У вас вопросы?
У нас ответы:) SamZan.net

ЛЕКЦІЯ 05 Теорема ОстроградськогоГаусса Перед розглядом цієї теореми слід зробити деякі попередні заува

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 3.2.2025

3

ЛЕКЦІЯ 05

Теорема Остроградського-Гаусса

Перед розглядом цієї теореми слід зробити деякі попередні зауваження.

Хоча закон Кулона і принцип суперпозиції полів дають можливість визначати вектор напруженності електричного поля будь-якої системи зарядів, проте це пов'язано з досить громіздкими обчисленнями. Для спрощення цієї задачі слід скористатись деякими теоремами про загальні властивості електростатичного поля, однією з яких і є теорема Остроградського-Гаусса, яка дає можливість відмовитись від теорії далекодії (саме на ній базується закон Кулона) і звести рівняння електростатики до диференціальної форми і, таким чином, узгодити їх з теорією близькодії.

Теорема Остроградського-Гаусса пов'язує потік вектора  (або вектора крізь довільну замкнену поверхню з зарядом, який охоплюється цією поверхнею. Для виведення цієї теореми слід ввести поняття потоку.

Потік вектора . Число ліній напруженості електричного поля , що пронизують елементарну площадку  dS, дорівнює

де  – проекція вектора  на нормаль  до площадки dS (рис.1).

Рис. 1

Величина

– це потік вектора напруженості крізь площадку dS,  – вектор, модуль якого дорівнює dS, а напрям вектора співпадає з напрямом нормалі  до площадки.

Потік вектора  крізь довільну замкнену поверхню S:

Потік вектора  – це алгебраїчна величина (залежить від конфігурації поля  і від вибору напряму ).

Теорема Остроградського-Гауса для електростатичного поля у вакуумі

Потік вектора  крізь сферичну поверхню радіусу r дорівнює:

.

Цей результат справедливий для замкненої поверхні будь-якої форми. Так, якщо оточити сферу (див. рис. 2) довільною замкненою поверхнею, то кожна лінія напруженості, яка пронизує сферу, пройде і крізь цю поверхню.

Рис. 2

Загальний випадок: довільна поверхня, що охоплює n зарядів. Відповідно до принципу суперпозиції напруженість  поля, створюваного всіма зарядами, дорівнює сумі напруженостей , створюваних кожним зарядом окремо:  = . Тому неважко показати, що

.

Теорема Остроградського-Гаусса для поля у вакуумі. Потік вектора напруженості електростатичного поля у вакуумі крізь довільну замкнуту поверхню дорівнює алгебраїчній сумі  поміщених  усередині цієї поверхні зарядів, ділених на :

.

Якщо заряд розподілений в просторі з об'ємною густиною ,то теорема Остроградського-Гауса для електростатичного поля у вакуумі матиме вид:

.

Застосування теореми Остроградського-Гаусса  до розрахунку полів у вакуумі

1. Поле рівномірно зарядженої нескінченної площини

 Нескінченна площина заряджена з постійною поверхневою густиною (– заряд, що припадає на одиницю поверхні). Лінії напруженості перпендикулярні даній площині і направлені від неї в обидві сторони. В якості замкненої поверхні подумки побудуємо циліндр, основи якого паралельні зарядженій площині, а вісь перпендикулярна їй (рис. 3). Повний потік крізь циліндр дорівнює сумі потоків крізь його основи (площі основ однакові і для основи  співпадає з Е), тобто дорівнює 2ES. Згідно з теоремою Остроградського-Гаусса , 2ES = =, звідки

.

Цей результат свідчить про те, що напруженість не залежить від довжини циліндра і на будь-яких відстанях від площини напруженість однакова за величиною. Картина ліній напруженості наведена на рис.

Рис. 3

2. Поле рівномірно зарядженої сферичної поверхні

Сферична поверхня радіусу R із загальним зарядом  заряджена рівномірно з поверхневою густиною .

