У вас вопросы?
У нас ответы:) SamZan.net

I. ГРАФИКИ Теоретические вопросы Условия возрастания функции на отрезке

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 4.7.2025

III. ГРАФИКИ

Теоретические вопросы

  1.  Условия возрастания функции на отрезке.
  2.  Условия убывания функции на отрезке.
  3.  Точки экстремума. Необходимое условие экстремума.
  4.  Достаточные признаки максимума и минимума функции (изменение знака первой производной).
  5.  Наибольшее и наименьшее значения, функции, непрерывной на отрезке.
  6.  Выпуклость и вогнутость графика функции. Достаточные условия выпуклости и вогнутости.
  7.  Точки перегиба графика функции. Необходимое условие перегиба. Достаточные условия перегиба.
  8.  Исследование функций на экстремум с помощью высших производных.
  9.  Асимптоты графика функции.

Теоретические упражнения

1. Доказать, что функция  монотонно возрастает на отрезке: а) ; б)  Следует ли из монотонности дифференцируемой функции монотонность ее производной?

2. Доказать теорему: если функции  и  дифференцируемы на отрезке  и  , а , то  .

Дать геометрическую интерпретацию теоремы.

У к а з а н и е. При доказательстве теоремы установить и использовать монотонность функции .

3. Доказать неравенство  для трех случаев:

а) ;

б) ;

в) .

Дать геометрическую интерпретацию неравенства.

4. Исходя из определений минимума и максимума, доказать, что функция

имеет в точке  минимум, а функция

не имеет в точке  экстремума.

5. Исследовать на экстремум в точке  функцию , считая, что производная  не существует, но функция  непрерывна в точке  и , .— натуральное число.

6. Исследовать знаки максимума и минимума функции  и выяснить условия, при которых уравнение  имеет а) три различных действительных корня; б) один действительный корень.

7. Определить «отклонение от нуля» многочлена  на отрезке , т. е. найти на этом отрезке наибольшее значение функции .

8. Установить условия существования асимптот у графика рациональной функции.

Расчетные задания

 Задача 1. Построить графики функций с помощью производной первого порядка.

1.1.     1.2.

1.3.      1.4.

1.5.      1.6.

1.7.      1.8.

1.9.     1.10.

1.11.      1.12.

1.13.     1.14.

1.15.     1.16.

1.17.     1.18.

1.19.     1.20.

1.21.     1.22.

1.23.     1.24.

1.25.    1.26.

1.27.    1.28.

1.29.    1.30.

1.31.

 Задача 2. Построить графики функций с помощью производной первого порядка.

2.1.      2.2.

2.3.    2.4.

2.5.      2.6.

2.7.   2.8.

2.9.    2.10.

2.11.    2.12.

2.13.      2.14.

2.15.   2.16.

2.17.   2.18.

2.19.    2.20.

2.21.      2.22.

2.23.      2.24.

2.25.    2.26.

2.27.    2.28.

2.29.    2.30.

2.31.

 Задача 3. Найти наибольшее и наименьшее значения функций на заданных отрезках.

3.1.    3.2.

3.3.   3.4.

3.5.     3.6.

3.7.    3.8.

3.9.  3.10.

3.11.   3.12.

3.13.   3.14.

3.15.   3.16.

3.17.   3.18.

3.19.    3.20.

3.21.   3.22.

3.23.    3.24.

3.25.  3.26.

3.27.  3.28.

3.29.   3.30.

3.31.

 Задача 4.

Варианты 1 – 10.

Рыбаку нужно переправиться с острова  на остров  (рис. 1). Чтобы пополнить свои запасы, он должен попасть на участок берега . Найти кратчайший путь рыбака .

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

Варианты 11 – 20.

При подготовке к экзамену студент за  дней изучает -ю часть курса, а забывает -ю часть. Сколько дней нужно затратить на подготовку, чтобы была изучена максимальная часть курса?

4.11.     4.12.

4.13.     4.14.

4.15.      4.16.

4.17.      4.18.

4.19.      4.20.

Варианты 21 – 31.

Тело массой  кг падает с высоты  м и теряет массу (сгорает) пропорционально времени падения. Коэффициент пропорциональности  кг/с2. Считая, что начальная скорость , ускорение  м/с2, и пренебрегая сопротивлением воздуха найти наибольшую кинетическую энергию тела.

4.21.     4.22.     4.23.

4.24.     4.25.     4.26.

4.27.     4.28.     4.29.

4.30.     4.31.

 Задача 5. Исследовать поведение функций в окрестностях заданных точек с помощью производных высших порядков.

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

5.23.

5.24.

5.25.

5.26.

5.27.

5.28.

5.29.

5.30.

5.31.

 Задача 6. Найти асимптоты и построить графики функций.

6.1.     6.2.

6.3.    6.4.

6.5.  6.6.

6.7.     6.8.

6.9.    6.10.

6.11.    6.12.

6.13.    6.14.

6.15.  6.16.

6.17.    6.18.

6.19.    6.20.

6.21.   6.22.

6.23.   6.24.

6.25.    6.26.

6.27.  6.28.

6.29.   6.30.

6.31.

 Задача 7. Провести полное исследование функций и построить их графики.

7.1.      7.2.

7.3.      7.4.

7.5.      7.6.

7.7.      7.8.

7.9.      7.10.

7.11.      7.12.

7.13.    7.14.

7.15.     7.16.

7.17.     7.18.

7.19.     7.20.

7.21.     7.22.

7.23.   7.24.

7.25.     7.26.

7.27.    7.28.

7.29.    7.30.

7.31.

 Задача 8. Провести полное исследование функций и построить их графики.

8.1.     8.2.

8.3.      8.4.

8.5.       8.6.

8.7.      8.8.

8.9.      8.10.

8.11.      8.12.

8.13.     8.14.

8.15.      8.16.

8.17.      8.18.

8.19.     8.20.

8.21.     8.22.

8.23.       8.24.

8.25.     8.26.

8.27.      8.28.

8.29.       8.30.

8.31.

 Задача 9. Провести полное исследование функций и построить их графики.

9.1.    9.2.

9.3.    9.4.

9.5.    9.6.

9.7.     9.8.

9.9.      9.10.

9.11.      9.12.

9.13.      9.14.

9.15.     9.16.

9.17.     9.18.

9.19.     9.20.

9.21.    9.22.

9.23.      9.24.

9.25.      9.26.

9.27.    9.28.

9.29.      9.30.

9.31.

 Задача 10. Провести полное исследование функций и построить их графики.

10.1.      10.2.

10.3.     10.4.

10.5.       10.6.

10.7.      10.8.

10.9.      10.10.

10.11.     10.12.

10.13.      10.14.

10.15.     10.16.

10.17.      10.18.

10.19.    10.20.

10.21.      10.22.

10.23.     10.24.

10.25.      10.26.

10.27.     10.28.

10.29.      10.30.

10.31.




1. тематизацию знаний студентов об основах культуры пользования важнейшим средством человеческого общения
2. Выпадающее меню на css
3. тематическое планирование по физике для 8 класса учебник- Физика 8 класс Н
4. 1Обжалование решения суда в высшую судебную инстанцию
5. Нормативно-правовые акты, их виды и значения
6. Аккредетивная форма расчета
7. правовой мысли после Платона связано с именем его ученика и критика Аристотеля 384 322 до н
8. торговый ассортимент означает- А перечень товаров формируемый транспортным предприятием Б перечень
9. Организация бильярдного клуба
10. Живопись с основами цветоведения к итоговой аттестации студентов специальности Реклама среднего про.html