Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

САНКТПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ КУРСОВАЯ РАБОТА ПРО

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение
высшего профессионального образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КУРСОВАЯ РАБОТА (ПРОЕКТ)
ЗАЩИЩЕНА С ОЦЕНКОЙ

РУКОВОДИТЕЛЬ

проф., д.т.н.

В.В.Румянцев

должность, уч. степень, звание

подпись, дата

инициалы, фамилия

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
К КУРСОВОЙ РАБОТЕ (ПРОЕКТУ)

ДАТЧИК УГЛА ПОВОРОТА.

по дисциплине: ТЕОРИЯ И РАСЧЕТ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ И ПРИБОРОВ.

РАБОТУ ВЫПОЛНИЛ(А)

СТУДЕНТ(КА) ГР.

подпись, дата

инициалы, фамилия

Санкт-Петербург 2013

Содержание

Введение…………………………………………………...………………………3

Глава 1. Описание конструкции датчиков…………………………………........4

1.1.Датчик индукционный бесконтактный угла поворота…………...………...4

1.2.Датчик индукционный бесконтактный угла поворота

с цилиндрическим ротором…………………………………...………………….5

1.3.Датчик трансформаторный угла поворота

с цилиндрическим ротором……………………………………...……………….6

1.4.Датчик ёмкостной угла поворота…………………………………………….7

1.5.Датчик бесконтактный реверсивный угла поворота…………...…………...9

1.6.Датчик трансформаторный угла поворота……………………..…………..11

Глава 2. Технико-экономический анализ………………………………………13

Заключение……………………………………………………………………….14

Список используемой литературы……………………………………………...15

Введение

Промышленная электроника используется в различных отраслях народного хозяйства, науки и техники. Наряду с тенденцией автоматизации технологических и производственных процессов на базе вычислительной техники, современная промышленная электроника стала наиболее распространённой.

Базовой системой любой современной автоматической системы управления производственным процессом , является система автоматического контроля, позволяющая получать измерительную информацию о режимных параметрах процессов

Научной основой систем автоматического контроля являются различные принципы измерений параметров технологических процессов, а технической базой этих систем служат средства измерений и преобразований соответствующих параметров, устройства для автоматизации производственных процессов, содержащие в себе ряд элементов, служащих для измерения параметров процесса. Этим элементом автоматической системы является датчик.

В настоящее время датчики разрабатываются во многих исследовательских и опытно-конструкторских организациях. Множество специалистов, в своей работе, сталкивается с выбором конкретных датчиков.

Разнообразие технологических процессов приводит к необходимости иметь широкий выбор датчиков, которые должны соответствовать требованиям, характерным для всех устройств автоматики.

Они должны иметь: высокую чувствительность, точность, быстродействие, надёжность, прочность, сравнительно малые размеры и т.д.

Данная курсовая работа включает в себя обзор шести датчиков угла поворота.

Цель этой курсовой работы - приобретение умения пользоваться патентной литературой, делая сравнительный анализ, давая экономическую оценку, навыков по оформлению технической литературы, а также приобретение способности анализировать процессы, происходящие в элементах устройства.

Глава 1. Описание конструкции датчиков.

1.1. Датчик индукционный бесконтактный угла поворота.

Формула изобретения.

1. Индукционный бесконтактный датчик угла поворота , содержащий ферромагнитный статор с пазами на его внутренней поверхности, размещённую в паре его диаметрально расположенных пазов обмотку возбуждения, размещённую в его других пазах выходную обмотку и двухполюсный ферромагнитный ротор с длиной Т полюсной дуги, отличающийся тем, что, с целью расширения функциональных возможностей путём изменения вида его выходной характеристики в функции угла поворота ротора, пазы для размещения выходной обмотки расположены с угловым смещением ± относительно диаметрально расположенных пазов с обмоткой возбуждения. 2. Датчик по п. 1, отличающийся тем, что, с целью повышения выходной характеристики в виде симметричной треугольной зависимости, полюсная дуга Т= /2, а угловое смещение = /2.

