеет вероятность равную 4/5. При всей банальной очевидности подобных примеров, частотная интерпретация Рейхенбахом вероятности индуктивного подтверждения вызывает принципиальные возражения.
Во-первых, она не дает ответа на вопрос, почему мы должны отдавать предпочтение гипотезе, которая имеет наибольшую частоту истинности своих следствий, поскольку любое фиксированное значение такой частоты есть сугубо временное явление. С этой точки зрения совершенно невозможно объяснить смену старых теорий новыми, поскольку последние вначале всегда проигрывают старым в отношении своей актуальной объяснительной силы.
Во-вторых, объяснительная сила гипотезы, понимаемая как относительная частота ее истинных следствий, ничего не может говорить об истинности самих гипотез, так как по истинности следствий по законам логики нельзя заключать об истинности оснований. С этой точки зрения гипотеза, имеющая большую объяснительную силу чем ее соперница, может быть как раз ложной. Так, геоцентрическая система Птолемея долгое время имела гораздо большую объяснительную силу, чем гелиоцентрическая система Коперника.
И, наконец, в-третьих, с точки зрения статистически-истиностной модели подтверждения Г. Рейхенбаха, ученые должны были бы стремиться не объяснять мир наблюдаемых явлений, а просто описывать их, ибо истинностная частота подтверждения любой описательной конструкции по определению равна 100% (или 1). Однако, такая постановка вопроса явно противоречит всему духу и реальной практике научного познания, где выдвижение объясняющих и предсказывающих гипотез и теорий занимает важнейшее место, составляя суть научного постижения действительности.
ФАЛЬСИФИКАЦИЯ
Методологическая концепция Карла Раймунда Поппера (19021994) получила название «фальсификационизм», так как ее основным принципом является принцип фальсифицируемости (опровержимости) положений науки. Что побудило Поппера положить именно этот принцип в основу своей методологии?
Во-первых, он руководствовался некоторыми логическими соображениями. Логические позитивисты заботились о верификации утверждений науки, то есть об их подтверждении эмпирическими данными, Они полагали, что такого обоснования можно достигнуть посредством индуктивного методавывода утверждений науки из эмпирических предложений. Однако это оказалось невозможным, поскольку ни одно общее предложение нельзя вполне обосновать с помощью частных предложений. Частные предложения вполне могут лишь опровергнуть общие. Например, для верификации (подтверждения) общего предложения «Все деревья теряют листву зимой» нам нужно осмотреть миллиарды деревьев, в то время как опровергается это предложение всего лишь одним примером дерева, сохранившего листву среди зимы. Такая асимметрия между подтверждением и опровержением общих предложений и критика индукции как метода обоснования знания и привели Поппера к фальсификационизму.
Во-вторых, у него были и более глубокие философские основания для того, чтобы сделать фальсификационизм ядром своей методологии. Поппер верит в объективное существование физического мира и признает, что человеческое познание стремится к истинному описанию именно этого мира. Он даже готов согласиться с тем, что человек может получить истинное знание о мире. Однако Поппер отвергает существование критерия истины критерия, который позволял бы нам выделять истину из всей совокупности наших убеждений. Даже если бы мы в процессе научного поиска случайно и натолкнулись на истину, то все равно не смогли бы с уверенностью знать, что это истина. Ни непротиворечивость, ни подтверждаемость эмпирическими данными не могут, согласно Попперу, служить критерием истины. Любую фантазию можно представить в непротиворечивом виде, а ложные убеждения часто находят подтверждение. Пытаясь понять мир, люди выдвигают гипотезы, создают теории и формулируют законы, но они никогда не могут с уверенностью сказать, что из созданного ими истинно. Единственное, на что они способны, это обнаружить ложь в своих воззрениях и отбросить ее. Постоянно выявляя и отбрасывая ложь, они тем самым могут приблизиться к истине. Это оправдывает их стремление к познанию и ограничивает скептицизм. Можно сказать, что научное познание и философия науки опираются на две фундаментальные идеи: идею о том, что наука способна дать и дает нам истину, и идею о том, что наука освобождает нас от заблуждений и предрассудков. Поппер отбросил первую из них и положил в основу своей методологии вторую.
Попытаемся теперь понять смысл важнейших понятий попперовской концепции понятий фальсифицируемости и фальсификации.
