Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
СОДЕРЖАНИЕ:
Введение. 3
Классификация полупроводниковых материалов и их особенности. 4
Проводимость. 8
Собственная проводимость. 8
Примесная проводимость. 10
Применение полупроводников. 12
Приборы. 12
Тепловые сопротивления (термисторы) 12
Фотосопротивления 13
Термоэлементы 14
Холодильники и нагреватели 15
Основные требования к полупроводниковым материалам при их применении. 17
Заключение. 22
Список литературы 23
Введение.
В последнее время большее распространение получили приборы, основанные на действии полупроводников. Эти вещества стали изучать сравнительно недавно, однако без них уже не может обойтись ни современная электроника, ни медицина, ни многие другие науки.
Полупроводники как особый класс веществ, были известны еще с конца XIX века, только развитие теории твердого тела позволила понять их особенность задолго до этого были обнаружены:
1. эффект выпрямления тока на контакте металл-полупроводник
Были построены первые приборы на их основе.
О. В. Лосев (1923) доказал возможность использования контактов полупроводник-металл для усиления и генерации колебаний (кристаллический детектор). Однако в последующие годы кристаллические детекторы были вытеснены электронными лампами и лишь в начале 50 - х годов с открытием транзисторов (США 1949 год) началось широкое применение полупроводников (главным образом германия и кремния в радиоэлектронике. Одновременно началось интенсивное изучение свойств полупроводников, чему способствовало совершенствование методов очистки кристаллов и их легированию (введение в полупроводник определенных примесей).
В СССР изучение полупроводников начались в конце 20 - х годов под руководством А.Ф. Иоффе в Физико-техническом институте АН СССР.
Интерес к оптическим свойствам полупроводников возрос всвязи с открытием вынужденного излучения в полупроводниках, что привело к созданию полупроводниковых лазеров вначале на p - n - переходе, а затем на гетеропереходах.
Уже сейчас полупроводники нашли себе ряд важнейших применений и что область их практического применения непрерывно и быстро расширяется. Физика твердого тела, особенно физика полупроводников, оказала в последнее время заметное влияние на электронику, и, по-видимому, в течение ближайших лет полупроводниковые приборы будут занимать ведущее положение в этой области. Многие устройства, скорее всего, будут заменены новыми, где будут использованы приборы из высококачественных монокристаллов того или иного полупроводника.
Классификация полупроводниковых материалов и их особенности.
Полупроводники представляют собой весьма многочисленный класс материалов. В него входят сотни самых разнообразных веществ как элементов, так и химических соединений. Полупроводниковыми свойствами могут обладать как неорганические, так и органические вещества, кристаллические и аморфные, твердые и жидкие, немагнитные и магнитные. Несмотря на существенные различия в строении и химическом составе, материалы этого класса роднит одно замечательное качество- способность сильно изменять свои электрические свойства под влиянием небольших внешних энергетических воздействий. Одна из возможных схем классификации полупроводниковых материалов приведена на рис.1
Рис. 1 Классификация полупроводниковых
материалов по составу и свойствам.
Полупроводниковыми свойствами обладают и некоторые модификации олова и углерода.
Последний существуют двух аллотропных формах алмаз и графит. Графит по электрическим свойствам близок к проводникам (ΔЭ <0,1 эВ), а чистые алмазы являются диэлектриками. Однако искусственные алмазы за счет вводимых примесей приобретают свойства полупроводников.
Весьма обширна группа полупроводниковых неорганических соединений, которые могут состоять из двух, трех и большего числа элементов. В качестве примеров таких соединений можно привести InSb, Bi 2 Te3 , ZnSiAs2 , CuAlS2 , CuGe2P3 . Кристаллическая структура многих соединений характеризуется тетраэдрической координацией атомов, как это имеет место в решетки алмаза. Такие полупроводниковые соединения получили название алмазоподобных полупроводников. Среди них наибольший научный и практический интерес представляют бинарные соединения типа AIII ВV и AII BVI , которые в настоящее время являются важнейшими материалами полупроводниковой оптоэлектроники.
Особый интерес представляют соединения типа АIIIВV. Получают их путём синтеза элементов III и V групп периодической системы элементов Менделеева. Из соединений этого типа наиболее интересными полупроводниковыми свойствами обладают A1P, A1As, A1Sb, GaP, GaAs, GaSb, InP, InAs, InSb. По ряду свойств эти соединения близки к полупроводниковым элементам IV группы германию и кремнию. Подвижность носителей тока в них достигает больших значений; ширина запрещённой зоны у некоторых из этих соединений также велика; примеси, вводимые в них, изменяют механизм электропроводности; так, некоторые атомы II группы ведут себя как акцепторы, а ряд атомов VI группы как доноры.
Большинство алмазоподобных полупроводников с родственными свойствами образуют между собой изовалентные твердые растворы. В твердых растворах путем изменения состава можно плавно и в достаточно широких пределах управлять важнейшими свойствами полупроводников, в частности, шириной запрещенной зоны и подвижностью носителей заряда. Это открывает дополнительные возможности для оптимизации параметров полупроводниковых приборов, позволяет добиться лучшего согласования физических характеристик различных компонентов электронной аппаратуры.
Для изготовления полупроводниковых приборов используют как монокристаллы, так и поликристаллические материалы. Монокристаллы представляют собой более простые системы, с более совершенным строением, чем поликристаллические материалы. Они наиболее глубоко изучены, физические явления в них лучше поддаются расчетам, и они обеспечивают большую надежность и идентичность параметров полупроводниковых приборов.
В механизме электропроводности аморфных неорганических и кристаллических органических полупроводников выявлен ряд особенностей. Интерес к органическим полупроводникам вызван тем, что в некоторых из них полупроводниковые свойства сочетаются с эластичностью, которая позволяет изготавливать рабочие элементы в виде гибких лент и волокон.
Только после того, как Ge и Si удалось значительно очистить от сопутствующих примесей и получить в виде монокристаллов, были обнаружены их новые свойства, которые определили основное направление работ по полупроводниковым материалам.
В качестве примера влияния степени чистоты материала на его свойства можно привести данные.
