У вас вопросы?
У нас ответы:) SamZan.net

Определяет с какой силой магнитное поле действует на заряд движущийся со скоростью

Работа добавлена на сайт samzan.net: 2016-03-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 7.3.2025

1     Магни́тная инду́кция  — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой  магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно,  — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).

Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791—1841). Результаты этих опытов были обобщены выдающимся французским математиком и физиком П. Лапласом.

Закон Био — Савара — Лапласа для проводника с током I, элемент dl  которого создает в некоторой точке А (рис. 164) индукцию поля dB, записывается в виде

(110.1)

где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r—радиус-вектор, проведанный из элемента dlпроводника в точку А поля, r — модуль радиуса-вектора r. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление dB, если поступательное движение винта соответствует направлению тока в элементе.

Модуль вектора dB определяется выражением

(110.2)

где a — угол между векторами dl и r.

Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

(110.3)

Расчет характеристик магнитного поля (В и Н) по приведенным формулам в общем случае сложен. Однако если распределение тока имеет определенную симметрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции позволяет просто рассчитать конкретные поля. Рассмотрим два примера.

Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами dl и r), выразив через него все остальные величины. Из рис. 165 следует, что

(радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что магнитная индукция, создаваемая одним элементом проводника, равна

(110.4)

Так как угол a  для всех элементов прямого тока изменяется в пределах от 0 до p, то, согласно (110.3) и (110.4),

Следовательно, магнитная индукция поля прямого тока

(110.5)

Магнитное поле в центре кругового проводника с током (рис. 166). Как следует из рисунка, все элементы кругового проводника с током создают в центре магнитные поля одинакового направления — вдоль нормали от витка. Поэтому сложение векторов dB можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sina =1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2),

Тогда

Следовательно, магнитная индукция поля в центре кругового проводника с током

2   Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B,

F = IBΔl sin α

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правела, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Рисунок 1 — правило левой руки

Некоторые проблемы возникают, при использовании правела левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правела, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.


 Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.


 С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Формула 2 — Сила Ампера для двух параллельных проводников.

Сила, действующая со стороны проводника номер один на второй проводник, будет иметь такой же вид. При этом если токи в проводниках текут в одном направлении, то проводнику будут притягиваться. Если же в противоположных, то они будут отталкиваться. Возникает некоторое замешательство, ведь токи текут в одном направлении, так как же они могут притягиваться. Ведь одноименные полюса и заряды всегда отталкивались. Или Ампер решил, что не стоит подражать остальным и придумал что то новое.


 На самом деле Ампер ничего не выдумывал, так как если задуматься то поля, создаваемые параллельными проводниками, направлены встречно друг другу. И почему они притягиваются, вопроса уже не возникает. Чтобы определить, в какую сторону направлено поле создаваемое проводником, можно воспользоваться правилом правого винта.

Рисунок 2 — Параллельные проводники с током

Используя параллельные проводники и выражение силы Ампера для них можно определить единицу в один Ампер. Если по бесконечно длинным параллельным проводникам, находящимся на расстоянии в один метр, текут одинаковые токи силой в одни ампер, то силы взаимодействия между ними будет составлять в 2*10-7 Ньютона, на каждый метр длинны. Используя эту зависимость, можно выразить чему будет равен один Ампер.

сила Лоренца Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение n q υ S, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:

I = q n υ S.

Выражение для силы Ампера можно записать в виде:

F = q n S Δl υB sin α.

Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно n S Δl, то сила, действующая на одну заряженную частицу, равна

FЛ = q υ B sin α.

Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью  и вектором магнитной индукции  Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика. Взаимное расположение векторов  и  для положительно заряженной частицы показано на рис. 1.18.1.

Рисунок 1.18.1.

Взаимное расположение векторов  и Модуль силы Лоренца  численно равен площади параллелограмма, построенного на векторах  и  помноженной на заряд q

Сила Лоренца направлена перпендикулярно векторам  и 

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость  лежит в плоскости, перпендикулярной вектору  то частица будет двигаться по окружности радиуса

Сила Лоренца в этом случае играет роль центростремительной силы (рис. 1.18.2).

Рисунок 1.18.2.

Круговое движение заряженной частицы в однородном магнитном поле

Период обращения частицы в однородном магнитном поле равен

Это выражение показывает, что для заряженных частиц заданной массы m период обращения не зависит от скорости υ и радиуса траектории R.

, движение заряженных частиц в магнитном поле.

3. Поток вектора магнитной индукции

Поток вектора магнитной индукции, пронизывающий площадку S - это величина, равная:

Поток вектора магнитной индукции (магнитный поток) измеряется в веберах (Вб)

Магнитный поток - величина скалярная.

Поток вектора магнитной индукции (магнитный поток) равен числу линий магнитной индукции, проходящих сквозь данную поверхность.

Поток вектора магнитной индукции (магнитный поток) сквозь произвольную замкнутую поверхность равен нулю:

Это теорема Остроградского-Гаусса для магнитного поля.

Она свидетельствует о том, что в природе не существует магнитных зарядов – физических объектов, на которых бы начинались или заканчивались линии магнитной индукции.

циркуляция вектора магнитной индукции

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.

В математической формулировке для магнитостатики теорема имеет следующий вид:

Здесь  — вектор магнитной индукции — плотность тока; интегрирование слева производится по произвольному замкнутому контуру, справа — по произвольной поверхности, натянутой на этот контур. Данная форма носит название интегральной, поскольку в явном виде содержит интегрирование. Теорема может быть также представлена в дифференциальной форме:

Магнитное поле соленоида

Солено́ид — разновидность электромагнитов. Соленоид — это односложная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра. Характеризуется значительным соотношением длины намотки к диаметру оправки, что позволяет создать внутри катушки относительно равномерное магнитное поле.

Соленоид почти всегда снабжается внешним магнитопроводом. Внутренний магнитопровод может быть подвижным или отсутствовать вовсе.

соленоидноид на постоянном токе

Если длина соленоида намного больше его диаметра и не используется магнитный материал, то при протекании тока по обмотке внутри катушки создаётся магнитное поле, направленное вдоль оси, которое однородно и для постоянного тока по величине равно

(СИ),

(СГС),

где  — магнитная проницаемость вакуума — число витков N на единицу длины l (линейная плотность витков),  — ток в обмотке.

При протекании тока соленоид запасает энергию, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна

При изменении тока в соленоиде возникает ЭДС самоиндукции, значение которой

[править]Индуктивность соленоида

Индуктивность соленоида выражается следующим образом:

(СИ),

(СГС),

где  — объём соленоида,  — длина проводника, намотаннного на соленоид,  — длина соленоида,  — диаметр витка.

Без использования магнитного материала плотность магнитного потока  в пределах катушки является фактически постоянной и равна

где  − магнитная проницаемость вакуума − число витков,  — сила тока и  — длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим, чтопотокосцепление через катушку равно плотности потока , умноженному на площадь поперечного сечения  и число витков :

Отсюда следует формула для индуктивности соленоида

эквивалентная предыдущим двум формулам.

[править]Соленоид на переменном токе

При переменном токе соленоид создаёт переменное магнитное поле. Если соленоид используется как электромагнит, то на переменном токе величина силы притяжения изменяется. В случае якоря из магнитомягкого материала направление силы притяжения не изменяется. В случае магнитного якоря направление силы меняется. На переменном токе соленоид имееткомплексное сопротивление, активная составляющая которого определяется активным сопротивлением обмотки, а реактивная составляющая определяется индуктивностью обмотки.

[править]Применение

Соленоиды постоянного тока чаще всего применяются как поступательный силовой электропривод. В отличие от обычных электромагнитов обеспечивает большой ход. Силовая характеристика зависит от строения магнитной системы (сердечника и корпуса) и может быть близка к линейной.

Соленоиды приводят в движение ножницы для отрезания билетов и чеков в кассовых аппаратах, язычки замков, клапаны в двигателях, гидравлических системах и проч. Один из самых известных примеров — «тяговое реле» автомобильного стартёра.

Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.

4   Диамагнетики - это вещества, намагничивающиеся во внешнем магнитном поле против направления поля. (Например Ag, Au, Cu)

Диамагнитный эффект - это эффект, при котором составляющие магнитных полей атомов складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле.

Так как диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам.

Парамагнетики - это вещества, намагничивающиеся во внешнем магнитном поле по направлению поля (например редкоземельные металлы, Pt, Al).

У парамагнетиков при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и молекулыпарамагнетиков всегда обладают магнитным моментом (такие молекулы называются полярными).

Вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому в отсутствие магнитного поля,парамагнетики магнитными свойствами не обладают.

При внесении парамагнетика во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов (молекул) по полю (полной ориентации препятствует тепловое движение атомов).