Датчик индукционный бесконтактный. Вид общий.

1 - ферромагнитный статор;

2 - двухполюсный ферромагнитный ротор;

3-5 и 3-5 - пазы;

6, 6 - обмотка возбуждения;

7, 7 - выходная обмотка; 

Т - ширина полюсной дуги; 

- угловое смещение пазов выходной обмотки относительно диаметрально расположенных пазов с обмоткой возбуждения; 

- угол поворота ротора.

3. Датчик по п. 1, отличающийся тем, что, с целью повышения выходной характеристики в виде пилообразной зависимости с зоной нечувствительности G, полюсная дуга Т= /2, а угловое смещение =0,5(/2-G).

4. Датчик по п. 1, отличающийся тем, что, с целью повышения выходной характеристики в виде трапецеидальной зависимости с длиной B плоского горизонтального участка, полюсная дуга Т=B +/2, а угловое смещение = /2.

Принцип действия.

При подключении обмотки возбуждения к источнику переменного напряжения начинает вращаться двухполюсный ферромагнитный ротор, который вызывает магнитную индукцию. С выходной обмотки снимают выходное напряжение(Uвых.), которое зависит от угла поворота ротора, а также определяется конструктивными параметрами Т, .

Вывод: Изобретение относится к измерительно-преобразовательной технике, а именно к индукционным датчикам угла, выходное напряжение которых изменяется по требуемому закону при повороте ротора, и может найти применение в качестве первичных датчиков информации в аналоговых и дискретных системах. Данный датчик очень прост по конструкции и способен показывать разные выходные характеристики (треугольная, пилообразная и трапецеидальная зависимости). Датчик имеет относительную дешевизну при изготовлении. Выходное напряжение изменяется при повороте на угол = /2.

1.2. Датчик индукционный бесконтактный угла поворота с цилиндрическим ротором.

Формула изобретения.

Индукционный бесконтактный датчик угла поворота, содержащий ферромагнитный ротор с Ш - образным поперечным сечением, размещённые на его среднем стержне две соединённые последовательно согласно катушки, образующие выходную обмотку, и явнополюсный ферромагнитный ротор, отличающийся тем, что, с целью упрощения конструкции, ротор выполнен цилиндрическим, полюса образуют на его поверхности выступ в виде одного витка винтовой спирали, статор установлен так, что его продольная ось симметрии, проходящая вдоль среднего стержня, параллельна оси ротора, а его длина равна удвоенной ширине полюсного выступа.

Датчик индукционный бесконтактный угла поворота с цилиндрическим ротором. Вид общий.

1 - статор;

2 - ротор;

3 - выступ ротора;

4 - первичная обмотка;

5 - вторичная обмотка;

6 - паз статора; 

- длина полюса; 

- ширина полюса; 

- угол поворота ротора;

Щ - переменное напряжение;

Uвых. - выходное напряжение.

Принцип действия.

К источнику переменного напряжения подключается статор (см. рис.2). При этом соединённый с ним ротор начинает поворачиваться на угол . В результате возникает магнитная индукция, которая вызывает в выходной обмотке статора ЭДС (выходное напряжение). Если статор в равной мере перекрывает парные части выходной обмотки, то Uвых.= 0. Рабочий диапазон углов поворота ротора равен

Вывод: Изобретение относится к измерительно-преобразовательной технике, а именно к индукционным бесконтактным датчикам угла, предназначенным для преобразователя угла поворота ротора в электрическое напряжение, и может найти применение в качестве первичного датчика информации в аналоговых и дискретных (цифровых) системах. Датчик прост по конструкции и производству. Он относительно дешёвый. Парные части выходной обмотки соединены встречно. Один оборот ротора соответствует одному шагу винтового выступа, а распределение магнитной индукции зависит от угла поворота ротора.

