У вас вопросы?
У нас ответы:) SamZan.net

.. cN может быть записано в виде где А оператор дискретного представления сигнала реализуемый устройст

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 29.12.2024

33 ПРЕОБРАЗОВАНИЕ НЕПРЕРЫВНЫХ СИГНАЛОВ В ДИСКРЕТНЫЕ

ОБЩАЯ  ПОСТАНОВКА ЗАДАЧИ ДИСКРЕТИЗАЦИИ

В самом общем случае представление непрерывного сигнала u(t) на интервале Т совокупностью координат (с1, с2, ..., cN) может быть записано в виде

где А — оператор дискретного представления сигнала, реализуемый устройством, называемым дискретизатором.

Аналогично можно записать и операцию восстановления по совокупности координат (с1, c2, ..., cN) непрерывной функции u*(t) (воспроизводящей функции), отображающей исходный сигнал с некоторой текущей погрешностью приближения   (t) = u(t) — u*(t):

где В — оператор восстановления, реализуемый устройством восстановления сигнала.

Задача дискретизации в математическом плане сводится к совместному выбору пары операторов A и B, обеспечивающих заданную точность восстановления сигнала.

Рассмотрим разновидности используемых операторов A и B и критериев оценки точности восстановления сигнала.

Широкое практическое применение нашли линейные операторы, поскольку их техническая реализация проще. Для определения координат сигнала используется соотношение

где {ξj(t)} - система функций, которые для определенности назовем весовыми.

Воспроизводящая функция представляется аппроксимирующим полиномом

где {j(t)} - система базисных функций.

При одном и том же операторе представления А для восстановления могут использоваться различные операторы В.

Из соотношений (2.3) и (2.4) следует, что произведения j(t)φj(t)] должны иметь размерность, обратную времени.

Методы дискретизации в первую очередь разделяются в зависимости от способа получения координат сигнала.

В случае, когда в качестве весовых функций используются базисные функции [(t) = j(t)], координаты с1, c2, ..., cN сигнала u(t) получаются «взвешенным» интегрированием сигнала на некотором интервале времени Т. При этом предполагается, что базисные функции ортогональны и обеспечивают сходимость в среднеквадратичном ряде (2.4) к u(t) при N [условие (1.8)], что дает возможность ограничить число координат в соответствии с заданной погрешностью восстановления.

Предъявляя дополнительные требования к базисным функциям, можно провести дискретизацию различных моделей сигнала. Хотя дискретизации всегда подвергается конкретная реализация случайного процесса и, следовательно, детермированная функция, в большинстве случаев алгоритм дискретизации выбирают неизменным для всего множества реализаций и поэтому он должен опираться на характеристики случайного процесса как модели сигнала.

Методы дискретизации следует рассматривать как с позиций полезности для решения теоретических вопросов передачи и преобразования сигналов, так и с позиций возможности их технической реализации. В теоретическом плане весьма важны методы дискретизации, обеспечивающие минимальное число координат при заданной погрешности воспроизведения. Их называют методами оптимальной или предельной дискретизации.

Если за модель сигнала принять нестационарный случайный процесс, как наиболее полно отражающий свойства реального сигнала, некоррелированность координат, а следовательно, и их минимальное число обеспечивают каноническое разложение этого процесса. В качестве базисных функций j(t) должны использоваться координатные функции. Коэффициенты разложения сk будут искомыми координатами.

В силу сложности нахождения координатных функций указанная процедура не нашла пока применения в инженерной практике. Поэтому идут по пути упрощения модели, предполагая сигнал стационарным или квазистационарным. Некоррелированные координаты, как и ранее, дает только каноническое разложение, однако определение координатных функций упрощается. В качестве таковых могут быть взяты, например, тригонометрические функции. Разложение процесса на ограниченном интервале времени, превышающем длительность корреляции, принимает вид ряда Фурье, но с коэффициентами-координатами, являющимися случайными величинами (1.95). При дискретизации каждой реализации мы будем получать, естественно, детерминированные координаты.

Если отказаться от требования некоррелированности координат, то случайный процесс можно разложить по любой полной системе ортогональных функций. Координатами реализаций будут обобщенные коэффициенты Фурье (см. § 1.3).

Поскольку выражение координат в рассматриваемом случае связано с операцией интегрирования, алгоритмы дискретизации отличаются высокой помехоустойчивостью. Известны примеры успешного использования для целей дискретизации функций Лежандра, Уолша, Хаара. Тем не менее, в силу сложности технической реализации, как получения координат, так и восстановления по ним сигнала, а также вследствие возникновения при этом задержки сигнала во времени методы получения координат на основе «взвешенного» интегрирования сигнала на практике используются лишь иногда при высоком уровне импульсных помех.

Более широкое распространение получили методы дискретизации, при которых сигнал u(t) заменяется совокупностью его мгновенных значений u(tj), взятых в определенные моменты времени tj(j=1,2, ..., Ν) и называемых выборками или отсчетами. Роль весовых функций (t) в соотношении (2.3) в этом случае выполняют дельта-функции Дирака. В соответствии с (1.11) устанавливаем, что координаты с1, c2, ..., cN представляют собой выборки u(tj)[ξj(t) = (t - tj)] или разности соседних выборок Δu(tj) = u(tj) — u(t tj)[j(t) = (t - tj) - δ(t - tj-1)].