Ферромагнетики - это вещества, обладающие спонтанной намагниченностью, то есть они сохраняют намагниченность при отсутствии внешнего магнитного поля.

К ферромагнетикам относятся, например, кристаллы железа, никеля, кобольта.

Ферромагнетики

Название ферромагнетики произошло от латинского наименования важнейшего представителя этого класса вещества: железа (ferrum).

Ферромагнитные свойства вещества существенно зависят от температуры. С повышением температуры остаточная намагниченность ферромагнетикауменьшается. При достаточно высокой температуре, называемой точкой Кюри, она исчезает полностью. При нагревании выше точки Кюриферромагнетик превращается в обычный парамагнетик.

http://ru.wikipedia.org/wiki/%D0%93%D0%B8%D1%81%D1%82%D0%B5%D1%80%D0%B5%D0%B7%D0%B8%D1%81

не нашел ответы , не знаю что выбирать, надо было лекции посещать))

Применение ферромагнетиков.

Ферромагнетики имеют наибольшее практическое применение, хотя их и не так много в природе. Железный или стальной сердечник в катушке во много раз усиливает создаваемое этой катушкой поле, не увеличивая силу тока в катушке. Это экономит электроэнергию. Сердечники трансформаторов, генераторов, электродвигателей и других устройств изготавливают из ферромагнетиков. При выключении внешнего магнитного поля ферромагнетик остаётся намагниченным, то есть создаёт магнитное поле в окружающем его пространстве. Упорядоченная ориентация элементарных токов не исчезает при выключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях, телефонах, в устройствах звукозаписи, магнитных компасах и т.д. Большое распространение получили ферриты - ферромагнитные материалы, не проводящие электрического тока. Они представляют собой химические соединения оксидов железа с оксидами других веществ. Первый из известных человеку ферромагнитных материалов - магнитный железняк - является ферритом.

5 Электромагнитная индукция

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Магнитным потоком Φ через площадь S контура называют величину

Φ = B · S · cos α,

где B – модуль вектора магнитной индукции, α – угол между вектором  и нормалью  к плоскости контура (рис. 1.20.1).

Рисунок 1.20.1.

Магнитный поток через замкнутый контур. Направление нормали  и выбранное положительное направление  обхода контура связаны правилом правого буравчика

4Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называется вебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м2:

1 Вб = 1 Тл · 1 м2.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула носит название закона Фарадея

Правило Ленца определяет направление индукционного тока и гласит:

Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

Физическая суть правила

Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока , пронизывающего электрический контур, в нём возбуждается ток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением[1]:

где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.

Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменение величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.

Потокосцепле́ние (полный магнитный поток) — физическая величина, представляющая собой суммарный магнитный поток, сцепляющийся со всеми витками катушки индуктивности.

Потокосцепление численно равно сумме магнитных потоков, проходящих через каждый виток катушки, т.е. при количестве витков N и одинаковом магнитном потоке в каждом витке потокосцепление можно определить как  где  — магнитный поток одного витка [ Вб ].

В идеальном соленоиде все магнитные силовые линии проходят через каждый виток (т.е. не пересекают боковую поверхность соленоида), и, следовательно, магнитный поток каждого витка одинаков. Однако на практике магнитные потоки в витках катушки отличаются и величина потокосцепления определяется по формуле:

где:
 — количество витков;
 — номер витка, с которым сцеплен поток 


В случае, если катушка имеет 
ферромагнитный сердечник, потокосцепление можно определить по формуле:

где  — магнитный поток через магнитопровод (сердечник) катушки.


Величина потокосцепления, помимо магнитного потока, имеет связь с 
током I в индуктивности, определяющуюся выражением:

где  — индуктивность катушки [ Гн ].

Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока.

Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786—1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии справилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.

Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечниковтрансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих проводников сплошными.

6 Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :

.

Коэффициент пропорциональности  называется коэффициентом самоиндукции или индуктивностью контура (катушки).

Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.[2][3][4].

В формуле

— магнитный поток — ток в контуре,  — индуктивность.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока[4]:

.

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током[4]:

.

Практически участки цепи со значительной индуктивностью выполняют в виде катушек индуктивности[4]. Элементами малой индуктивности (применяемыми для больших рабочих частот) могут быть одиночные (в том числе и неполные) витки или даже прямые проводники; при высоких рабочих частотах необходимо учитывать индуктивность всех проводников[5].

Для имитации индуктивности, т.е. ЭДС на элементе, пропорциональной и противоположной по знаку скорости изменения тока через этот элемент, в электронике используются[6] и устройства, не основанные на электромагнитной индукции (см. Гиратор); такому элементу можно приписать определенную эффективную индуктивность, используемую в расчетах полностью (хотя вообще говоря с определенными ограничивающими условиями) аналогично тому, как используется обычная индуктивность.

7 Электрический колебательный контур

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

Пусть конденсатор ёмкостью C заряжен до напряжения Энергия, запасённая в конденсаторе составляет

Параллельный колебательный контур

При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

, где  — индуктивность катушки,  — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения .

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

В общем, описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида  в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний  или её квадрата. Формула для магнитных колебаний немного не такая

8Дифференциальная форма

Уравнения Максвелла представляют собой в векторной записи систему из четырёх уравнений, сводящуюся в компонентном представлении к восьми (два векторных уравнения содержат по три компоненты каждое плюс два скалярных[28]) линейных дифференциальных уравнений в частных производных первого порядка для 12 компонент четырёх векторныхфункций ():

Название                                                     СИ                             Примерное словесное содержание

Закон Гаусса

Электрический заряд является источником электрической индукции.

Закон Гаусса для магнитного поля

Не существует магнитных зарядов

Закон индукции Фарадея

Изменение магнитной индукции порождает вихревое электрическое поле.

Теорема о циркуляции магнитного поля

Электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Жирным шрифтом в дальнейшем обозначаются векторные величины, курсивом — скалярные.

Введённые обозначения:

  1.  — плотность стороннего электрического заряда (в единицах СИ — Кл/м³);
  2.  — плотность электрического тока (плотность тока проводимости) (в единицах СИ — А/м²); в простейшем случае — случае тока, порождаемого одним типом носителей заряда, она выражается просто как , где  — (средняя) скорость движения этих носителей в окрестности данной точки,  — плотность заряда этого типа носителей (она в общем случае не совпадает с )[29]; в общем случае это выражение надо усреднить по разным типам носителей;
  3.  — скорость света в вакууме (299 792 458 м/с);
  4.  — напряжённость электрического поля (в единицах СИ — В/м);
  5.  — напряжённость магнитного поля (в единицах СИ — А/м);
  6.  — электрическая индукция (в единицах СИ — Кл/м²);
  7.  — магнитная индукция (в единицах СИ — Тл = Вб/м² = кгс−2•А−1);

9 . Электромагнитные волны - волна, порожденная колебанием параметра электромагнитного поля. 
В зависимости от длины волны в вакууме, источника излучения и способа возбуждения различают: низкочастотные колебания, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, гамма-лучи.

Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергии электромагнитного поля, одна из компоненттензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

(в системе СИ),

где E и H — векторы напряжённости электрического и магнитного полей соответственно.

В случае квазимонохроматических электромагнитных полей, справедливы следующие формулы для усреднённой по периоду комплексной плотности потока энергии[1]:

(в системе СИ),

где E и H — векторы комплексной амплитуды электрического и магнитного полей соответственно. В этом случае чёткий физический смысл имеет только действительная часть комплексного вектора S — это вектор усреднённой за период плотности потока энергии. Физический смысл мнимой части зависит от конкретной задачи.

Модуль вектора Пойнтинга равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.

Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то нормальная составляющая вектора S непрерывна на границе двух сред.

10Интерференция волн

[править]

Материал из Википедии — свободной энциклопедии

Это статья об интерференции в физике. См. также Интерференция и Интерференция света

Картина интерференции большого количества круговых когерентных волн, в зависимости от длины волны и расстояния между источниками

Интерференция волн — взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве.[1] Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции энергия волн перераспределяется в пространстве.[1] Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.[2]

  1.  При наложении некогерентных волн средняя величина квадрата амплитуды (то есть интенсивность результирующей волны) равна сумме квадратов амплитуд (интенсивностей) накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий её колебаний, обусловленных всеми некогерентными волнами в отдельности. Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.

 Расчет результата сложения двух сферических волн

Интерференции волн от 2 точечных источников. Синий — максимумы, красный/желтый — минимумы

Если в некоторой однородной и изотропной среде два точечных источника возбуждают сферические волны, то в произвольной точке пространства M может происходить наложение волн в соответствии с принципом суперпозиции (наложения): каждая точка среды, куда приходят две или несколько волн, принимает участие в колебаниях, вызванных каждой волной в отдельности. Таким образом волны не взаимодействуют друг с другом и распространяются независимо друг от друга.