Завдяки рівномірному розподілу заряду по поверхні створюване цим зарядом поле має сферичну симетрію. Тому лінії напруженості направлені радіально (рис. 4, а).

Побудуємо подумки сферу радіусу , яка має спільний центр із зарядженою сферою. Якщо  > R, то всередину поверхні потрапляє весь заряд , що створює дане поле, і, по теоремі Остроградського-Гаусса,

,

звідки

.

При  > R поле спадає з відстанню  по такому ж самому закону, що і для точкового заряду. Графік залежності Е від  наведено на рис. 4, б. Якщо ' < R, то замкнена поверхня не містить усередині зарядів, тому всередині рівномірно зарядженої сферичної поверхні Е = 0.

Рис. 4

3. Поле об'ємно зарядженої кулі

Куля радіусу R із загальним зарядом  заряджена рівномірно з об'ємною густиною  ( – заряд, що припадає на одиницю об'єму). Внаслідок симетрії для напруженості поля ззовні кулі матимемо той же результат, що і у разі сферичної поверхні:

.

Усередині кулі напруженість інша. Сфера радіусу '< R охоплює заряд .

Тому, згідно з теоремою Остроградського-Гаусса,  

.

Враховуючи, що

,

отримаємо

.

Графік залежності Е від  наведено на рис. 5.

Рис. 5

4. Поле рівномірно зарядженого нескінченного циліндра (нитки)

Нескінченний циліндр радіусу R заряджений рівномірно з лінійною густиною  ( – заряд, що припадає на одиницю довжини). Внаслідок симетрії лінії напруженості поля будуть направлені по радіусах кругових перерізів циліндра з однаковою густиною у всі сторони відносно осі циліндра. В якості замкненої поверхні подумки побудуємо коаксіальний із зарядженим циліндр радіусу  і висотою . Потік вектора Е крізь торці циліндра дорівнює нулю (торці паралелі лініям напруженості), а крізь бічну поверхню . По теоремі Остроградського-Гаусса при  > R

звідки

.

Якщо  < R, то замкнена поверхня всередині не містить зарядів, і тому в цій області Е = 0.

Рис. 6

******************************************************************

Принцип суперпозиції. Поле диполя

Принцип суперпозиції (накладення) електростатичних полів

Напруженість Е результуючого поля, створюваного системою зарядів, рівна геометричній сумі напряженностей полів, створюваних в даній крапці кожним із зарядів окремо.

Електричний диполь

Система двох рівних по модулю різнойменних точкових зарядом (+& -0. відстань / між якими значно менше відстані до даних точок поля.

Плече диполя

Вектор, направлений по осі диполя (прямої, що проходить через оОа заряду) від негативного заряду до позитивного і рівні і відстані між ними.

Електричний момент диполя    ______

Вектор

W

співпадаючий по напряму з плечем диполя.

-H+0J

За принципом суперпозиції, напруженість поля диполя . в довільній крапці Е = Е+ + Е_  (Е+ і ?_ — напруженості полів, створюваних відповідно позитивним і негативним зарядами).

Напруженість поля на продовженні осі диполя в крапці А

**********************************




1. ов классифицируют по составу дисперсионной среды воданефтьгаз и т
2. Ференц Лист
3. Блеск и нищета рекламы на телевидении
4. Контрольная работа 2 по Фармакогнозии Вариант 9 Лекарственн
5. Сюрреализм в жизни и творчестве Сальвадора Дали
6. . Настоящие Правила имеют целью обеспечить необходимоеединство регулирования отношений по бытовому обслужи
7. АН Республики Казахстан
8. Gods Ghosts nd ncestors theoreticl interprettion не торопитесь reliGion твёржеdз courSE work thOught.
9. Общая нозология
10. Методичні рекомендації до виконання курсової роботи з дисципліни ldquo;Звітність підприємствrdquo; складені на