Температура и плавление Al по мере увеличения степени его чистоты изменяется следующим образом: при 99,2 и 99,5% Al температура плавления ( Тпл ) равна соответственно 930 и 931 К. При содержании основного вещества 99,6% Тпл = 931,7 К, а для 99,97%-ного Al температура плавления равна 932,8 К. В случае Al, содержащего 99,996% основного вещества Тпл = 933,24 К. Так же сильно зависит от степени чистоты Al и его плотность ( d ): при 99,25% Al d = 2,727; 99,40% Al - d = 2,706; 99,75% Al - d = 2,703; 99,971% Al - d = 2,6996; 99,996% Al - d = 2,6989 г/см3.
Подобным образом зависит температура рекристаллизации предварительного деформированного Al от степени его чистоты: 99,99% Al - Трекр = 373 К; 99,999% Al - Трекр = комнатной температуре; алюминий чистотой 99,9992% и деформированный при температуре жидкого азота, рекристаллизуется при Т = 223 К. К тому же, с повышением чистоты Al увеличивается его электропроводность, отражательная способность, пластичность и коррозионная стойкость.
Отличительной чертой полупроводников является их очень сильная чувствительность к незначительным внешним воздействиям - температуре, электрическому и магнитному полям, гидростатическому давлению, свету и т. д.
Типичными представителями полупроводников являются германий и кремний. Тем не менее сами по себе эти материалы с собственным сопротивлением не могут быть использованы в технике для создания полупроводниковых приборов. В этом случае предварительно очищенный материал легируют различными электроактивными примесями, сообщающими полупроводнику тот или иной тип проводимости и определенные электрические характеристики. В связи с этим возникла проблема изучения растворимости различных элементов в полупроводниках (Ge, Si, соединения АIIIBV, AIIBVI, AIVBVI и т.д.) и детального построения диаграмм состояния типа полупроводник-легирующий элемент.
При создании полупроводниковых сплавов в некоторых случаях в основной материал вводят несколько легирующих элементов. В таких случаях наличие легирующего элемента одного типа может оказать существенное влияние на поведение элемента другого типа в связи с возможностью химического взаимодействия между ними. В этой связи потребовалось установить закономерности поведения легирующих компонентов при получении сложнолегированных полупроводниковых сплавов.
В разработке общей проблемы легирования полупроводников и получения полупроводниковых сплавов на их основе выделяют три основных направления:
Высокая химическая активность и диссоциация ряда полупроводниковых соединений, усложнение их состава (многокомпонентные полупроводники, например, GaxIn1-xP, GaPyAs1-y и т.д.), наличие легирующих примесей , изменение типа химической связи и структуры ближнего порядка при плавлении ставят новые вопросы перед физико-химическим анализом. Наличие двух- и трехкомпонентных полупроводниковых соединений привело к необходимости анализа в рамках трех-, четырехкомпонентных систем так называемых квазибинарных, квазитройных и т.д. систем, что, учитывая наличие определенной степени диссоциации, делает проблематичным само введения таких понятий. Данное положение находит свое проявление и в наблюдаемом для ряда полупроводниковых систем несоответствии между квазибинарным характером диаграмм состояния систем и диаграммами состав-свойство. Кроме того, значительные элементы в проблему гетерогенных равновесий вносит и наличие областей гомогенности на основе полупроводниковых соединений. Термодинамический подход к описанию и анализу гетерогенных равновесий дает возможность не только оценить положение линий (поверхностей) фазавого равновесия в системе или значение термодинамических характеристик процессов плавления (кристаллизации) и смешение (растворение), но и дает возможность выявить природу поведения химических компонентов и характер их взаимодействия в полупроводниковых системах.
Развитие полупроводниковой опто- и микроэлектроники привело к широкому использованию полупроводниковых соединений. Взаимодействие различных соединений друг с другом приводит к образованию твердых растворов, что дает возможность путем изменения состава раствора получать материалы с наперед заданными свойствами.
Расчеты процессов кристаллизации легированных монокристаллов полупроводников основываются на знании элемента между твердой и жидкой фазами, который непосредственно вытекает из диаграммы состояния полупроводник-легирующий элемент . При этом нужно исходить из того, что коэффициент распределения является таким параметром, анализ которого позволит установить физико-химическую природу взаимодействия между компонентами.
Довольно сложно решается задача воспроизводимого легирования полупроводниковых соединений с целью получения кристаллов с необходимыми свойствами. Это связано с тем, что сами задаваемые свойства варьируются в очень широких пределах и при этом, как правило, необходимо выращивать такие кристаллы с определенным сочетанием различных свойств (например, оптических и электрофизических) с учетом высокой однородности распределения последних в объеме. Более того, многие примеси в полупроводниковых соединениях обнаруживают довольно сложное поведение, а, следовательно, правильный выбор оптимальной легирующей добавки зависит в этом случае от результатов предварительных исследований влияние примесей на электрофизические и оптические свойства таких кристаллов.
Изменение химического состава по-разному влияет на свойства в зависимости от того, какими изменениями в фазовом составе оно сопровождается. Следовательно, важно не только знать какие фазы образуются при взаимодействии элементов, но и уметь прогнозировать фазовый состав и пути воздействия на него. При внешнем воздействии можно получить фазовые состояния с различной степенью отклонения от равновесного, что дает дополнительные возможности для управления свойствами.
Точечные дефекты, дислокации, дефекты упаковки и другие нарушения структуры, управляют процессами диффузии, а также влияют на электрические, тепловые и другие свойства кристаллов. Без достаточно глубокого понимания дефектов кристаллической структуры и знания процессов их влияния на свойства полупроводниковых материалов невозможно использование полезных свойств таких кристаллов и тем более получение кристаллов с наперед заданными свойствами. К настоящему времени в изучении дефектов накоплен большой материал, причем их изучение позволило не только выявить целый ряд новых, ранее не известных явлений, но и выработать рекомендации по управлению свойствами полупроводниковых материалов.
Проводимость.
Полупроводники обязаны своим названием тому обстоятельству, что по величине электропроводности они занимают промежуточное положение между металлами и изоляторами. Однако характерным для них является не величина проводимости, а то, что их проводимость растет с повышением температуры (напомним, что у металлов она уменьшается). Полупроводниками являются вещества, у которых валентная зона полностью заполнена электронами, а ширина запрещенной зоны невелика (у собственных полупроводников не более 1 эв).
Различают собственную и примесную проводимости полупроводников.
Собственная проводимость.
Рисунок 1
Собственная проводимость возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости. При этом в зоне проводимости появляется некоторое число носителей тока электронов, занимающих уровни вблизи дна зоны; одновременно в валентной зоне освобождается такое же число мест на верхних уровнях. Такие свободные от электронов места на уровнях заполненной при абсолютном нуле валентной зоны называют дырками.