Две одновременно распространяющиеся синусоидальные сферические волны  и , созданные точечными источниками B1 и B2, вызовут в точке M колебание, которое, по принципу суперпозиции, описывается формулой . Согласно формуле сферической волны:

,

,

где

и  — фазы распространяющихся волн

и  — волновые числа ()

и  — циклические частоты каждой волны

и  — начальные фазы,

и  — расстояния от точки М до точечных источников B1 и B2

В результирующей волне , амплитуда  и фаза  определяются формулами:

,

Когерентность волн

Интерференционная картина на поверхности воды

Волны и возбуждающие их источники называются когерентными, если разность фаз волн  не зависит от времени. Волны и возбуждающие их источники называются некогерентными, если разность фаз волн  изменяется с течением времени. Формула для разности:

, где ,

— скорость распространения волны, одинаковая для обеих волн в данной среде. В приведенном выше выражении от времени зависит только первый член. Две синусоидальные волны когерентны, если их частоты одинаковы (), и некогерентны, если их частоты различны.

Для когерентных волн () при условии 

,

.

Амплитуда результирующих колебаний в любой точке среды не зависит от времени. Косинус равен единице, а амплитуда колебаний в результирующей волне максимальна  во всех точках среды, для которых , где (m-целое) или , (так как )

Величина  называется геометрической разностью хода волн от их источников B1 и B2, до рассматриваемой точки среды.

Амплитуда колебаний в результирующей волне минимальна  во всех точках среды, для которых

, где  (m-натуральное),

или

.

  1.  При наложении когерентных волн квадрат амплитуды и энергия результирующей волны отличны от суммы квадратов амплитуд и суммы энергий накладываемых волн.

Опыт Юнга — эксперимент, проведённый Томасом Юнгом и ставший экспериментальным доказательством волновой теории света. Результаты эксперимента были опубликованы в 1803 году.

В опыте пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Этот опыт демонстрирует интерференцию света, что является доказательством волновой теории. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. Ниже рассматривается влияние ширины прорезей на интерференцию.

Если исходить из того, что свет состоит из частиц (корпускулярная теория света), то на проекционном экране можно было бы увидеть только две параллельных полосы света, прошедших через прорези ширмы. Между ними проекционный экран оставался бы практически неосвещенным.

С другой стороны, если предположить, что свет представляет собой распространяющиеся волны (волновая теория света), то, согласно принципу Гюйгенса, каждая прорезь является источником вторичных волн.

Если вторичные волны достигнут линии в середине проекционного экрана, находящейся на равном удалении от прорезей, синхронно и в однойфазе, то на серединной линии экрана их амплитуды прибавятся, что создаст максимум яркости. То есть, максимум яркости окажется там, где согласно корпускулярной теории, яркость должна быть практически нулевой. Корпускулярная теория света является неверной, когда прорези достаточно тонкие, создавая тем самым интерференцию.

На определенном удалении от центральной линии, напротив, волны окажутся в противофазе — их амплитуды компенсируются, что создастминимум яркости (темная полоса). По мере дальнейшего удаления от средней линии яркость периодически изменяется, возрастая до максимума и снова убывая.

На проекционном экране получается целый ряд чередующихся интерференционных полос, что и было продемонстрировано Томасом Юнгом.

Эксперимент с точечным источником света

Опыт Юнга

Пусть S — точечный источник света, расположенный перед экраном с двумя параллельными прорезями  и а — расстояние между прорезями, и D — расстояние между экраном с прорезями и проекционным экраном.
Точка 
М на экране имеет для начала одну координату x — расстояние между М и ортогональной проекцией S на экране.

Существование интерференций зависит от разницы оптической длины между первым и вторым путем. Пусть М — точка экрана, на которую падают одновременно два луча из  и . Записав  — разницу оптической длины путей, имеем следующее соотношение:

где:

  1.  — оптическая длина пути от источника  до точки М на экране.
  2.  — оптическая длина пути от источника  до той же точки на экране.


Если 
a<<D и x<<D, то разница оптической длины пути в среде, с показателем преломления n, принимает упрощенное выражение:

В воздухе (при обычных условиях) . Выражение  принимает вид:


Освещённость — Е в точке М связана с разницей оптической длины путей следующим соотношением:

Освещенность экрана

где:

  1.  освещенность, созданная первой или второй прорезью;
  2.  — длина волны света, излучаемого источниками  и .


Освещенность периодически изменяется от нуля до 
, что свидетельствует об интерференции света.

Яркие полосы на экране появляются, когда , где 

Темные полосы на экране появляются, когда 

11 интерференция света при отражении в тонких плёнках

При освещении тонкой плёнки можно наблюдать интерференцию световых волн, отражённых от верхней и нижней поверхности плёнок (рис. 4.16). Для белого света, представляющего собой смешение электромагнитных волн из всего оптического спектра интерференционные полосы приобретают окраску. Это явление получило название цветов тонких плёнок. Цвета тонких плёнок наблюдаются на стенках мыльных пузырьков, на плёнках масла, нефти, на поверхности металлов при их закалке (цвета побежалости).

Для объяснения этих явлений рассмотрим расположенную в вакууме плоско параллельную диэлектрическую пластинку (рис.) толщины  с показателем преломления , где  - диэлектрическая проницаемость диэлектрика освещаемую плоской световой монохроматической волной с длиной волны  под углом  (рис. 4.16). При отражении световых волн от верхней и нижней поверхности пластинки между отражёнными волнами возникнет оптическая разность хода  , которая является следствием того факта, что волна, отражённая от нижней поверхности пластинки проходит больший путь внутри диэлектрической пластинки, чем  

Рис. 4.16.

волна, отражённая от верней поверхности в вакууме, приобретающая дополнительный набег фазы при отражении от оптически более плотной среды. Из геометрических соображений следует, что:

,

(4.23)

где  - угол преломления падающего светового пучка пластинкой (рис. 4.16), связанного с углом падения  соотношением следующим из закона Снеллиуса.

При условии, что

(4.24a)

кратно целому числу ... длин волн, в точке наблюдения  на расстоянии от поверхности плёнки во много раз большем, чем толщина пластинки, отражённые от обеих поверхностей пластинки волны будут складываться в фазе и формировать интерференционный максимум.

Аналогичным образом получим условия минимума интерференционной картины в точке наблюдения  на бесконечности, если волны отражённые от обеих поверхностей пластинки волны будут складываться в противофазе, т.е.

,

(4.24b)

где произвольное целое число.

Просветление оптики — это нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропускания оптической системыПоказатель преломления таких плёнок меньше показателя преломления стёкол линз.

Просветляющие плёнки уменьшают светорассеяние и отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы иконтраст оптического изображения. Просветлённый объектив требует бережного обращения, так как плёнки, нанесенные на поверхность линз, легко повредить. Кроме того, тончайшие пленки загрязнений (жир, масло) на поверхности просветляющего покрытия нарушают его работу и резко увеличивают отражение света от загрязненной поверхности. Следует помнить, что следы пальцев со временем разрушают не только просветление, но и поверхность самого стекла. По методике нанесения и составу просветляющего покрытия просветление бывает физическим (напыление) и химическим (травление).

Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину.

Интерференционная картина в виде концентрических колец (колец Ньютона) возникает между поверхностями одна из которых плоская, а другая имеет большой радиус кривизны(например, стеклянная пластинка и плосковыпуклая линза). Исаак Ньютон исследовав их в монохроматическом и белом свете обнаружил, что радиус колец возрастает с увеличением длины волны (от фиолетового к красному) Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу (рис. 1).

Рис. 1

Пример колец Ньютона

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны, то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

— max, где -   любое целое число,   -  длина волны.

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.

— min, где -   любое целое число,   -  длина волны.

Для учета того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптической разностью хода.

— оптическая длина пути,

— оптическая разность хода.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на , этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном — эллипсы.

Радиус 
k-го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:

где

R — радиус кривизны линзы;

k = 2, 4, …;

λ — длина волны света в вакууме;

n — показатель преломления среды между линзой и пластинкой.

12 Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.

Виды решёток

  1.  Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отражённом свете
  2.  Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

]Описание явления

Так выглядит свет лампы накаливания фонарика, прошедший через прозрачную дифракционную решётку. Нулевой максимум (m=0) соответствует свету, прошедшему сквозь решётку без отклонений. В силу дисперсии решётки в первом (m=±1) максимуме можно наблюдать разложение света в спектр. Угол отклонения возрастает с ростом длины волны (от фиолетового цвета к красному)

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.

Формулы

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.

Если известно число штрихов (), приходящихся на 1 мм решётки, то период решётки находят по формуле:  мм.

Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:

где

— период решётки,

— угол максимума данного цвета,

— порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки,

— длина волны.

Если же свет падает на решётку под углом , то:

[править]Характеристики

Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ — для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки

Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k.

13 Естественный и поляризованный свет

Следствием теории Максвелла является поперечность световых волн: векторы напряженностей электрического Е и магнитного Н полей волны взаимно перпендикулярны и колеблются перпендикулярно вектору скорости v распространения волны (перпендикулярно лучу). Поэтому для описания закономерностей поляризации света достаточно знать поведение лишь одного из векторов. Обычно все рассуждения ведутся относительно светового вектора — вектора напряженности Е электрического поля (это название обусловлено тем, что при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества).

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора (рис. 272, а; луч перпендикулярен плоскости рисунка). В данном случае равномерное распределение векторов Е объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов Е — одинаковой (в среднем) интенсивностью излучения каждого из атомов. Свет со всевозможными равновероятными ориентациями вектора Е (и, следовательно, Н) называется естественным.

Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным. Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное!) направление колебаний вектора Е (рис. 272, б), то имеем дело с частично поляризованным светом. Свет, в котором вектор Е (и, следовательно, Н) колеблется только в одном направлении, перпендикулярном лучу (рис. 272, в), называется плоско поляризованным (линейно поляризованным).

Плоскость, проходящая через направление колебаний светового вектора плоско поляризованной волны и направление распространения этой волны, называетсяплоскостью поляризации. Плоско поляризованный свет является предельным случаем эллиптически поляризованного света — света, для которого векторЕ (вектор Н) изменяется со временем так, что его конец описывает эллипс, лежащий в плоскости, перпендикулярной лучу. Если эллипс поляризации вырождается в прямую (при разности фаз j, равной нулю или p), то имеем дело с рассмотренным выше плоско поляризованным светом, если в окружность (при= ±p/2 и равенстве амплитуд складываемых волн), то имеем дело с циркулярно поляризованным (поляризованным по кругусветом.

Степенью поляризации называется величина

где Imax, и Imin — соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света Imax=Imin  и Р=0, для плоско поляризованного Imin =0 и Р=1.

Естественный свет можно преобразовать в плоско поляризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е, например кристаллы (их анизотропия известна). Из природных кристаллов, давно используемых в качестве поляризатора, следует отметить турмалин.

Рассмотрим классические опыты с турмалином (рис. 273). Направим естественный свет перпендикулярно пластинке турмалина T1, вырезанной параллельно так называемой оптической оси ОО'. Вращая кристалл T1 вокруг направления луча, никаких изменений интенсивности прошедшего через турмалин света не наблюдаем. Если на пути луча поставить вторую пластинку турмалина T2 и вращать ее вокруг направления луча, то интенсивность света, прошедшего через пластинки, меняется в зависимости от угла к между оптическими осями кристаллов по закону Малюса*:

(190.1)

где I0 и I — соответственно интенсивности света, падающего на второй кристалл и вышедшего из него.

Закон МалюсаЗакон Малюса — физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла  между плоскостями поляризации падающего света и поляризатора.

где  — интенсивность падающего на поляризатор света,  — интенсивность света, выходящего из поляризатора,  — коэффициент пропускания поляризатора.

Установлен Э. Л. Малюсом в 1810 году.

В релятивистской форме

где  и  — циклические частоты линейно поляризованных волн, падающей на поляризатор и вышедшей из него.

Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от  и не учитываемые законом Малюса, определяются дополнительно.

Закон Брюстера— закон оптики, выражающий связь показателя преломления диэлектрика с таким углом падения света, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения. При этом преломлённый луч частично поляризуется в плоскости падения, причём поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера[1].

Это явление оптики названо по имени шотландского физика Дэвида Брюстера, открывшего его в 1815 году.

Закон Брюстера записывается в виде:

где  — показатель преломления второй среды относительно первой, а  — угол падения (угол Брюстера).

При отражении от одной пластинки под углом Брюстера интенсивность линейно поляризованного света очень мала (около 4 % от интенсивности падающего луча). Поэтому для того, чтобы увеличить интенсивность отраженного света (или поляризовать свет, прошедший в стекло, в плоскости, параллельной плоскости падения) применяют несколько скрепленных пластинок, сложенных в стопу — стопу Столетова. Легко проследить по чертежу происходящее. Пусть на верхнюю часть стопы падает луч света. От первой пластины будет отражаться полностью поляризованный луч (около 4 % первоначальной интенсивности), от второй пластины также отразится полностью поляризованный луч (около 3,75 % первоначальной интенсивности) и так далее. При этом луч, выходящий из стопы снизу, будет все больше поляризоваться в плоскости, параллельной плоскости падения, по мере добавления пластин.

14. Тепловое излучение  или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.

Энергетическая светимость тела

Энергетическая светимость тела - — физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот.

;      Дж/с·м² = Вт/м²

Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:

Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела:

где  - степень черноты (для всех веществ , для абсолютно черного тела ). При помощи закона Планка для излучения, постоянную  можно определить как

где  — постоянная Планка — постоянная Больцмана — скорость света.

Численное значение  Дж·с−1·м−2 · К−4.

Испускательная и поглощательная способности

ИСПУСКАТЕЛЬНАЯ СПОСОБНОСТЬ (лучеиспускательная способность, излучательная способность) - осн. характеристикатеплового излучения, испускаемого с поверхности нагретого тела, мерой к-рой является поток энергии излучения, испускаемого за единицу времени с единицы поверхности тела

ПОГЛОЩАТЕЛЬНАЯ СПОСОБНОСТЬ тела - отношение поглощаемого телом потока излучения к падающему на него монохроматич. потоку излучения частоты v; то же, что монохроматический поглощения коэффициент. П. с. зависит от вещества, из к-рого тело состоит, от формы тела и от его темп-ры. Если П. с. тела в нек-ром диапазоне частот и темп-р равна 1, говорят, что оно при этих условиях является абсолютно чёрным телом.

Энергети́ческая свети́мость  — физическая величина, одна из энергетических фотометрических величин[1]. Характеризует мощность оптического излучения, излучаемого малым участком поверхности единичной площади. Равна отношению потока излучения , испускаемого малым участком поверхности источника излучения, к его площади [1]:

Говорят также, что энергетическая светимость — это поверхностная плотность испускаемого потока излучения.

Численно энергетическая светимость равна среднему по времени модулю составляющей вектора Пойнтинга, перпендикулярной поверхности. Усреднение при этом проводится за время, существенно превосходящее период электромагнитных колебаний.

Единица измерения СИВт.м−2.

Испускаемое излучение может возникать в самой поверхности, тогда говорят о самосветящейся поверхности. Другой вариант наблюдается при освещении поверхности извне. В таких случаях некоторая часть падающего потока в результате рассеяния и отражения обязательно возвращается обратно. Тогда выражение для энергетической светимости имеет вид:

где  и  — коэффициент отражения и коэффициент рассеяния поверхности соответственно, а  — её облучённость.

15. Тепловое излучение или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.

Закон смещения Вина - длина волны обратно пропорциональна температуре черного тела.

В 1896 году Вин на основе дополнительных предположений вывел второй закон.

Второй закон Вина :

где Uv — плотность энергии излучения

v— частота излучения

T — температура излучающего тела

C1,C2 — константы.

Из графика видно, что с увеличением длины волны спектральная плотность энергетической светимости (е) возрастает, достигая отчетливо выраженного максимума, а потом уменьшается.

С повышением температуры максимум излучения смещается в сторону более коротких волн.

Ультрафиолетовая катастрофа

физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Название парадокс получил из-за того, что спектральная плотность мощности излучения должна была неограниченно расти по мере сокращения длины волны.

нергия обратно пропорциональна длине волны( чем меньше волна - тем больше энергия)]

Пирометр — прибор для бесконтактного измерения температуры тел. Принцип действия основан на измерении мощности теплового излученияобъекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света.

Пирометры применяют для дистанционного определения температуры объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (сталелитейная промышленность, нефтеперерабатывающая отрасль). Пирометры могут выступать в роли средства безопасного дистанционного измерения температур раскаленных объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур. Их можно применять в качестве теплолокаторов (усовершенствованные модели), для определения областей критических температур в различных производственных сферах.

16 Коротковолновая граница тормозного рентгеновского спектра

Для объяснения свойств теплового излучения пришлось ввести представление об испускании электромагнитного излучения порциями (квантами). Квантовая природа излучения подтверждается также существованием коротковолновой границы тормозного рентгеновского спектра.

Рентгеновское излучение возникает при бомбардировке твердых мишеней быстрыми электронами (рис. 2.6) Здесь анод выполнен из W, Mo, Cu, Pt – тяжелых тугоплавких или с высоким коэффициентом теплопроводности металлов.