1.3. Датчик трансформаторный угла поворота с цилиндрическим ротором.

Формула изобретения.

Трансформаторный датчик угла поворота , содержащий ферромагнитный цилиндрический ротор, ферромагнитный статор, выполненный в виде полного цилиндра с торцевыми крышками, и размещённые на нём обмотки возбуждения и измерения, отличающийся тем, что, с целью повышения точности измерения путём увеличения чувствительности, он снабжён двумя парами пластин, выполненных из немагнитного материала с высокой электропроводностью, одна из пар размещена на внутренних поверхностях крышек статора симметрично относительно поперечной оси датчика, другая - на основаниях ротора диаметрально противоположно относительно продольной оси датчика, а обмотки возбуждения и измерения размещены в кольцевых пазах торцовых крышек статора.

Датчик трансформаторный с цилиндрическим ротором. Вид общий.

1 - торцевая крышка;

2 - ферромагнитный цилиндрический ротор;

3 - ферромагнитный статор;

5,8,11,12 - экранирующие пластины;

6 - вал;

9,10 - обмотки возбуждения;

4,7 - обмотки измерения;

Принцип действия.

К источнику переменного напряжения подключается статор (см. рис.3). При этом соединённый с ним ротор, находящийся на вале, начинает поворачиваться. В результате этого возникает магнитная индукция в обмотках возбуждения, которая фиксируется обмотками измерения. При повороте ротора на один градус, датчик фиксирует изменения магнитной индукции, тем самым показывает этот поворот.

Вывод: Данный датчик относится к измерительной технике и позволяет повысить точность измерения угла поворота путём увеличения чувствительности за счёт повышения градиента магнитной проницаемости измерительной цепи трансформаторного датчика угла поворота, и может быть использован для различных механизмов, где требуется определить точное значение угла поворота. Также он может быть использован для контроля возвратно-вращательных движений. Конструкция данного датчика очень проста, что делает его конкурентно способным среди других датчиков такого типа. Он относительно дешёвый в производстве, так как материалы, из которых он изготовлен, легко сделать.

1.4. Датчик ёмкостной угла поворота.

Формула изобретения.

Емкостной датчик угла поворота , содержащий пары секторных пластин, разделенных зазором, отличающийся тем, что, с целью повышения чувствительности и точности датчик снабжен цилиндрическим ротором, выполненным из диаметрально наэлектризованного электрета и подсоединяемым к контролируемому объекту в процессе измерения, и сегнетопленкой, размещенной в зазоре между секторными пластинами, а пары секторных пластин выполнены полуцилиндрическими и закреплены под углом 90 одна к другой.

Датчик ёмкостной угла поворота. Вид общий.

1,2,3,4 - полуцилиндрические секторные пластины;

5 - сегнетоплёнка;

6 - цилиндрический ротор;

7 - электрические выводы.

Принцип действия.

В положении, указанном на чертеже линии электростатической индукции, исходящие из ротора 6, наводят на внутренней поверхности пластины 3 отрицательный заряд, а на внешней - положительный. Далее линии электростатической индукции проходят через сегнетопленку 5, расходятся по пластинам 1 и 2 и через пластину 4 возвращаются в ротор 6. Диэлектрическая проницаемость сегнетопленки 5 будет при этом минимальной, минимальной будет и емкость всего датчика между выводами 7. При повороте ротора 6 на 90° поток линий электростатической индукции сразу разводится и замыкается через пластины 3 и 4. Емкость датчика будет минимальной. Датчик может быть включен в любую измерительную схему - потенциометрическую, мостовую, генераторную и т.д.

Вывод: Изобретение относится к контрольно - измерительной технике и может быть использовано для измерения угла поворота объектов. Недостатками этого датчика являются низкая чувствительность и невысокая точность, обусловленная влиянием изменения величины зазора между пластинами. Цель изобретения - повышение чувствительности и точности. Поставленная цель достигается тем, что датчик снабжен цилиндрическим ротором, выполненным из диаметрально наэлектризованного электрета и подсоединяемым к контролируемому объекту в процессе измерения, и сегнетопленкой, размещенной в зазоре между секторными пластинами, а пары секторных пластин выполнены полуцилиндрическими и закреплены под углом 90 одна к другой.