Распределение электронов по уровням валентной зоны и зоны проводимости определяется функцией Ферми. Вычисления показывают, что уровень Ферми лежит точно посредине запрещенной зоны (рис.1). Следовательно, для электронов, перешедших в зону проводимости, величина WWF мало отличается от половины ширины запрещенной зоны. Уровни зоны проводимости лежат на хвосте кривой распределения. Поэтому вероятность их заполнения электронами можно находить по формуле 1.1:
Количество электронов, перешедших в зону проводимости, будет пропорционально вероятности (1.1). Эти электроны, а также, как мы увидим ниже, образовавшиеся в таком же числе дырки, являются носителями тока.
Поскольку ,проводимость пропорциональна числу носителей, она также должна быть пропорциональна выражению (1.1). Следовательно, электропроводность полупроводников быстро растет с температурой, изменяясь по закону 1.2:
где ΔWширина запрещенной зоны.
Если на графике откладывать зависимость 1n σ от 1/T, то для полупроводников получается прямая линия, изображенная на рис. 2. По наклону этой прямой можно определить ширину запрещенной зоны ΔW.
Рисунок 2
Типичными полупроводниками являются элементы IV группы периодической системы Менделеева германий и кремний. Они образуют решетку, в которой каждый атом связан ковалентными (парно-электронными) связями с четырьмя равноотстоящими от него соседними атомами. Условно такое взаимное расположение атомов можно представить в виде плоской структуры, изображенной на рис. 3. Кружки со знаком «+» обозначают положительно заряженные атомные остатки (т. е. ту часть атома, которая остается после удаления валентных электронов), кружки со знаком «» валентные электроны, двойные линииковалентные связи.
При достаточно высокой температуре тепловое движение может разорвать отдельные пары, освободив один электрон (такой случай показан на рис. 3).
Рисунок 3
. Покинутое электроном место перестает быть нейтральным, в его окрестности возникает избыточный положительный заряд + е образуется дырка. На это место может перескочить электрон одной из соседних пар. В результате дырка начинает также странствовать по кристаллу, как и освободившийся электрон.
Если свободный электрон встретится с дыркой, они рекомбинируют (соединяются). Это означает, что электрон нейтрализует избыточный положительный заряд, имеющийся в окрестности дырки, и теряет свободу передвижения до тех пор, пока снова не получит от кристаллической решетки энергию, достаточную для своего высвобождения. Рекомбинация приводит к одновременному исчезновению свободного электрона я дырки. На схеме уровней (рис. 1) процессу рекомбинации соответствует переход электрона из зоны проводимости на один из свободных уровней валентной зоны.
Итак, в полупроводнике идут одновременно два процесса: рождение попарно свободных электронов и дырок и рекомбинация, приводящая к попарному исчезновению электронов и дырок. Вероятность первого процесса быстро растет с температурой. Вероятность рекомбинации пропорциональна как числу свободных электронов, так и числу дырок. Следовательно, каждой температуре соответствует определенная -равновесная концентрация электронов и дырок, величина которой изменяется с температурой по такому же закону, как и σ [см. формулу (1.2)].
В отсутствие внешнего электрического поля электроны проводимости и дырки движутся хаотически. При включении поля на хаотическое движение накладывается упорядоченное движение: электронов против поля и дырок в направлении поля. Оба движения и дырок, и электронов приводят к переносу заряда вдоль кристалла. Следовательно, собственная электропроводность обусловливается как бы носителями заряда двух знаков отрицательными электронами и положительными дырками.
Собственная проводимость наблюдается во всех безисключения полупроводниках при достаточно высокой температуре.
Примесная проводимость.
Рисунок 4
Этот вид проводимости возникает, если некоторые атомы данного полупроводника заменить в узлах кристаллической решетки атомами, валентность которых отличается на единицу от валентности основных атомов. На рис. 4 условно изображена решетка германия с примесью 5-валентных атомов фосфора. Для образования ковалентных связей с соседями атому фосфора достаточно четырех электронов. Следовательно, пятый валентный электрон оказывается как бы лишним и легко отщепляется
от атома за счет энергии теплового движения, образуя странствующий свободный электрон. В отличие от рассмотренного раньше случая образование свободного электрона не сопровождается нарушением ковалентных связей, т. е. образованием дырки. Хотя в окрестности атома примеси возникает избыточный положительный заряд, но он связан с этим атомом и перемещаться по решетке не может. Благодаря этому заряду атом примеси может захватить приблизившийся к нему электрон, но связь захваченного электрона с атомом будет непрочной и легко нарушается вновь за счет тепловых колебаний решетки.
Таким образом, в полупроводнике с 5-валентной примесью имеется только один вид носителей тока электроны. Соответственно говорят, что такой полупроводник обладает электронной проводимостью или является полупроводником n-типа (от слова negativ отрицательный). Атомы примеси, поставляющие электроны проводимости, называются д о н о р а м и.
Рисунок 5
Примеси искажают поле решетки, что приводит к возникновению на энергетической схеме так называемых локальных уровней, расположенных в запрещенной зоне кристалла (рис. 5). Любой уровень валентной зоны или зоны проводимости может быть занят электроном, находящимся в любом месте кристалла.
Рисунок 1
Энергию, соответствующую локальному уровню, электрон может иметь, лишь находясь вблизи атома примеси, вызвавшего появление этого уровня. Следовательно, электрон, занимающий примесный уровень, локализован вблизи атома примеси.
Если донорные уровни расположены недалеко от потолка валентной зоны, они не могут существенно повлиять на электрические свойства кристалла. Иначе обстоит дело, когда расстояние таких уровней от дна зоны проводимости гораздо меньше, чем ширина запрещенной зоны, В этом случае энергия теплового движения даже при обычных температурах оказывается достаточной для того, чтобы перевести электрон с донорного уровня в зону проводимости. На рис. 4 этому процессу соответствует отщепление пятого валентного электрона от атома примеси. Захвату свободного электрона атомом примеси соответствует на рис. 5 переход электрона из зоны проводимости на один из донорных уровней.
Уровень Ферми в полупроводнике n-типа лежит между донорными уровнями и дном зоны проводимости, при невысоких температурах приблизительно посредине между ними (рис. 5).