Рис. 2.6

Только 1–3 % энергии электронов идет на излучение, остальная часть выделяется на аноде в виде тепла, поэтому аноды охлаждают водой.

Попав в вещество анода, электроны испытывают сильное торможение и становятся источником электромагнитных волн (рентгеновских лучей).

Начальная скорость электрона  при попадании на анод определяется по формуле:

,

где U – ускоряющее напряжение.

>Заметное излучение наблюдается лишь при резком торможении быстрых электронов, начиная с U ~ 50 кВ, при этом  (с – скорость света). В индукционных ускорителях электронов – бетатронах, электроны приобретают энергию до 50 МэВ,  = 0,99995 с. Направив такие электроны на твердую мишень, получим рентгеновское излучение с малой длиной волны. Это излучение обладает большой проникающей способностью.

Согласно классической электродинамике при торможении электрона должны возникать излучения всех длин волн от нуля до бесконечности. Длина волны, на которую приходится максимум мощности излучения, должна уменьшиться по мере увеличения скорости электронов, что в основном подтверждается на опыте (рис. 2.7).


Рис. 2.7

Однако есть принципиальное отличие от классической теории: нулевые распределения мощности не идут к началу координат, а обрываются при конечных значениях  – это и естькоротковолновая граница рентгеновского спектра.

Экспериментально установлено, что  .

Существование коротковолновой границы непосредственно вытекает из квантовой природы излучения. Действительно, если излучение возникает за счёт энергии, теряемой электроном при торможении, то энергия кванта  не может превысить энергию электрона eU, т.е.  , отсюда  или  .

В данном эксперименте можно определить постоянную Планка h. Из всех методов определения постоянной Планка метод, основанный на измерении коротковолновой границы тормозного рентгеновского спектра, является самым точным.

Фотоны

Фото́н (от др.-греч. φῶς, род. пад. φωτός, «свет») — элементарная частицаквант электромагнитного излучения (в узком смысле —света). Это безмассовая частица, способная существовать только двигаясь со скоростью светаЭлектрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. Этому свойству в классической электродинамике соответствует круговая правая и левая поляризация электромагнитной волны. Фотону как квантовой частице свойственен корпускулярно-волновой дуализм, он проявляет одновременно свойства частицы и волны. Фотоны обозначаются буквой , поэтому их часто называют гамма-квантами (особенно фотоны высоких энергий); эти термины практическисинонимичны. С точки зрения Стандартной модели фотон является калибровочным бозономВиртуальные фотоны[5] являются переносчиками электромагнитного взаимодействия, таким образом обеспечивая взаимодействие, например, между двумя электрическими зарядами.[6] Фотон — самая распространённая по численности частица во Вселенной. На один нуклон приходится не менее 20 миллиардов фотонов.

17. Законы внешнего фотоэффекта

Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффектаСила фототока прямо пропорциональна плотности светового потока.

Согласно 2-му закону фотоэффектамаксимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-й закон фотоэффектадля каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света  (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h — постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода Aout, покидает металл:  где  — кинетическая энергия, которую имеет электрон при вылете из металла.

«Применение фотоэффекта» 

1. Какие виды фотоэффекта вы знаете? 

Внешний фотоэффект – испускание электронов с поверхности металлов под действием света. 

Внутренний фотоэффект – изменение концентрации носителей тока в веществе и как следствие изменение электропроводности данного вещества под действием света. 

Вентильный фотоэффект – возникновение ЭДС под действием света в системе, содержащей контакт двух различных полупроводников. 

2. Что такое фотоэлемент? 

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. 

3. Где применяется внешний фотоэффект? 

1. Кино: воспроизведение звука. 
2. Фототелеграф, фототелефон. 
3. Фотометрия: для измерения силы света, яркости, освещенности. 
4. Управление производственными процессами. 

4. Где применяется внутренний фотоэффект? 

Фоторезистор – устройство, сопротивление которого зависит от освещенности. 

Используются при автоматическом управлении электрическими цепями с помощью световых сигналов и в цепях переменного тока. 

5. Использование вентильного фотоэффекта. 

Используется в солнечных батареях, которые имеют КПД 12 -16% и применяются в искусственных спутниках Земли, при получении энергии в пустыне. 

Принцип действия солнечной батареи: при поглощении кванта энергии полупроводником освобождается пара дополнительных носителей (электрон и дырка), которые движутся в разных направлениях: дырка – в сторону полупроводника р-типа, а электрон в сторону полупроводников n–типа. В результате образуется в полупроводнике n–типа избыток свободных электронов, а полупроводнике р-типа- избыток дырок. Возникает разность потенциалов.

18 Эффект Комптона

Эффект Комптона (Комптон-эффект) — явление изменения длины волны электромагнитного излучения вследствие упругого рассеивания егоэлектронами. Обнаружен американским физиком Артуром Комптоном в 1923 году для рентгеновского излучения. В 1927 Комптон получил за это открытие Нобелевскую премию по физике.

Иллюстрация к эффекту Комптона

При рассеянии фотона на покоящемся электроне частоты фотона  и  (до и после рассеяния соответственно) связаны соотношением:

где  — угол рассеяния (угол между направлениями распространения фотона до и после рассеяния).

Перейдя к длинам волн:

Δλ =

где  — комптоновская длина волны электрона.

Для электрона  м. Уменьшение энергии фотона после комптоновского рассеяния называется комптоновским сдвигом. В классической электродинамике рассеяние электромагнитной волны на заряде (томсоновское рассеяние) не сопровождается уменьшением её частоты.

Объяснить эффект Комптона в рамках классической электродинамики невозможно. С точки зрения классической физики электромагнитная волнаявляется непрерывным объектом и в результате рассеяния на свободных электронах изменять свою длину волны не должна. Эффект Комптона является прямым доказательством квантования электромагнитной волны, другими словами подтверждает существование фотонов. Эффект Комптона является ещё одним доказательством справедливости корпускулярно-волнового дуализма микрочастиц.

Обратный эффект Комптона

Эффектом, обратным эффекту Комптона, является увеличение частоты света, претерпевающего рассеяние на релятивистских электронах, имеющих энергию выше, чем энергия фотонов. То есть в процессе такого взаимодействия происходит передача энергии от электрона фотону.

Энергия рассеянных фотонов определяется выражением[1]:

где  и  — энергия рассеянного и падающего фотонов соответственно, K — кинетическая энергия электрона.

19Гипотеза Де-Бройля о волновых свойствах микрочастиц

В 1924 году[1] французский физик Луи де Бройль высказал гипотезу о том, что установленный ранее[1] для фотонов корпускулярно-волновой дуализм присущ всем частицам — электронампротонаматомам и так далее, причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и для фотонов. Таким образом, если частица имеет энергию  и импульс, абсолютное значение которого равно , то с ней связана волна, частота которой  и длина волны , где  — постоянная Планка.[1] Эти волны и получили название волн де Бройля.[1] 

Для частиц не очень высокой энергии, движущихся со скоростью  (скорости света), импульс равен  (где  — масса частицы), и

Принцип неопределенности Гейзенберга

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физическихнаблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей[* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения  координаты и среднеквадратического отклонения импульса, мы найдем что:

,

где ħ — приведённая постоянная Планка.

Волновая функция

  Наличие у частицы волновых свойств приводит к тому, что в квантовой физике ей сопоставляется волновая функция (x,y,z,t).
    Физический смысл волновой функции. Величина |(x,y,z,t)|2dV пропорциональна вероятности того, что частица будет обнаружена в момент времени t в объеме dV в окрестности точки (x,y,z).
    Волновая функция системы невзаимодействующих частиц 
(r1,r2,...rn,t) связана с одночастичными волновыми функциями i(ri,t) соотношением

(r1,r2,...rn,t) = 1(r1,t)·2(r2,t)·...n(rn,t).

20Нестационарное и стационарное уравнения Шредингера

Уравне́ние Шрёдингера — уравнение, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике

Стационарное уравнение Шрёдингера

Форма уравнения Шрёдингера показывает, что относительно времени его решение должно быть простым, поскольку время входит в это уравнение лишь через первую производную в правой части. Действительно, частное решение для специального случая, когда  не является функцией времени, можно записать в виде:

где функция  должна удовлетворять уравнению:

Случай трёхмерного пространства

В трёхмерном случае пси-функция является функцией трёх координат и  в декартовой системе координат заменяется выражением

тогда уравнение Шрёдингера примет вид:

где  — постоянная Планка — масса частицы,  — потенциальная энергия в точке .