Подобно логическим позитивистам Поппер противопоставляет теорию эмпирическим предложениям. К числу последних он относит единичные предложения, описывающие факты, например: «Здесь стоит стол», «10 февраля 1998 года в Москве шел снег» и т. п. Совокупность всех возможных эмпирических, или, как предпочитает говорить Поппер, базисных, предложений образует некоторую эмпирическую основу науки, в которую входят и не совместимые между собой базисные предложения. Научная теория, считает Поппер, всегда может быть выражена в виде совокупности общих утверждений типа: «Все тигры полосаты», «Все рыбы дышат жабрами» и т. п. Утверждения подобного рода можно выразить в эквивалентной форме: «Неверно, что существует неполосатый тигр». Поэтому всякую теорию можно рассматривать как запрещающую существование некоторых фактов или как говорящую о ложности некоторых базисных предложений. Например, наша «теория» утверждает ложность базисных предложений типа: «Там-то и там-то имеется неполосатый тигр». Вот эти базисные предложения, запрещаемые теорией, Поппер и называет потенциальными фальсификаторами теории.
Фальсификаторами потому, что если запрещаемый теорией факт имеет место и описывающее его базисное предложение истинно, то теория считается опровергнутой.
Потенциальными потому, что эти предложения могут фальсифицировать теорию, но лишь в том случае, когда будет установлена их истинность. Отсюда понятие фальсифицируемости определяется следующим образом: «теория фальсифицируема, если класс ее потенциальных фальсификаторов не пуст». Фальсифицированная теория должна быть отброшена. Поппер решительно настаивает на этом. Она обнаружила свою ложность, поэтому мы не можем сохранять ее в своем знании. Всякие попытки в этом направлении могут привести лишь к задержке в развитии познания, к догматизму в науке и потере ею своего эмпирического содержания.
При этом Поппер отверг индукцию и верифицируемость в качестве критерия демаркации. Их защитники видят характерную черту науки в обоснованности и достоверности, а особенность ненауки, скажем метафизики, в недостоверности и ненадежности. Однако полная обоснованность и достоверность в науке недостижимы, а возможность частичного подтверждения не помогает отличить науку от ненауки: например, учение астрологов о влиянии звезд на судьбы людей подтверждается громадным эмпирическим материалом. Подтвердить можно все, что угодно, это еще не свидетельствует о научности. То. что некоторое утверждение или система утверждений говорят о физическом мире, проявляется не в подтверждаемости их опытом, а в том, что опыт может их опровергнуть. Если система опровергается с помощью опыта, значит, она приходит в столкновение с действительным положением дел, но это как раз и свидетельствует о том, что она что-то говорит о мире. Исходя из этих соображений, Поппер в качестве критерия демаркации принимает фальсифицируемость, то есть эмпирическую опровержимость теории: «Эмпирическая система должна допускать опровержение путем опыта».
Поппер соглашается с тем, что ученые стремятся получить истинное описание мира и дать истинные объяснения наблюдаемым фактам. Однако, по его мнению, эта цель актуально недостижима, и мы способны лишь приближаться к истине. Научные теории представляют собой лишь догадки о мире, необоснованные предположения, в истинности которых мы никогда не можем быть уверены: «С развиваемой нами здесь точки зрения все законы и теории остаются принципиально временными, предположительными или гипотетическими даже в том случае, когда мы чувствуем себя неспособными сомневаться в них». Эти предположения невозможно верифицировать, их можно лишь подвергнуть проверкам, которые рано или поздно выявят ложность этих предположений.
Важнейшим, а иногда и единственным методом научного познания долгое время считали индуктивный метод. Согласно индуктивистской методологии научное познание начинается с наблюдений и констатации фактов. После того как факты установлены, мы приступаем к их обобщению и выдвижению теории. Теория рассматривается как обобщение фактов и поэтому считается достоверной. Правда, еще Д. Юм заметил, что общее утверждение нельзя вывести из фактов, и поэтому всякое индуктивное обобщение недостоверно. Так возникла проблема оправдания индуктивного вывода: что позволяет нам от фактов переходить к общим утверждениям? Осознание неразрешимости этой проблемы и уверенность в гипотетичности (предположительности) всякого человеческого знания привели Поппера к отрицанию индуктивного метода познания вообще. «Индукция, утверждает он, то есть вывод, опирающийся на множество наблюдений, представляет собой миф. Она не является ни психологическим фактом, ни фактом обыденной жизни, ни фактом научной практики».