Рисунок 6
На рис. 6 условно изображена решетка кремния с примесью 3-валентных атомов бора. Трех валентных электронов атома бора недостаточно для образования связей со всеми четырьмя соседями. Поэтому одна из связей окажется неукомплектованной и будет представлять собой место, способное захватить электрон. При переходе на это место электрона одной из соседних пар возникнет дырка, которая будет кочевать по кристаллу. Вблизи атома примеси возникнет избыточный отрицательный заряд, но он будет связан с данным атомом и не может стать носителем тока. Таким образом, в полупроводнике с 3-валентной примесью возникают носители тока только одного вида дырки. Проводимость в этом случае называется дырочной, а о полупроводнике говорят, что он принадлежит к p-типу (от слова positiv положительный). Примеси, вызывающие возникновение дырок, называются акцепторными.
Рисунок 7
На схеме уровней (рис. 7) акцептору соответствует расположенный в запретной зоне недалеко от ее дна локальный уровень. Образованию дырки отвечает переход электрона из валентной зоны на акцепторный уровень. Обратный переход соответствует разрыву одной из четырех ковалентных связей атома примеси с его соседями и рекомбинации образовавшегося при этом электрона и дырки.
Уровень Ферми в полупроводнике р-типа лежит между потолком валентной зоны и акцепторными уровнями, при невысоких температурах приблизительно посредине между ними.
С повышением температуры концентрация примесных носителей тока быстро достигает насыщения. Это означает, что практически освобождаются все донорные или заполняются электронами все акцепторные уровни. Вместе с тем по мере роста температуры все в большей степени начинает сказываться собственная проводимость полупроводника, обусловленная переходом электронов непосредственно из валентной зоны в зону проводимости. Таким образом, при высоких температурах проводимость полупроводника будет складываться из примесной и собственной проводимости. При низких температурах преобладает примесная, а при высоких собственная проводимость.
Применение полупроводников.
Приборы.
Тепловые сопротивления (термисторы)
Изменение электропроводности полупроводников под влиянием температуры позволило применять их в приборах, работа которых основана на использовании этого свойства. Полупроводники используют в качестве термометров для замера температур окружающей среды. Они более чувствительны, чем термометры сопротивления, изготовляемые из металла под названием болометров и применяемые в лабораторной практике для измерения очень высоких или самых низких температур. О температуре судят, замеряя электрическое сопротивление болометра. Но точность измерения с помощью этих приборов невелика, так как металлы изменяют своё сопротивление всего на 0,3% на каждый градус. Иное положение имеет место при использовании полупроводников. У некоторых полупроводников повышение температуры на 1°C увеличивает электропроводность на 3-6%, повышение температуры на 10° - примерно на 75%, а повышение температуры на 100°C увеличивает электропроводность в 50 раз. Благодаря высокому удельному сопротивлению полупроводников их применяют в качестве чувствительных термометров при дистанционных измерениях. Сопротивление металлических проводов даже очень тонких и длиной в несколько километров оказывается ничтожным по сравнению с сопротивлением термометра. Размеры полупроводниковых сопротивлений могут быть чрезвычайно малыми длиной в несколько десятых долей миллиметра. Это снижает инерционность прибора, так как при малых размерах сопротивление быстро принимает температуру окружающей среды. Значительное изменение электропроводности полупроводников в зависимости от температуры обеспечивает точность измерений.
Полупроводниковые термометры сопротивления под названием термисторов широко применяют в технике. С их помощью контролируют температуру в большом числе точек, причём показания её могут быть получены на приборах, установленных в одном пункте. При таком контроле температур в помещениях с помощью термисторов можно поддерживать температуру на желаемом уровне, включая и выключая нагревательные приборы, когда заданный уровень температуры отклоняется от нормы. Работают они при температурах до 300°C (573°K). Термисторы могут выполнять функции ограничителя времени. Для этого последовательно с полупроводниковым термосопротивлением включается то или иное активное электросопротивление. В результате в сети получается возрастающий со временем ток, так как ток разогревает полупроводник и повышает его электропроводность, следовательно, повышается и величина тока в цепи. По мере разогрева полупроводника сопротивление падает, а ток повышается ещё в большей степени. Параллельно с ростом температуры увеличиваются и потери тепла в окружающую среду до тех пор, пока они не сравняются с теплотой, выделяемой током; тогда будет достигнута равновесная температура, которую полупроводник и будет сохранять, пока к нему приложена данная разность потенциалов.
Продолжительность времени, необходимого для достижения равновесия и определённого тока при данной разности потенциалов, определяется размерами образца и условиями охлаждения. Такое «реле» времени допускает регулировку в самых широких пределах. Можно подобрать условия так, чтобы это время было от долей секунды до 10 мин. По достижении установленного времени может производиться автоматическое включение и выключение систем освещения или действующих установок.
Термосопротивления применяют как регуляторы температуры, температурные компенсаторы, в приборах для измерения утечки газа, для дистанционного измерения влажности, для измерения высоких давлений, механических напряжений, скорости или количества протекающих жидкости, скорости движения газов, для измерения больших ускорений.
При изготовлении термисторов пользуются окислами различных металлов, таких, как CuO, Mn3O4, UO2, а также Ag2S. Хорошие результаты дают смеси полупроводников, такие, как CuO+Mn3O4; Mn3O4+NiO; Mn3O4+NiO+Co3O4.
Вещества, используемые для изготовления термосопротивлений, представляют собой мелкокристаллические порошки. Составляя смесь, регулируют их проводимость, обусловленную ионами с разной валентностью. Это позволяет удовлетворять самые различные требования, которые предъявляются к термосопротивлениям в зависимости от их назначения.
Термосопротивления изготавливают прессованием полупроводникового порошка с последующим спеканием в твёрдую компактную массу, а также путём плавки полупроводника для придания ему нужной формы и размеров. Изготавливают их в виде шариков, стержней, дисков, шайб и чешуек.
Наша промышленность выпускает различные типы термосопротивлений, среди которых наиболее распространёнными являются: ММТ-1, ММТ-4, КМТ-1, КМТ-4, ММТ-8 и ММТ-9. В этих марках буквы являются условным обозначением материала термосопротивлений, а цифры его конструктивного оформления. Первые четыре из приведенных сопротивлений применяют для измерения и регулирования температуры; в качестве «реле» времени; для дистанционного измерения влажности воздуха (по принципу психометра Ассмана); для замера малых скоростей движения и теплопроводности газов, жидкостей и для ряда других целей.