21   Прохождение частиц через потенциальный барьер

Тунне́льный эффекттуннели́рование — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное вклассической механике и даже полностью противоречащее ей. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярнойфизике, в физике атомного ядратвёрдого тела и т. д.

Постулаты Бора

При этих предположениях Бор сформулировал основные положения теории атома водорода в виде трех постулатов.

      1. Электрон в атоме может двигаться только по определенным стационарным орбитам, каждой из которых можно приписать определенный номер  . Такое движение соответствует стационарному состоянию атома с неизменной полной энергией . Это означает, что движущийся по стационарной замкнутой орбите электрон, вопреки законам классической электродинамики, не излучает энергии.

      2. Разрешенными стационарными орбитами являются только те, для которых угловой момент импульса  электрона равен целому кратному величины постоянной Планка . Поэтому для -ой стационарной орбиты выполняется условие квантования

     

.

(5.3)

      3. Излучение или поглощение кванта излучения происходит при переходе атома из одного стационарного состояния в другое (рис. 5.4). При этом частота  излучения атома определяется разностью энергий атома в двух стационарных состояниях, так что

     

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка[1].

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты  и энергии  находящегося на этой орбите электрона:

Здесь  — масса электрона, Z — количество протонов в ядре,  — диэлектрическая постоянная, e — заряд электрона.

Атом водорода — физическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра может входить протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома водорода в стабильном состоянии равен боровскому радиусу a0 = 0,529 Å.

Энергетический спектр

Энергетические уровни атома водорода, включая подуровни тонкой структуры, записываются в виде

где

 — постоянная тонкой структуры,

 — собственное значение оператора полного момента импульса.

Энергию  можно найти в простой модели Бора, с массой электрона  и зарядом электрона e:

 (в системе СИ),

где h — постоянная Планка,  электрическая постоянная. Величина E0 (энергия связи атома водорода в основном состоянии) равна 13,62323824 эВ = 2,182700518·10−18 Дж. Эти значения несколько отличаются от действительного значения E0, поскольку в расчёте не учтена конечная масса ядра и эффекты квантовой электродинамики.

Вычислим уровни энергии атома водорода без учёта тонкой структуры, используя простую модель атома Бора. Для этой цели можно сделать грубое допущение электрона, двигающегося по круговой орбите на фиксированном расстоянии. Приравнивая кулоновскую силу притяжения  центростремительной силе  получим:

Здесь  масса электрона,  его скорость на орбите радиуса   диэлектрическая проницаемость вакуума (электрическая постоянная).

Отсюда кинетическая энергия электрона

где  расстояние от электрона до ядра.

Данная серия образуется при переходах электронов с возбужденных энергетических уровней c главным квантовым числом n>2 на второй уровень (n=2) в спектре излучения и со второго уровня на все вышележащие уровни при поглощении.

Переход с третьего энергетического уровня на второй обозначается греческой буквой α, с 4-го на 2-й — β и т. д.. Для обозначения самой серии используется латинская буква H. Таким образом, полное обозначение спектральной линии, возникающей при переходе электрона с третьего уровня на второй — Hα (произносится Бальмер альфа).

Для описания длин волн λ четырёх видимых линий спектра водорода И. Бальмер предложил формулу

где n = 3, 4, 5, 6; b = 3645,6 Å.

В настоящее время для серии Бальмера используют частный случай формулы Ридберга:

где λ — длина волны,

R ≈ 1,0974·107 м−1 — постоянная Ридберга,

n — главное квантовое число исходного уровня — натуральное число, большее или равное 3.

23   Принцип Паули

При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественныхфермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии.

Принцип Паули помогает объяснить разнообразные физические явления. Следствием принципа является наличие электронных оболочек в структуре атома, из чего, в свою очередь, следует разнообразие химических элементов и их соединений. Количество электронов в отдельном атоме равно количеству протонов. Так как электроны являются фермионами, принцип Паули запрещает им принимать одинаковые квантовые состояния. В итоге, все электроны не могут быть в одном квантовом состоянии с наименьшей энергией (для невозбуждённого атома), а заполняют последовательно квантовые состояния с наименьшей суммарной энергией (при этом не стоит забывать, что электроны неразличимы, и нельзя сказать, в каком именно квантовом состоянии находится данный электрон). Примером может служить невозбуждённый атом лития (Li), у которого два электрона находятся на 1S орбитали (самой низкой по энергии), при этом у них отличаются собственные моменты импульса и третий электрон не может занимать 1S орбиталь, так как будет нарушен запрет Паули. Поэтому, третий электрон занимает 2S орбиталь (следующая, низшая по энергии, орбиталь после 1S).

Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен[1] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

Когда энергия бомбардирующих анод электронов становится достаточной для вырывания электронов из внутренних оболочек атома, на фоне тормозного излучения появляются резкие линии характеристического излучения. Частоты этих линий зависят от природы вещества анода, поэтому их и назвали характеристическими.

24 Характеристическое рентгеновское излучение      

Состояние атома с вакансией во внутренней оболочке неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом испускает избыток энергии в виде фотона характеристического излучения:

Закон Мозлисвязывающий частоты линий рентгеновского спектра  с атомным номером испускающего их элемента Z:

 , где k = 3, 4, 5…; n=k+1,k+2,k+3… .

      Здесь  , постоянная Ридберга; σ – постоянная, учитывающая экранирующую роль окружающих ядро электронов. Чем дальше электрон от ядра, тем σ больше.

25 Теплоемкость кристаллов 

    Как уже отмечалось в начале главы, внутренняя энергия (а затем и теплоемкость) кристалла в принципе может быть вычислена путем определения всех частот нормальных колебаний кристалла и определением энергии всех осцилляторов, используя распределение Бозе-Эйнштейна. Если вторая часть задачи трудностей не вызывает, то ее первая часть чрезвычайно сложна в математическом отношении, она решена в настоящее время только для сравнительно простых молекул. Поэтому были найдены упрощенные способы вычисления спектра собственных частот осцилляторов, некоторые из них рассмотрены в данном разделе.

     Модель Эйнштейна. В модели Эйнштейна считают, что атомы колеблются независимо друг от друга и что частоты колебаний всех атомов одинаковы. В таком случае для подсчета внутренней энергии кристалла, содержащего  атомов, достаточно рассмотреть один осциллятор, а затем домножить результат на  - число осцилляторов. Пусть каждый осциллятор имеет частоту . Средняя энергия, запасенная в таком осцилляторе, вычисляется с использованием распределения Бозе-Эйнштейна (см. том 5):

     

,

(3.17)

     где  - среднее число квантов энергии, "запасенных" в осцилляторе.

     Энергия кристалла, содержащего  атомов, тогда вычисляется как , а теплоемкость при постоянном объеме - дифференцированием энергии по температуре:

     

Закон Дюлонга-Пти (Закон постоянства теплоёмкости) — эмпирический закон, согласно которому молярная теплоёмкость твёрдых тел при комнатной температуре близка к 3R[1]:

где R — универсальная газовая постоянная.

Закон выводится в предположении, что кристаллическая решетка тела состоит из атомов, каждый из которых совершает гармонические колебания в трех направлениях, определяемыми структурой решетки, причем колебания по различным направлениям абсолютно независимы друг от друга. При этом получается, что каждый атом представляет три осциллятора с энергией E, определяемой следующей формулой:

Формула вытекает из теоремы о равнораспределении энергии по степеням свободы. Так как каждый осциллятор имеет одну степень свободы, то его средняя кинетическая энергия равна , а так как колебания происходят гармонически, то средняя потенциальная энергия равна средней кинетической, а полная энергия - соответственно их сумме. Число осцилляторов в одном моле вещества составляет , их суммарная энергия численно равна теплоемкости тела - отсюда и вытекает закон Дюлонга-Пти.

26. Энергетические зоны в кристаллах

Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле.

В соответствии с квантовой механикой свободные электроны могут иметь любую энергию — их энергетический спектр непрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий.

В основе зонной теории лежат следующие главные приближения:[1]

  1.  Твёрдое тело представляет собой идеально периодический кристалл.
  2.  Равновесные положения узлов кристаллической решётки фиксированы, то есть ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны как фононы, вводятся впоследствии как возмущение электронного энергетического спектра.
  3.  Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усредненным периодическим полем.

Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10−5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10−8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивлениеполупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10−5—108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства

27. а Контактные явления, термопара

неравновесные электронные явления, возникающие при прохождении электрич. тока через контакт полупроводника с металлом или электролитом или через контакт двух различных полупроводников (гетеропереход )либо через границу двух областей одного и того же полупроводника с разным типом носителей заряда (см. р - п-переход )и разной их концентрацией.

    б Внутренний фотоэффект.

Внутренний фотоэффект - это фотоэффект, при котором оторванные от своих атомов или молекул электроны остаются внутри освещаемого вещества в качестве свободных.