1.5. Датчик бесконтактный реверсивный угла поворота.

Формула изобретения.

Бесконтактный реверсивный датчик угла поворота , содержащий сельсины, работающие в режиме трансформатора, один из которых жестко связан с контролируемым валом, вентили и фильтры, отличающийся тем, что, с целью измерения знакопеременного угла поворота вала и увеличения надежности работы, датчик снабжен логическими схемами «И», «НЕ», триггером, пороговыми устройствами и времязадерживающей и формирующей цепочкой, валы роторов сельсинов жестко связаны между собой и повернуты один относительно другого на некоторый угол, обмотки возбуждения сельсинов подключены к источнику питания, соответствующие фазовые выходы роторных обмоток каждого сельсина соединены через последовательно включенные вентили, фильтры и пороговые устройства с одними входами схем «И» и через схемы «НЕ» подключены к другим входам этих же схем «И», выходы которых непосредственно и через схему «НЕ» подключены к входам триггера, а выход одного из пороговых устройств - к входу времязадерживающей и формирующей цепочки.

Датчик бесконтактный реверсивный угла поворота. Схема функциональная.

1 - сельсин;

2,8 - выпрямительный мост;

3,9 - фильтр;

4,10 - пороговое устройство;

5,11 - вход схем «И»;

6,12 - вход схем «НЕ»;

7 - ротор сельсины;

13 - времязадерживающая и формирующая цепочка;

14 - триггер;

15 - вход триггера.

Принцип действия.

При вращении ротора сельсина 1 выходной сигнал с его фазовой обмотки представляет собой переменное напряжение с частотой питающей сети, амплитуда которого изменяется от нуля до максимума и является синусоидальной функцией угла поворота ротора. Выходной сигнал сельсина преобразуется выпрямительным мостом и фильтром в соответствующий пульсирующий сигнал, период пульсации которого зависит от угловой скорости ротора. Сигнал с выхода фильтра поступает на пороговое устройство и преобразуется в прямоугольные импульсы. Аналогично формируются прямоугольные импульсы из выходного сигнала, снимаемого с фазовых обмоток ротора сельсина 7. При вращении контролируемого вала, например, в левую сторону схема работает следующим образом.

При наличии сигнала на выходе порогового устройства и при отсутствии сигнала на выходе порогового устройства 10 схема 5 вырабатывает импульс, который переключает триггер 14, при этом на выходе 17 появляется сигнал, характеризующий данное направление вращения контролируемого вала. С запаздыванием по отношению к фронту импульсного сигнала на выходе времязадерживающей и формирующей цепочки 13 вырабатывается импульс, характеризующий с принятой дискретностью произведенный угол поворота вала. Импульсы на выходе 16 вырабатываются с запаздыванием по отношению к фронту импульсного сигнала, характеризующего направление вращения вала, что обеспечивает надежное определение направления вращения и величину угла поворота последнего по числу импульсов. При противоположном направлении вращения контролируемого вала аналогично работают элементы 7--15, в результате чего на выходе 18вырабатывается сигнал данного направления вращения вала, а на выходе 16 вырабатываются импульсы, число которых пропорционально произведенному углу поворота. В этом случае так же, как и при рассмотренном направлении вращения контролируемого вала, вначале вырабатывается сигнал на выходе 18, который характеризует направление вращения вала, а затем вырабатываются импульсы на выходе 16.