В качестве переменных сопротивлений без скользящего контакта в различных автоматических схемах слабого тока применяют термосопротивления с косвенным подогревом, обозначаемые ТКП-300, ТКП-20, что означает термосопротивление косвенного подогрева, в отличие от ТП термосопротивления прямого подогрева. Цифры указывают электросопротивление полупроводника в омах при номинальной мощности, рассеиваемое в подогреваемой обмотке.
Фотосопротивления
Перевод электронов в свободное состояние или образование «дырок» в полупроводнике может происходить не только под влиянием тепла, но и в результате воздействия других видов энергии, таких, как световая, энергия потока электронов, ядерных частиц. Увеличение количества свободных электронов или «дырок» проявляется повышением электропроводности и возникновением тока.
У многих полупроводников связь между электронами и атомами настолько незначительна, что лучистой энергии света вполне достаточно для перевода электронов в свободное состояние. Для жёлтого света энергия фотона составляет 2 электрон-вольта, а у некоторых полупроводников перевод электронов в свободное состояние происходит под влиянием нескольких десятых долей электрон-вольта. У таких полупроводников повышение проводимости наблюдается даже под влиянием инфракрасной части спектра. Это даёт возможность обнаруживать на расстоянии многих километров излучение, исходящее от даже слабо нагретых тел. В результате такого излучения имеет место небольшое повышение тока в цепи с соответственным полупроводником. Первичное слабое повышение тока затем многократно увеличивается с помощью усилителей, иногда даже в миллион раз. Это даёт необходимый сигнал.
Повышение электропроводности, вызванное светом, носит название фотопроводимости, а основанные на этом явлении приборы называют фотосопротивлениями.
Подбирают фотосопротивления в зависимости от условий облучения, в которых им приходится работать. Наиболее употребительные материалы для фотосопротивлений в видимой части спектра сернистый кадмий, сернистый таллий, сернистый висмут, а для инфракрасных лучей сернистый, селенистый и теллуристый свинец.
Фотосопротивления широко применяют для сигнализации и автоматики, управления на расстоянии производственными процессами, сортировки изделий. С их помощью предупреждают несчастные случаи и аварии при нарушении хода процесса, автоматически останавливая машины.
Фотоэлектрическое устройство приходит в действие от появления или исчезновения лучей на фотосопротивлении или резкого изменения их интенсивности, например, при появлении пламени, наступлении темноты, прерывания луча.
Для контроля хода процесса луч света направляют на фотосопротивление. Между источником света и фотосопротивлением находится или проходит «указатель», свидетельствующий о нормальном ходе процесса. Таким указателем могут быть изделия, непрерывно движущиеся на конвейерной ленте. В случае нарушения нормального хода процесса конвейер может автоматически выключаться.
Фотосопротивление используют для сортировки изделий по их окраске или размерам. В зависимости от изменения размера или окраски изделия количество световой энергии, попадающей на фотосопротивление, может изменяться, а вместе с этим изменяется проводимость и ток в полупроводнике. Это даёт возможность направлять отсортированные изделия в предназначенные для каждого из них места.
Термоэлементы
Термоэлементы приборы, в которых тепловая энергия непосредственно превращается в электрическую.
Основаны они на явлении Зеебека, заключающемся в том, что при нагреве места спая двух разнородных металлов в замкнутой цепи возникает электродвижущая сила. Явление Зеебека используется давно для измерения температур с помощью термопар. Для получения электрической энергии из тепловой металлические проводники не пригодны, так как коэффициент полезного действия (к.п.д.) термоэлементов из проволоки составляет всего 0,5%. Для этой цели используют полупроводники, которые дают возможность непосредственно превращать тепловую энергию в электрическую без участия каких-либо машин.
Коэффициент полезного действия термоэлемента, составленного из полупроводников, доходит до 7-10%, т.е. находится на уровне к.п.д. таких машин, как паровозы, в которых он равен 4-8%.
Термоэлементы составляют из полупроводников с р- и n-проводимостью, соединённых друг с другом металлической пластинкой. Конструктивное выполнение такого термоэлемента сходно с термоэлементом из металлических проволок. Примером хорошей пары являются цинк сурьма и сернистый свинец. При подогреве места «спая» полупроводниковых пластинок в замкнутой цепи возникает электродвижущая сила. Соединение таких отдельных термоэлементов в батарею даёт возможность получать постоянный ток необходимого напряжения в 120 и более в; мощность большинства термогенераторов ограничена несколькими десятками ватт. Недавно создан термогенератор мощностью в 200 вт, проектируются ещё более мощные.
Батареи из термоэлементов с радиальным расположением отдельных элементов, спаи которых сходятся в центре круга, служат для получения электроэнергии, питающей радиоустановки, в местах отсутствия электрической энергии. Спаи в этом случае подогревают керосиновой лампой или керогазом.
Холодильники и нагреватели
важной особенностью, открывающей широкие перспективы применения полупроводников, является получение с их помощью холода и тепла более экономичными путями.
Такое использование полупроводников основано на термоэлектрических явлениях, обратных наблюдающимся в термоэлементах. Ток, возникающий в замкнутой цепи термоэлемента, охлаждает горячий спай и наоборот, подогревает холодный спай. При пропускании же тока через термоэлементы в обратном направлении выделяется тепло в горячем спае и отнимается тепло от холодного. Один и тот же спай двух проводников при одном направлении тока нагревается, а при другом охлаждается. Пользуясь этим, можно охлаждать воздух в холодильном шкафу, в который помещён охлаждаемый спай металла. Для этого в термоэлементе поддерживают температуру нагреваемого спая, близкую к комнатной, отводя от него выделяемую теплоту в окружающую среду; при этом другой спай значительно охлаждается, а через него охлаждается и окружающий воздух.
Применяя для этой цели полупроводники, характеризующие достаточно высокой величиной к.п.д. термоэлемента, можно получить в холодильном шкафу необходимые низкие температуры. Например, полупроводники из сплавов висмута, селена, теллура и сурьмы обеспечивают в термоэлементе разность температур около 60°C, а в сконструированном с помощью таких полупроводников холодильном шкафу поддерживается температура минус 16°C.