Внутренний фотоэффект в кристаллических полупроводниках и некоторых диэлектриках состоит в том, что под действием света электропроводимость этих веществ увеличивается за счет возрастания в них числа свободных носителей тока - электронов проводимости, то есть происходит переход электрона из одной энергетической зоны (валентной) в другую (проводимости).

  в Люминесценция.

 излучение, представляющее собой избыток над тепловым

излучением тела при данной температуре и имеющее длительность, значительно

превышающую период световых волн

28. а Ядро атома

 основная и определяющая часть атома, несущая положительный заряд. Ядро атома состоит из протонов и нейтронов — нуклонов, связанных обменными силами, в которых основную роль играют мезоны. Элементарное ядро атома представляет собой протон, являющийся ядром водорода. По мере возрастания числа протонов в ядре, определяющих суммарный его положительный заряд, возрастает в несколько большей мере и число нейтронов. Это связано с тем, что у протонов наряду с силами связи имеются и силы отталкивания положительных зарядов. Поэтому для устойчивости ядру необходимы составные части, у которых имеются лишь силы связи. Последними и являются нейтроны, экранирующие протоны и уменьшающие их силы отталкивания. Если у элементов в начальной части Менделеевской системы соотношение нейтрон — протон лишь в отдельных случаях равно или превышает , то начиная с середины это отношение увеличивается и к концу системы приближается к  и даже больше. Напр.,  имеет 146 нейтронов на 92 протона и несмотря на это ядро U радиоактивно. В настоящее время состояние ядра атома объясняется 2 гипотезами. В основе одной лежит модель капли жидкости, а второй — модель протонно-нейтронных оболочек, напоминающих строение электронных оболочек атома.

б Нуклоны.

общее название для протонов и нейтронов.

С точки зрения электромагнитного взаимодействия протон и нейтрон разные частицы, так как протон электрически заряжен, а нейтрон — нет. Однако с точки зрения сильного взаимодействия, которое является определяющим в масштабе атомных ядер, эти частицы неразличимы, поэтому и был введен термин «нуклон», а протон и нейтрон стали рассматриваться как два различных состояния нуклона, различающихся проекцией изотопического спина. Близость свойств изоспиновых состояний нуклона является одним из проявлений изотопической инвариантности.

Нуклоны относятся к семейству барионов (группа N-барионов). Они являются самыми лёгкими из известных барионов.

в Дефект массы.

Дефе́кт ма́ссы — разность между массой покоя атомного ядра данного изотопа, выраженной в атомных единицах массы, и массовым числом данного изотопа. В современной науке для обозначения этой разницы пользуются термином избыток массы (англ. mass excess). Как правило, избыток массы выражается в кэВ.

г Энергия связи.

Энергия связи (для данного состояния системы) — разность между полной энергией связанного состояния системы тел или частиц и энергией состояния, в котором эти тела или частицы бесконечно удалены друг от друга и находятся в состоянии покоя:

где  — энергия связи компонентов в системе из i компонент (частиц),  — полная энергия i-го компонента в несвязанном состоянии (бесконечно удалённой покоящейся частицы) и  — полная энергия связанной системы.

Для системы, состоящей из бесконечно удалённых покоящихся частиц энергию связи принято считать равной нулю, т.е. при образовании связанного состояния энергия выделяется. Энергия связи равна минимальной работе, которую необходимо затратить, чтобы разложить систему на составляющие её частицы и характеризует стабильность системы: чем выше энергия связи, тем система стабильнее.

Для валентных электронов (электронов внешних электронных оболочек) нейтральных атомов в основном состоянии энергия связи совпадает с энергией ионизации, для отрицательных ионов - сосродством к электрону.

Энергии химической связи двухатомной молекулы соответствует энергия её термической диссоциации составляет порядка сотен кДж/моль.

Энергия связи адронов атомного ядра определяется сильным взаимодействием. Для легких ядер она составляет ~0.8 МЭв на нуклон.

29. а Изотопы.

б Ядерные реакции, радиоактивность.

30. а Элементарные частицы.

б Кварки.

31. а. Основные понятия молекулярно-кинетической теории.

Молекулярно-кинетическая теория (МКТ) объясняет свойства макроскопических тел и тепловых процессов, протекающих в них, на основе представлений о том, что все тела состоят из отдельных, беспорядочно движущихся частиц.

Основные понятия молекулярно-кинетической теории:

Атом (от греческого atomos - неделимый) - наименьшая часть химического элемента, являющаяся носителем его свойств. Размеры атома порядка 10-10 м.

Молекула - наименьшая устойчивая частица данного вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями. Размеры молекул 10-10-10-7м.

Макроскопическое тело - тело, состоящее из очень большого числа частиц.

б. Уравнение состояния идеального газа.

 Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти величины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.
    
     Для произвольной массы газа состояние газа описывается уравнением Менделеева—Клапейрона: pV = mRT/M, где р — давление, V — объем, m — масса, М — молярная масса, R — универсальная газовая постоянная. Физический смысл универсальной газовой постоянной в том, что она показывает, какую работу совершает один моль идеального газа при изобарном расширении при нагревании на 1 К (R = 8,31 ДжДмоль • К)).
    
     Уравнение Менделеева—Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.
    
     Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.
    
     Изотермическим называют процесс, протекающий при постоянной температуре. Т = const. Он описывается законом Бойля—Мариотта: pV = const.
    
     Изохорным называют процесс, протекающий при постоянном объеме. Для него справедлив закон Шарля: V = const, p/T = const.
    
     Изобарным называют процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид V/T = const прир = const и называется законом Гей-Люссака. Все процессы можно изобразить графически (рис. 15).
    
     Реальные газы удовлетворяют уравнению состояния идеального газа при не слишком высоких давлениях (пока собственный объем молекул пренебрежительно мал по сравнению с объемом сосуда,
    
     
    
     в котором находится газ) и при не слишком низких температурах (пока потенциальной энергией межмолекулярного взаимодействия можно пренебречь по сравнению с кинетической энергией теплового движения молекул), т. е. для реального газа это уравнение и его следствия являются хорошим приближением.
    

32. Число степеней свободы

Сте́пени свобо́ды — характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания движения механической системы.

Модели молекул: а- одноатомной, б- двухатомной, в- трехатомной.

Число степеней свободы для одноатомной молекулы -3 (поступательное движение в направлении трех координатных осей),

для двухатомной - 5 ( три поступательных и две вращательных, т.к. вращение вокруг оси Х возможно только при очень высоких температурах),  для трехатомной -6 ( три поступательных и три вращательных).

Формула внутренней энергии газа:

,

и прямо связанная с ней формула для средней энергии молекулы газа

,

где

 — количество степеней свободы молекулы газа,

 — количество газа ( — масса — молярная масса газа),

 — универсальная газовая постоянная,

 — константа Больцмана,

 — абсолютная температура газа, — включают количество степеней свободы молекулы.

Степени свободы молекулы вымораживаются, как это описано в параграфе выше, что означает, что эффективное i в формуле зависит от температуры и, вообще говоря, не может быть просто вычислено классическим механическим способом.

Все вращательные степени свободы у одноатомных молекул и вращательная степень свободы, соответствующая вращению вокруг продольной оси у линейных (в реальном геометрическом смысле) молекул, выморожены (то есть не должны учитываться в i) всегда, поскольку их температуры вымораживания настолько высоки, что диссоциация молекул происходит гораздо раньше, чем эти температуры достигаются.

б. Средняя энергия молекулы

33. Первое начало термодинамики.

Количество теплоты, сообщенное телу, идет на увеличение его внутренней энергии и на совершение телом работы над внешними телами:

dQ = dU + dA

или

Изменение внутренней энергии тела равно разности сообщенного телу количества теплоты и произведенной над ним механической работы:

dU = dQ - dA

б

34 а Степени свободы молекулы

Сте́пени свобо́ды — характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания движения механической системы.

Модели молекул: а- одноатомной, б- двухатомной, в- трехатомной.

Число степеней свободы для одноатомной молекулы -3 (поступательное движение в направлении трех координатных осей),

для двухатомной - 5 ( три поступательных и две вращательных, т.к. вращение вокруг оси Х возможно только при очень высоких температурах),  для трехатомной -6 ( три поступательных и три вращательных).

Формула внутренней энергии газа:

,

и прямо связанная с ней формула для средней энергии молекулы газа

,

где

 — количество степеней свободы молекулы газа,

 — количество газа ( — масса — молярная масса газа),

 — универсальная газовая постоянная,

 — константа Больцмана,

 — абсолютная температура газа, — включают количество степеней свободы молекулы.