Вывод: Изобретение относится к измерительной технике и может быть использовано для измерения углов поворота вала в различных устройствах. Предлагаемый датчик отличается от известного тем, что он снабжен логическими схемами «И», «НЕ», триггером, пороговыми устройствами и времязадерживающей и формирующей цепочкой, валы роторов сельсинов жестко связаны между собой и повернуты один относительно другого на некоторый угол, обмотки возбуждения сельсинов подключены к источнику питания, соответствующие фазовые выходы роторных обмоток каждого сельсина соединены через последовательно включенные вентили, фильтры и пороговые устройства с одними входами схем «И» и через схемы «НЕ» подключены к другим входам этих же схем «И», выходы которых непосредственно и через схему «НЕ» -- к входам триггера, а выход одного из пороговых устройств -- к входу времязадерживающей и формирующей цепочки. Кроме того, роторы сельсинов могут быть сдвинуты между собой на угол , заключенный в пределах р/2< <р.

1.6. Датчик трансформаторный угла поворота.

Формула изобретения.

Датчик трансформаторный угла поворота , содержащий статор с охватывающими пары смежных полюсов - секциями обмотки возбуждения и сдвинутыми относительно них на один полюс секциями измерительной обмотки, дополнительную обмотку и безобмоточный ротор с явно выраженными полюсами,отличающийся тем, что, с целью расширения функциональных возможностей, дополнительная обмотка выполнена в виде двух последовательно - встречно соединенных полуобмоток, одна из которых размещена на четных полюсах статора, другая - на нечетных полюсах статора, датчик снабжен регулируемым резистивным элементом, подключенным к выводам полуобмоток.

Датчик трансформаторный угла поворота.

а - схема подключения трансформатора; б - схема датчика общая;

1 - кольцевой ферромагнитный статор;

2-5 - пазы;

6-9 - четные и нечетные полюса;

10 - обмотка возбуждения;

11 - измерительная обмотка;

12 - сопротивление нагрузки;

13,14 - дополнительные полуобмотки;

15 - регулируемый резисторный элемент;

16 - переключатель;

17 - резистор;

18 - безобмоточный ферромагнитный ротор.

Принцип действия.

В исходном состоянии переключатель находится в нейтральном положении, электрическая цепь дополнительных полуобмоток разомкнётся и они не будут влиять на работу датчика.

Ротор расположен в исходном положении симметрично относительно полюсов 6, 9 и 7, 8 и перекрывает их одинаковые площади, что приводит к равенству противоположных по фазе ЭДС, наводимых в секциях измерительной обмотки, и соответствует нулевому выходному сигналу датчика.

При угловом перемещении ротора изменяется соотношение площадей, перекрываемых ротором полюсов статора, что приводит к изменению величины магнитных потоков, пересекающих секции измерительной обмотки и наводимых в них ЭДС. В результате на выходе датчика (сопротивление 12) появляется сигнал переменного тока, модуль которого пропорционален величине углового перемещения, а фаза соответствует знаку углового перемещения.

В крайних положениях переключателя одна из дополнительных полуобмоток подключается к переменному резистору резистивного элемента.

Изобретение относится к измерительной технике. Недостатком этого датчика является отсутствие возможностей регулировки положения нуля характеристики преобразования.. Недостатком этого датчика являются ограниченные функциональные возможности, не позволяющие плавно регулировать положение нуля его xхарактеристики преобразования.

Глава 2. Технико-экономический анализ.

Наиболее важными технико-экономическими показателями для датчиков являются простота в изготовлении, невысокая себестоимость и в тоже время надёжность, качество измерения, точность, быстродействие.

Из шести представленных датчиков наиболее сложным по конструкции является датчик угла, так как при его изготовлении необходима высочайшая точность, остальные довольно просты в изготовлении. В финансовом же отношении все они не дорогие.