Поскольку дельта-функция технически нереализуема, длительность каждой выборки конечна. Отсчеты берут не в одной точке, а в некотором интервале времени, зависящем от длительности управляющего импульса ключевого устройства. Когда длительность импульса значительно меньше шага дискретизации, выборки представляют собой короткие импульсы, амплитуды которых пропорциональны мгновенным значениям сигнала.

Отрезок времени tj = tj — tj-1 между соседними выборками называют шагом дискретизации. Если он выдерживается постоянным во всем диапазоне преобразования, дискретизация считается равномерной. Методы равномерной дискретизации получили наиболее широкое применение. Они характеризуются простым алгоритмом, исключающим необходимость фиксировать время отсчетов, что существенно облегчает техническую реализацию. Правда, в этом случае несоответствие шага дискретизации характеру поведения конкретной реализации сигнала на отдельных участках часто приводит к значительной избыточности отсчетов.

Если отрезки времени между выборками меняются, например, в зависимости от скорости изменения сигнала или по заданной программе, дискретизацию называют неравномерной.

В ряде случаев наряду с выборками u(tj) в качестве координат сигнала используются также производные u(t) в те же моменты времени tj, вплоть до N-го порядка.

Учитывая теоретическую и практическую значимость методов дискретизации с использованием выборок в качестве координат сигнала, в процессе дальнейшего рассмотрения вопросов дискретизации ограничимся только ими.

При построении метода дискретизации необходимо сформулировать критерий выбора отсчетов, установить процедуру восстановления по ним исходного сигнала и иметь возможность определить возникающую при этом погрешность. Решение указанных задач возможно лишь на базе выбора определенной математической модели дискретизируемого сигнала.

В вопросе определения величины шага при равномерной дискретизации известно несколько подходов, отличающихся, прежде всего тем, каким параметром характеризуются динамические свойства сигнала.

В теоретических исследованиях наибольшее распространение получила модель сигнала в виде квазистационарного случайного процесса, каждая реализация которого представляет собой функцию с ограниченным спектром. Величина шага дискретизации в этом случае ставится в зависимость от наивысшей частоты спектра. Такой критерий выбора отсчетов принято называть частотным.

При определении шага дискретизации можно ориентироваться непосредственно на степень некоррелированности отсчетов. Существует подход, где за модель

сигнала принят случайный процесс конечной длительности Т, спектр которого отличен от нуля на всей оси частот. В предположении, что 0<<T, отсчеты берут через интервал корреляции τ0, определяемый по известной корреляционной функции сигнала. Такой критерий выбора отсчетов называют корреляционным. Учитывая тесную взаимосвязь спектрального и корреляционного методов анализа сигналов, его иногда рассматривают как разновидность частотного критерия. Поскольку использование корреляционного критерия по сравнению с частотным не упрощает теоретических исследований, он не нашел применения в инженерной практике.

Практическую реализацию равномерной дискретизации чаще всего проводят с использованием аппроксимирующих многочленов в общем случае n-й степени. За математическую модель сигнала принимают стационарный случайный процесс, каждая реализация которого представляет собой непрерывную функцию u(t), имеющую (n+1) ограниченных производных. При этом динамические свойства сигнала задаются максимальным во всем интервале преобразования модулем (n+1)-й его производной. Отсчеты выбирают по критерию наибольшего отклонения.

Так как при равномерной дискретизации шаг выбирают, исходя из максимальных значений динамических характеристик сигнала, то на многих участках интервала дискретизации, где мгновенные значения сигнала резко не меняются, он оказывается заниженным, что приводит к избыточности отсчетов.

Эффективное устранение избыточности в отсчетах обеспечивают методы адаптивной неравномерной дискретизации. Длительности шагов дискретизации в этом случае тесно связаны с текущими значениями параметров реализации сигнала. Отсчеты проводятся при достижении выбранной погрешностью восстановления определенного значения, выполняющего здесь роль критерия.




1. вариант 1 Для хранения растрового изображения размером 128~128 пикселей отвели 4 килобайта памяти
2.  UC2 исключительно для ВТГР Получение карбидов- 2 метал
3. Окружающий мир 12 классы С самых первых уроков окружающего мира человек природа и общество р
4. операционный доход часто используется в качестве синонима для термина прибыль до уплаты процентов и нало
5. Человекообразные обезьяны
6. Секс и интернет клинические аспекты
7. й наноелектронних технологій
8. Реферат- Перечень электротехнических изделий и оборудования (справочник)
9. Методические рекомендации по выполнению дипломной работы по специальности Социально культурный сервис
10. Построение диаграмм в MS Excel 2007
11. Понятие о современном русском литературном языке
12. педагогической драматургии на уроках МХК
13. а. Методы исследования ВГД
14. х годов ~ 4 Михаил Афанасьевич Булгаков ЧАША ЖИЗНИ Веселый московский рассказ с печальным концом
15. Наше мышление подчиняется логическим законам
16. Модуль 1 2 курс стоматологический факультет вопросы на 3 Радикальная операция ~ это операция-
17. Если примеры легко приходят на ум мы полагаем что они являются общепринятыми
18. Реферат- Оценка в системе антикризисного управления
19. Тема- Проектирование основания промежуточной опоры моста
20. КУРСОВОЙ ПРОЕКТ Разработать технические решения выполнить расчеты и рабочие чертежи несущих конст.