Степени свободы молекулы вымораживаются, как это описано в параграфе выше, что означает, что эффективное i в формуле зависит от температуры и, вообще говоря, не может быть просто вычислено классическим механическим способом.

Все вращательные степени свободы у одноатомных молекул и вращательная степень свободы, соответствующая вращению вокруг продольной оси у линейных (в реальном геометрическом смысле) молекул, выморожены (то есть не должны учитываться в i) всегда, поскольку их температуры вымораживания настолько высоки, что диссоциация молекул происходит гораздо раньше, чем эти температуры достигаются.

б Средняя энергия молекулы

в Теплоемкость идеального газа

это отношение количества теплоты, сообщенного газу, к изменению температуры δТ, которое      при этом произошло.

Молярная теплоемкость

Молярная теплоемкость — теплоемкость 1 моля идеального газа.

Теплоемкость идеального газа в изопроцессах

Адиабатический

В адиабатическом процессе теплообмена с окружающей средой не происходит, то есть . Однако, объём, давление и температура меняются, то есть .

Следовательно, теплоемкость идеального газа в адиабатическом процессе равна нулю: .

Изотермический

В изотермическом процессе постоянна температура, то есть . При изменении объема газу передается (или отбирается) некоторое количество тепла. Следовательно, теплоемкость идеального газа стремится к бесконечности: 

Изохорный

В изохорном процессе постоянен объем, то есть . Элементарная работа газа равна произведению изменения объема на давление, при котором происходит изменение (). Первое Начало Термодинамики для изохорного процесса имеет вид:

А для идеального газа

Таким образом,

где  — число степеней свободы частиц газа.

[Изобарный

В изобарном процессе ():

CP=δQ/νΔT=CV+R=((i+2)/2)*R

[Вывод формулы для теплоемкости в данном процессе

Согласно 1 началу термодинамики существует 2 способа изменить внутреннюю энергию тела (в нашем случае идеального газа): передать ему тепло или совершить над ним работу.

dU=δQ+δA, где δA — работа окр. среды над газом.

δAокр.среды=-δAгаза

δQ=dU+δAгаза

В расчете на 1 моль:

С=δQ/ΔT=(ΔU+pΔV)/ΔT

ΔU=CV*ΔT

C=CV+(pΔV/ΔT)в данном процессе

Г майера уравнение

МАЙЕРА УРАВНЕНИЕ - ур-ние, устанавливающее связь между теплоёмкостями при пост, давлении Cp и пост, объёме СV 1 кмоля идеального газа: где R -газовая постоянная .Впервые было получено Ю. P. Майером (J. R. Mayer) в 1842 и ещё до работ Дж. П. Джоуля (J. P. Joule) использовано им для количеств, определениямеханического эквивалента теплоты. Для произвольной массы т (кг) вещества в состоянииидеального газа M. у. записывается в виде:  , где - молекулярная масса газа. M. у. можно получить из общего соотношения  (см. Термодинамика ),если учесть, что для идеального газа справедливо Клапейрона уравнение.

35 Уравнение адиабаты идеального газа (вывод формулы).

36 а Распределение молекул по скоростям

(распределение Максвелла).

Для газа, находящегося в замкнутом сосуде, результатом многочисленных столкновений молекул между собой и со стенками сосуда, является достаточно быстрое установление универсального распределения молекул по скоростям, которое было теоретически получено Максвеллом в 1860.

На уровне макроскопического описания газамаксвелловскому распределению молекул по скоростям соответствует состояние теплового равновесия в газе: давление и температура во всех местах внутри сосуда оказываются одинаковыми.

В газе, находящемся в состоянии равновесия, установится некоторое стационарное (не меняющееся со временем) распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону.

Такой закон был теоретически выведен Максвеллом в 1859 г. и был опубликован в 1860 г.                    

                                

 Молекулы газа даже в равновесии движутся беспорядочно, сталкиваясь между собой и со стенкой сосуда, беспрерывно меняя свою скорость. Это означает, что в каждый момент времени в газе есть молекулы, которые имеют самые различные скорости. Вместе с тем, поскольку давление и температура в газе остаются постоянными, то, как бы не менялась скорость молекул, среднее значение ее квадрата остается постоянным. Это оказывается возможным лишь при наличии неизменного во времени и одинакового во всех частях сосуда распределения молекул по скоростям.    

  При выводе этого закона Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что внешние поля на газ не действуют. Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям.

 

Сpедняя скоpость опpеделяется фоpмулой

б Среднее значение

37 а Барометрическая формула

Барометрическая формула — зависимость давления или плотности газа от высоты в поле тяжести.

Для идеального газа, имеющего постоянную температуру  Т и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения  одинаково), барометрическая формула имеет следующий вид: 

где  — давление газа в слое, расположенном на высоте ,  — давление на нулевом уровне (),  — молярная масса газа,  — газовая постоянная,  — абсолютная температура. Из барометрической формулы следует, что концентрация молекул  (или плотность газа) убывает с высотой по тому же закону:

где  — м масса молекулы газа,  —к постоянная Больцмана. Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Статистика Максвелла — Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной кТ. Чем выше температура Т, тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести  mg(при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести mg может изменяться за счёт двух величин: ускорения  g и массы частиц m .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Барометрическая формула лежит в основе барометрического нивелирования — метода определения разности высот  между двумя точками по измеряемому в этих точках давлению ( и ). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Барометрическая формула записывается в этом случае в виде:   (в м), где  t— средняя температура слоя воздуха между точками измерения,  a— температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1—0,5 % от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

б Закон распределения Больцмана

где импульс частицы, в частности молекулы газа.

 

Одним из основных понятий статистики (как классической, так и квантовой) является вероятность.
Необратимость тепловых процессов имеет вероятностный характерСамопроизвольный переход тела из равновесного состояния в неравновесное не невозможен, а лишь подавляюще маловероятен. В конечном результате 
необратимость тепловых процессов обусловливается колоссальностью числа молекул, из которых состоит тело.

Молекулы газа стремятся к наиболее вероятному состоянию, т. е. состоянию с беспорядочным распределением молекул, при котором примерно одинаковое число молекул движется вверх и вниз, вправо и влево, при котором в каждом объеме находится примерно одинаковое число молекул, одинаковая доля быстрых и медленных молекул в верхней и нижней частях какого-либо сосуда.

38 a Энтропия, ее статистический смысл.

б Второе начало термодинамики

физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

в Вечный двигатель второго рода

Современная классификация вечных двигателей

Вечный двигатель первого рода — устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. Невозможность осуществления вечного двигателя первого рода постулируется в термодинамике как первое начало термодинамики.

Вечный двигатель второго рода — машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность осуществления вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировок второго начала термодинамики.

И первое, и второе начала термодинамики были введены как постулаты после многократного экспериментального подтверждения невозможности создания вечных двигателей. Из этих начал выросли многие физические теории, проверенные множеством экспериментов и наблюдений, и у учёных не остаётся никаких сомнений в том, что данные постулаты верны, и создание вечного двигателя невозможно.

Постулат Кельвина — невозможно создать периодически действующую машину, совершающую механическую работу только за счет охлаждения теплового резервуара.

Постулат Клаузиуса — самопроизвольный переход теплоты от более холодных тел к более горячим невозможен.

39 а Коэффициент полезного действия тепловой машины

Рабочее тело, получая некоторое количество теплоты Q1от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q1 — |Q2|. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия  тепловой машины:

Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПД как можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть?

Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.

39 б Цикл Карно

Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.

Цикл Карно назван в честь французского военного инженера Сади Карно, который впервые его исследовал в 1824 году.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

Описание цикла Карно

Пусть тепловая машина состоит из нагревателя с температурой  Тн, холодильника с температурой Тх и рабочего тела.

Цикл Карно состоит из четырёх стадий:1)Изотермическое расширение (на рисунке — процесс A→Б). В начале процесса рабочее тело имеет температуру Тн , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Qн . При этом объём рабочего тела увеличивается.

2)Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

3)Изотермическое сжатие (на рисунке — процесс В→Г). Рабочее тело, имеющее к тому времени температуру , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты .

4)Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия: при δQ=0

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).




1. реферат дисертації на здобуття наукового ступеня кандидата мистецтвознавства Київ ~ Дисерт
2. Грузовая документация
3.  Выявление и расследование преступлений ~ особое направление правоохранительной деятельности должностных
4. Діяльність земств у напрямку допомоги населенню
5. продажи его предмет
6. 32 с Список литературы ~ 5 наименований
7. «Происходящая» теория обучения как методологическая предпосылка инновационной деятельности в общем среднем образовании
8. а этиологическими б эпидемиологическими в клиническими г иммунологическими д патологоанатомическими.html
9. Япония - страна контрастов
10. РНЦРР Минздравсоцразвития РФ www