По чувствительности и точности датчики можно условно разделить на две группы: высокочувствительные и малочувствительные. К первой группе относятся датчики с электронным преобразованием снимаемого сигнала, такие как трансформаторный датчик угла поворота с цилиндрическим ротором (А.С. № 1281876). Ко второй - датчики, реагирующие на изменение магнитного поля, но не имеющие дополнительных устройств, повышающих точность показаний, такие как индукционный бесконтактный датчик угла поворота с цилиндрическим ротором (А.С. № 2029230), индукционный бесконтактный датчик угла поворота (А.С. № 2029231), датчик ёмкостной угла поворота (А.С. № 905630), датчик бесконтактный реверсивный угла поворота (А.С. № 380944), датчик трансформаторный угла поворота (А.С. № 587318). Сфера применения всех датчиков - это автоматические системы контроля в приборостроении и машиностроении, но области разные. К примеру, в областях высоких технологий, где необходима высочайшая точность показаний, необходимо использовать высокочувствительные датчики, наиболее подходят подобные датчику А.С. № 1281876, так как он надёжен, прост в эксплуатации, точен в измерении.

Заключение.

В настоящее время датчики разрабатываются во многих исследовательских и опытно-конструкторских организациях. Множество специалистов, в своей работе, сталкивается с выбором конкретных датчиков.

Разнообразие технологических процессов приводит к необходимости иметь широкий выбор датчиков, которые должны соответствовать требованиям, характерным для всех устройств автоматики.

Они должны иметь: высокую чувствительность, точность, быстродействие, надёжность, прочность, сравнительно малые размеры и т.д.

Список использованной литературы.

1.Р. К. Памфилов. Датчик индукционный бесконтактный угла поворота.

2.Р. К. Памфилов. Датчик индукционный бесконтактный угла поворота.

3.Т. М. Алиев, Н. Т. Агагусейнов, В. Я. Едуш и А. А. Тер-Хачатуров. Датчик трансформаторный угла поворота.

4.В. И. Добреньков. Датчик ёмкостной угла поворота.

5.И. Филиппенко, И. А. Савченко, В. И. Зыбайло, Ю. В. Плеханов и В. Д. Сапунов. Датчик бесконтактный реверсивный угла поворота.

6.М. Г. Савченко, А. В. Мирютов и А. М. Березиков. Датчик трансформаторный угла поворота.

7.Теория и расчет измерительных преобразователей и приборов: Методические указания к выполнению лабораторных работ / Сост. В.В. Родин. - Саранск: Изд-во "Референт", 2007.

8.С. Степанов. Расчет измерительных приборов.




1. обновление Библии Fllout фактически является компиляцией трех предыдущих обновлений размещенных на фанатск
2. Четыре правила в единобожие написанное шейхом обновителем религии великим ученым Мухаммадом ибну ~абдул
3. Як відомо завершальною стадією судового процесу у кримінальних справах є виконання вироку ухвали постано
4. тема воспитания и обучения в античных государствах
5. а Лазаренко Дмитрий Альфа~ 1 место Семин Никита ДФК ПГУПС ~ 2 место Комаров Роман ДФК ПГУПС ~ 3 место
6. Лекции по дисциплине Основы права
7. тема змей Испо
8. задание начисляется 3 балла
9. Економіка підприємства викладач- Н
10. Туристско-рекреационный потенциал республики Кабардино-Балкария
11. а under под behind за сзади позади
12. Статья- Интертекстуальные связи романов М. Алданова с трагедией И.В.Гете ’Фауст’ (о гетевских реминисценциях в тетралогии ’Мыслитель’
13. Интуитивное понятие алгоритма и его свойств
14. ТЕМАТИЧЕСКИЕ МЕТОДЫ В ПСИХОЛОГИИ ЧАСТЬ 1 @Преподаватель- Голев Сергей Васильевич адъюнктпрофе
15. Органы прокуратуры, их значение и роль в осуществлении контрольно-надзорных функций
16. Expressing орiniоn Сочинение expressing opinion пишется в формальном деловом стиле
17. 3 Операционные системы персональных компьютеров- Метод
18. Предмет трудового права
19. а Во время путешествия вы познакомитесь и увидите Старая Рига Церкви многовековая архитектура с че
20. 14 четв 1619