Этим же явлением можно воспользоваться и для отопления зданий. Пропуская электрический ток через термоэлектрическую цепь, помимо обычного нагрева всего проводника, охлаждают один спай и нагревают другой, т.е. переносят тепло от одного спая к другому. Академик А.Ф.Иоффе рассчитал, какое количество тепла будет при этом выделено. От охлаждаемого спая отнимается некоторое количество тепловой энергии
где α термоэлектродвижущая сила;
абсолютная температура холодного спая;
I величина тока, а;
t длительность прохождения тока, сек.
Соответственно в тёплом спае, абсолютную температуру которого обозначим через Т1, выделяется тепловая энергия Q1:
Эта тепловая энергия Q1 больше теплоты Q0, в отношении:
Если ограничиться рассмотрением процесса на обоих спаях, то их можно описать следующим образом: электрический ток отнимает от холодного спая теплоту Q0 и передаёт теплому спаю большее количество тепла Q1, добавляя недостающую энергию в виде электрической энергии W. К теплоте Q0, отнимаемой от холодного спая, добавляется энергия W, и сумма их Q0+W= Q1 выделяется на тёплом спае.
Из приведенных данных о величинах Q0 и Q1 видно, что отношение затрачиваемой электрической энергии W к теплоте Q1, которая освобождается на теплом спае, равно:
Если абсолютная температура теплого спая Т1=300°, что соответствует +27°C, а температура Т0=270° или -3°C, то
W/Q1=30/300=0,1,
Отсюда следует, что для передачи в тёплое помещение при температуре 2727°C100 кал тепла можно было бы использовать 90 кал, взятых от холодной среды (например, от внешнего воздуха) и добавить всего 10 кал за счёт электроэнергии.
Поскольку такое извлечение тепла из внешнего холодного воздуха или водного резервуара легко и доступно, возникает заманчивая возможность, затрачивая всего 10% от вносимого в помещение тепла за счёт электроэнергии, отапливать помещение практически за счёт извлекаемого снаружи тепла. Но процесс в термоэлектрической батарее не ограничивается только выделением и поглощением тепла на спаях. Вдоль ветвей самой термобатареи возникает поток тепла от теплого спая к холодному, который противодействует переносу тепла в обратном направлении, сопровождающему прохождение тока. Кроме того, часть электрической энергии превращается в тепло в обеих ветвях термоэлемента. В результате наличия этих двух процессов использование электроэнергии резко снижается; приходится добавлять не 10% электроэнергии, а около 60%; но и такой результат представляет значительный интерес: затрата электроэнергии составляет только около половины теплоты, поступающей в помещение, а остальная половина доставляется более холодным наружным воздухом или проточной водой при температурах, близких к нулю.
Чем меньше разность Т1-Т0 по сравнению с Т1, тем выгоднее окажется термоэлектрическая батарея по сравнению с электрической печью сопротивления.
Термоэлектрическая батарея обладает и другим важным преимуществом. Если изменить направление тока на противоположное, то на наружных спаях начнёт выделяться теплота Q0, а нагревавшие помещение спаи будут отнимать теплоту Q1, охлаждая помещение. В жаркое время года та же термобатарея может охлаждать воздух. Регулируя величину и направление тока в батарее, можно поддерживать в помещении одинаковую температуру при любых температурах внешнего воздуха.
Основные требования к полупроводниковым материалам при их применении.
К полупроводникам относят большую группу веществ. По своему удельному электрическому сопротивлению они занимают промежуточное положение между проводниками и диэлектриками. Диапазон удельного сопротивления при комнатной температуре условно ограничивают значениями 10-4 и 1010 Ом.см.
Отличительными свойствами полупроводников является сильная зависимость их удельного электрического сопротивления от концентрации примесей. У большинства полупроводников удельное сопротивление зависит также от температуры и других внешних энергетических воздействий (свет, электрическое и магнитное поле, ионизирующее излучение и т. д.).
На основе полупроводниковых материалов создано много разнообразных полупроводниковых приборов. Свойства, параметры и характеристики этих приборов в значительной степени определяются свойствами и параметрами исходного полупроводникового материала. Принцип действия большинства полупроводниковых приборов (выпрямительные диоды, стабилитроны, варикапы, биполярные транзисторы, тиристоры и т. д.) основан на использовании свойств выпрямляющего перехода, в качестве которого обычно служит электронно-дырочный переход. Поэтому такие приборы будут работоспособны только при температуре, соответствующей примесной электропроводности.
Появление собственной электропроводности при высокой температуре нарушает нормальную работу прибора. Максимальная допустимая температура полупроводникового прибора, в первую очередь, определяется шириной запрещенной зоны исходного полупроводникового материала. Таким образом, использование материала с большой шириной запрещенной зоны позволит увеличить максимальную допустимую температуру прибора. Кроме того, приборы на основе широкозонного полупроводникового материала будут способны работать с большей допустимой удельной мощностью рассеяния, т. е. При нормальных условиях работы могут быть уменьшены габариты прибора или габариты теплоотводящих радиаторов.
Подвижность носителей заряда влияет на частотные свойства выпрямительных диодов, так как эти свойства большинства выпрямительных диодов определяются временем рассасывания не основных носителей в базовой области диодной структуры.
Одна и важнейших задач полупроводниковой электроники - это повышение пробивного напряжения коллекторного перехода транзистора и тиристора, а также пробивного напряжения выпрямляющего электрического перехода диода. Для решения этой задачи необходимо получить равномерное распределение плотности тока по всей площади электронно-дырочного перехода, что снизит вероятность возникновения теплового пробоя. Поэтому особое значение приобретает требование к однородности исходного полупроводникового материала, так как микронеоднородности и другие дефекты значительно снижают пробивное напряжение перехода. Естественно, что наряду с повышением качества исходных материалов необходимо совершенствовать методы контроля их параметров и свойств.
Развитие микроэлектроники, в частности, и вообще электронной техники должно сопровождаться повышением надежности и снижением стоимости электронных схем и устройств. Необходимость повышения надежности вызвана, во-первых, усложнением аппаратуры, увеличением числа элементов установках. Для обеспечения работоспособности всей установки необходима высокая надежность каждого отдельного элемента установки. При этом не всегда можно применять резервирование или дублирование по экономическим и техническим соображениям. Во-вторых, электронная аппаратура стала широко применяться при экстремальных внешних условиях в связи с развитием геофизических исследований, созданием ядерных энергетических устройств, повышением технических параметров авиационной техники и развитием космонавтики. Аппаратура должна теперь работать при высоких и низких температурах, при наличии значительных градиентов температуры, при радиационном облучении, при наличие сильных электромагнитных полей, при больших статических и динамических механических нагрузках, при воздействии микроорганизмов и агрессивных сред. При этом иногда не возможно использовать специальные средства защиты (термостаты, радиационные и электромагнитыне экраны, механическая демпфирование) из-за требования одновременного снижения массы, энергопотребления и стоимости.