В своем познании действительности человек всегда опирается на определенные верования, ожидания, теоретические предпосылки; процесс познания начинается не с наблюдений, а с выдвижения догадок, предположений, объясняющих мир. Свои догадки мы соотносим с результатами наблюдений и отбрасываем их после фальсификации, заменяя новыми догадками. Пробы и ошибки вот из чего складывается, считает Поппер, метод науки. Для познания мира, утверждает он, «у нас нет более рациональной процедуры, чем метод проб и ошибок предположений и опровержений: смелое выдвижение теорий, стремление сделать все возможное для того, чтобы показать ошибочность этих теорий, и временное их признание, если наша критика оказывается безуспешной». Метод проб и ошибок характерен не только для научного, но и для всякого познания вообще. И амеба, и Эйнштейн пользуются им в своем познании окружающего мира, говорит Поппер. Более того, метод проб и ошибок является не только методом познания, но и методом всякого развития. Природа, создавая и совершенствуя биологические виды, действует методом проб и ошибок. Каждый отдельный организм - это очередная проба; успешная проба выживает, дает потомство; неудачная проба устраняется как ошибка.
Итогом и концентрированным выражением фальсификационизма является схема развития научного знания, принимаемая Поппером. Как мы уже отмечали, фальсификационизм был порожден глубоким философским убеждением Поппера в том, что у нас нет никакого критерия истины и мы способны обнаружить и выделить лишь ложь. Из этого убеждения естественно следует: понимание научного знания как набора догадок о мире догадок, истинность которых установить нельзя, но можно обнаружить их ложность; критерий демаркации: лишь то знание научно, которое фальсифицируемо; метод науки: пробы и ошибки.
Научные теории рассматриваются Поппером как необоснованные догадки, которые мы стремимся проверить, с тем чтобы обнаружить их ошибочность. Фальсифицированная теория отбрасывается как негодная проба, не оставляющая после себя следов. Сменяющая ее теория не имеет с ней никакой связи, напротив, новая теория должна максимально отличаться от старой теории. Развития в науке нет, признается только изменение: сегодня вы вышли из дома в пальто, но на улице жарко; завтра вы выходите в рубашке, но льет дождь; послезавтра вы вооружаетесь зонтиком, однако на небе ни облачка, и вы никак не можете привести свою одежду в соответствие с погодой. Даже если однажды вам это удастся, все равно, утверждает Поппер, вы этого не поймете и останетесь недовольны.
Что же касается недостатков концепции Поппера, то главный из них состоит в том, что последовательное проведение принципа фальсификации в реальной научной практике никогда не имело места. Реальный ученый, столкнувшись с эмпирическими опровержениями, не будет даже по истечении некоторого периода времени (а Поппер предполагает такой период, видимо, для психологической адаптации исследователя к новой ситуации) отказываться от своей теории, а будет выяснять причины конфликта теории с фактами, будет искать возможность изменить некоторые параметры теории, т. е. будет ее спасать, что принципиально запрещено в методологии Поппера.
ЭКСТРАПОЛЯЦИЯ
Экстраполяция экстенсивное приращение знания путем распространения следствий какой-либо гипотезы или теории с одной сферы описываемых явлений на другие сферы.
Например, закон теплового излучения Планка, согласно которому энергия излучения может передаваться только отдельными «порциями» квантами, был экстраполирован А. Эйнштейном на другую область явлений; в частности, с помощью этого закона оказалось возможным исчерпывающим образом объяснить природу фотоэффекта и других сходных с ним явлений.
Пределы применимости любой естественно-научной теории всегда должны выходить за рамки того опыта, на фундаменте которого она основывалась первоначально. Необходимость экстраполяции теории на новые области явлений коренится в самом ее назначении как инструмента познания. Вспомним, что покоряющая эффективность механики Ньютона с момента ее создания заключалась в ее способности к единообразному описанию таких казавшихся совершенно разнородными явлений, как, например, падение камня с высоты на землю и движение Земли вокруг Солнца.
Экстраполяция мощное эвристическое средство исследования природы; оно позволяет расширять познавательный потенциал научных понятий и теорий, увеличивать их информационную емкость, а также усиливает предсказательные возможности теории в обнаружении новых фактов. Сама способность к экстраполяции той или иной гипотезы есть мощное косвенное подтверждение ее истинности. Экстраполяция дает вероятностное знание.
19