Естественный и понятный путь повышения надежности - это повышение общей культуры проектирования и производства приборов. Но необходим также глубокий анализ кинетических закономерностей и механизмов старения полупроводниковых и других материалов которые используются в полупроводниковых приборах. В первую очередь, необходимо исследовать физико-химические процессы в полупроводниковых материалах при одновременном воздействии высокой температуры и сильных электрических полей, электрическую и химическую коррозию, окисление, диффузию примесей, накопление деформаций, усталостные явления т. д.
Снижение стоимости изделий не только микроэлектроники, но и всей полупроводниковой электроники в сильной степени зависит от процента выхода годных приборов, который оказывается иногда очень низким (особенно для больших интегральных микросхем) из-за недостаточного качества исходного полупроводникового материала и недостаточной однородности по кристаллу.
С появлением полупроводниковых приборов возникла сразу же необходимость в улучшении их частотных свойств, в повышении допустимой мощности рассеяния. Рабочие частоты современных кремниевых биполярных транзисторов СВЧ приближаются уже к теоретическому пределу. Поэтому, чтобы еще улучшить частотные свойства, нужно использовать другой материал (о чем уже было сказано ранее), а также разрабатывать полупроводниковые приборы с другим принципом действия.
Так, для генерации СВЧ электромагнитных колебаний разрабатываются и выпускаются лавинно-пролетные диоды и генераторы Ганна, (генераторы Ганна, хотя в структуре этих приборов нет выпрямляющего электрического перехода).
Принцип действия лавинно-пролетных диодов основан на инерционности лавинного умножения носителей зарядов в электронном переходе при лавинном пробое и на существование некоторого времени пролета возникающих в переходе носителей через этот переход. Поэтому к однородности и качеству исходного полупроводникового материала лавинно-пролетных диодов предъявляются жесткие требования.
Выпускаемые промышленностью лавинно-пролетные диоды и генераторы Ганна рассчитаны на выходную СВЧ мощность в непрерывном режиме в несколько десятков милливатт. В импульсном режиме эта мощность может быть повышена на несколько порядков. Для увеличения выходной мощности нужны лавинно-пролетные диоды и генераторы Ганна с большей площадью электронно-дырочного перехода и большей площадью тонкой пленки полупроводника. При этом они должны быть однородны не только по толщине, но и по площади.
В качестве исходных материалов для фоточувствительных и фото преобразовательных полупроводниковых приборов - фоторезисторов, фотодиодов и фотоэлементов, целесообразно использовать полупроводники с различной шириной запрещенной зоны, имеющие максимум спектральной характеристики при различных длинах волн. Особый интерес представляет полупроводниковые многокомпонентные твердые растворы, у которых ширина запрещенной зоны и максимум спектральной характеристики изменяются в широких пределах в зависимости от содержания отдельных компонентов.
В частности, для непосредственного преобразования энергии солнечного света в электрическую энергию используют кремневые фотоэлементы - солнечные батареи, являющиеся основными источниками питания электронной аппаратуры на космических кораблях и спутниках. Однако для повышения КПД фотоэлементов, предназначенных для преобразования энергии солнечного света, с учетом спектрального распределения энергии в солнечном спектре необходим полупроводниковый материал с несколько большей шириной запрещенной зоны, чем у кремния (например, арсенид галлия).
Естественно, что к исходному полупроводниковому материалу каждого прибора предъявляются требования, связанные с принципом действия и условиями работы этого прибора. Так, солнечные батареи должны длительное время работать в условиях космической радиации. По этой причине необходимым свойством исходного полупроводникового материала таких приборов является его радиационная стойкость. Радиационная стойкость фото преобразователей на основе арсенида галлия более высокая, чем кремниевых преобразователей. Экспериментально выявлена в несколько раз большая радиационная стойкость к облучению электронами и протонами фотоэлементов на основе кремния с p-типом электропроводимости, чем на основе кремния с n-типом электропроводимости.
Коэффициент полезного действия фотоэлемента, в частности, зависит от места возникновения новых носителей заряда: они могут возникать на относительно большой глубине от электронно-дырочного перехода в базе, или непосредственно в переходе, или в близи поверхности кристалла полупроводника.
При выборе исходного материала для фотоэлемента необходимо учитывать изменения показателя поглощения света в зависимости от длины волны.
При производстве фоторезисторов не требуется столь высокой степени очистки полупроводниковых материалов и совершенства их структуры. В связи с этим для изготовления фоторезисторов обычно используют селениды, сульфиды и другие соединения в аморфном состоянии, что значительно снижает себестоимость приборов.
Широкое практическое применение получило свойство различных возбужденных систем эффективно излучать электромагнитную энергию при самопроизвольной или вынужденной рекомбинации. На основе этого свойства созданы излучающие полупроводниковые приборы - светодиоды и полупроводниковые лазеры. В исходном материале таких приборов излучательная рекомбинация носителей зарядов должна преобладать над безызлучательной.
Полупроводниковый материал для лазеров должен иметь структуру энергетических зон, обеспечивающую прямые излучательные переходы электронов между энергетическими уровнями. Перспективным является синтез и подбор полупроводниковых материалов с одинаковыми параметрами кристаллической решетки, что дает возможность создавать гетеропереходы на контактах двух полупроводников с различной шириной запрещенной зоны. Использование гетеропереходов в инжекционных лазерах позволяет относительно просто получать инверсную населенность энергетических уровней в относительно узкой области лазерной структуры.
Для изготовления термисторов применяют различные полупроводниковые материалы, но наибольшее распространение получили оксиды металлов переходной группы Д. И. Менделеева [от титана (порядковый номер 22) до меди (порядковый номер 29)].
Основные требования, предъявляемые к полупроводниковым материалам таких термисторов, определяются необходимостью обеспечить широкий диапазон номинальных сопротивлений, различный температурный коэффициент сопротивления, малый разброс параметров и т. д. Поэтому желательно иметь возможность изменять удельное сопротивление и температурный коэффициент удельного сопротивления исходного материала в широких пределах путем изменения соотношения составляющих компонентов. Наибольший интерес представляют полупроводники, у которых малое удельное сопротивление сочетается с большим температурным коэффициентом удельного сопротивления. Кроме того, для массового производства термисторов желательно иметь полупроводниковый материал с меньшей чувствительностью параметров к посторонним примесям и малейшим отклонениям от заданных режимов термообработки.
Перспективными для термисторов являются материалы со структурными фазовыми переходами, происходящими в определенном диапазоне температуры и сопровождающимися резким изменением удельного сопротивления. Так, в оксидах ванадия с увеличением температуры области фазовых превращений наблюдается уменьшение удельного сопротивления на несколько порядков. Для изготовления варисторов прежде всего необходимы материалы, обладающие химической стабильностью при высоких температурах, так как при работе варистора почти вся мощность выделяется в малом объеме активных областей под точечными контактами между отдельными кристаллами или зернами полупроводника. Нелинейность вольт-амперных характеристик варисторов может быть существенно увеличено при увеличении температурного коэффициента сопротивления поверхностных слоев кристаллов, из которых состоит варистор.
Для того чтобы варистор обладал хорошими частотными свойствами, необходимо малое время релаксации тепловых процессов в активных областях под точечными контактами, а значит, малая площадь точечных контактов, что может быть получено при большой твердости кристаллов полупроводника. Всем этим требованиям пока от части удовлетворяет карбид кремния, из которого и делают основную часть варисторов.
В последнее время налажено массовое производство варисторов из оксидных полупроводников, основой которых является оксид цинка. Принцип действия таких варисторов имеет свои особенности, но требования к исходному материалу, перечисленные выше, справедливы и для оксидных варисторов.
При разработке материалов для термоэлектрических приборов важное значение имеет температурная зависимость эффективности и определяющих ее параметров. С увеличением температуры в области примесной электропроводимости удельное сопротивление полупроводника растет в связи с уменьшением подвижности носителей зарядов из-за увеличения теплового рассеяния кристаллической решеткой. По этой причине уменьшается эффективность материала. Таким образом, в материалах для термоэлементов должно быть по возможности более слабое падение подвижности носителей зарядов при средних и высоких температурах.
Основным требованием к исходному материалу преобразователей ЭДС Холла является высокая подвижность носителей заряда, так как при этом ЭДС Холла соизмерима с выходным напряжением. Однако выходное напряжение должно быть достаточно большим, чтобы полезный сигнал имел необходимое значение. Максимальное допустимое входное напряжение ограничивается максимальной допустимой мощностью. Таким образом, при большой подвижности носителей заряда материал должен иметь выходное удельное сопротивление. Например, преобразователь ЭДС Холла из антимонида индия имеет меньшую максимальную ЭДС Холла, чем преобразователь из германия, у которого подвижность электронов почти в 20 раз меньше.
ЭДС Холла обычно пропорциональна толщине кристаллов полупроводника. Поэтому исходный материал должен обеспечивать создание преобразователей ЭДС Холла, имеющих малую толщину.
Аналогичные требования предъявляются к исходным материалам для магниточувствителных полупроводниковых приборов - полупроводниковых магниторезисторов.
Для тензочувствительных полупроводниковых приборов - тензорезисторов и тензодиодов нужны полупроводниковые материалы характеризующиеся много долинными энергетическими зонами с возможно большей анизотропией эффективных масс или подвижностей носителей заряда по различным кристаллографическим осям. Так как структура и свойства зоны проводимости и валентной зоны одного и того же полупроводника могут существенно отличаться, то характер и значение тензочувствительности в полупроводнике с n- и p-типом электропроводимости могут быть различны. Поэтому малая тензочувствительность в n-полупроводнике еще не означает, что она не может быть большой в p-полупроводнике того же самого материала.
Кроме большой тензочувствительности, материал для тензочувствительных полупроводниковых приборов должен обладать химической инертностью, иметь высокое значение разрушающего механического напряжения, т. е. быть механически прочным, иметь большую ширину запрещенной зоны, позволяющую делать тензоприборы с большой максимальной допустимой температурой.
Основным материалом для изготовления полупроводниковых тензорезисторов в настоящее время является кремний. Это объясняется не только тем, что кремний лучше других полупроводников удовлетворяет перечисленным требованиям для изготовления тензорезисторов, но и тем, что свойства кремния исследованы наиболее детально, налажена промышленная технология получения однородных монокристаллов кремния с малым числом дефектов, что, в свою очередь, позволяет выбирать материал с нужными параметрами и известной температурной зависимостью удельного сопротивления, а также облегчает создание невыпрямляющих контактов.
Заключение.
Необходимость получения материалов, обладающих специальными свойствами, выдвигают перед наукой задачу дальнейшего развития физики и химии твердого тела, призванных разрабатывать научные основы создания новых конструкционных материалов с заданными свойствами.
Полупроводники это новые материалы, с помощью которых на протяжении последних десятилетий удаётся разрешать ряд чрезвычайно важных электротехнических задач. В настоящее время насчитывается свыше двадцати различных областей, в которых с помощью полупроводников разрешаются важнейшие вопросы эксплуатации машин и механизмов, контроля производственных процессов, получения электрической энергии, усиления высокочастотных колебаний и генерирования радиоволн, создания с помощью электрического тока тепла или холода, и для осуществления многих других процессов.
Успех развития полупроводниковой техники и связанных с ней отраслей (электроники, энергетики и др.) в значительной мере определяются достижениями в области разработки и получения полупроводниковых сплавов с определенными стабильными электрофизическими, механическими и другими свойствами. Поэтому разработка вопросов, связанных с получением полупроводниковых материалов, обладающих определенным комплексом свойств, т. е. тех вопросов, круг и задачи которых составляет предмет материаловедения полупроводников, являются одной из важнейших задач науки и техники.
Подводя итоги сказанному выше можно заключить, что материаловедение полупроводников - это научная дисциплина, изучающая закономерности образования металлических и полупроводниковых фаз (элементарных веществ, растворов, соединений, сплавов), в равновесных и неравновесных условиях, влияние химического и фазового состава, атомной структуры и структурных дефектов фаз на свойства материалов, а также разрабатывающая научные и практические пути воздействия на их фазовый состав, структуру и физико-химические свойства.
Список литературы