Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Что такое эконометрика Согласно Большому Энциклопедическому словарю М

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024

3.3. ОСНОВЫ ЭКОНОМЕТРИЧЕСКИХ МЕТОДОВ

К наиболее практичным и эффективным интеллектуальным инструментам менеджера относятся эконометрические методы [2]. В учебниках по экономической теории, как правило, выделяют в качестве ее основных областей макроэкономику, микроэкономику и эконометрику [2, с.25]. Кратко обсудим основные проблемы этой области экономической теории, а затем рассмотрим один из наиболее часто используемых эконометрических методов –метод наименьших квадратов.

3.3.1. Что такое эконометрика?

Согласно Большому Энциклопедическому словарю (М.: Изд-во «Большая Российская Энциклопедия», 1997), эконометрика –наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей. Эконометрические методы - это прежде всего методы статистического анализа конкретных экономических данных, естественно, с помощью компьютеров [1]. Такие методы успешно используются в зарубежных и отечественных экономических и технико-экономических исследованиях, работах по управлению (менеджменту). Применение прикладной статистики и других эконометрических методов дает заметный экономический эффект. Например, в США - не менее 20 миллиардов долларов ежегодно только в области статистического контроля качества.  

В мировой науке эконометрика занимает достойное место. Об этом свидетельствует, например, присуждение Нобелевских премий по экономике. Их получили эконометрики Ян Тильберген, Рагнар Фриш, Лоуренс Клейн, Трюгве Хаавельмо, Джеймс Хекман и Дэниель Мак-Фадден. Выпускается ряд научных журналов, полностью посвященных эконометрике, в том числе: Journal of Econometrics (Швеция), Econometric Reviews (США), Econometrica (США), Sankhya (Indian Journal of Statistics. Ser.D. Quantitative Economics. Индия), Publications Econometriques (Франция), электронный еженедельник "Эконометрика" (Россия). Публикуются также масса книг и статей в иных изданиях. Действуют национальные и международные эконометрические общества, объединяющие десятки тысяч специалистов.

В настоящее время в России развертываются теоретические и практические эконометрические исследования, положено начало распространению обучения этой дисциплине. Только в секции “Математические методы исследования” журнала “Заводская лаборатория” за последние 40 лет напечатано более 1000 статей по высоким статистическим технологиям и их применениям.

 Высокие статистические технологии в эконометрике. Особый интерес представляют эконометрические применения высоких статистических технологий.

Может возникнуть естественный вопрос: зачем нужны высокие статистические технологии, разве недостаточно обычных статистических методов? Исследователи в области эконометрики считают (и доказывают своими теоретическими и прикладными работами), что совершенно недостаточно. Так, многие данные в реальной социально-экономической деятельности, а потому и в информационных системах поддержки принятия решений в менеджменте имеют нечисловой характер, например, являются словами или принимают значения из конечных множеств (выбор происходит из конечного числа градаций). Нечисловой характер имеют и упорядочения, которые дают эксперты или менеджеры, например, выбирая главную цель предприятия, следующую по важности и т.д., сравнивая образцы продукции с целью выбора наиболее подходящего для запуска в серию и др. Значит, для контроллинга нужна статистика нечисловых данных. Далее, многие величины известны не абсолютно точно, а с некоторой погрешностью - лежат в пределах от одной границы до другой. Другими словами, исходные данные - не числа, а интервалы. Это - следствие общеинженерного утверждения: любое измерение проводится с погрешностями. Следовательно, для эффективного управления нужна статистика интервальных данных. Мнения людей естественно описывать в терминах теории нечеткости. Значит, менеджеру нужна статистика нечетких данных. Ни статистики нечисловых данных, ни статистики интервальных данных, ни статистики нечетких данных нет и не могло быть в классической статистике. Все это - высокие статистические технологии, разработанные за последние 10-30 лет.  

Важная часть эконометрики - применение высоких статистических технологий к анализу конкретных экономических данных. Такие исследования зачастую требуют дополнительной теоретической работы по "доводке" статистических технологий применительно к конкретной ситуации. Большое значение для менеджмента имеют конкретные эконометрические модели, например, вероятностно-статистические модели тех или иных процедур экспертных оценок или экономики качества, имитационные модели деятельности организации. И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции. Сейчас уже многим специалистам ясно, что годовой бухгалтерский баланс предприятия может быть использован для оценки его финансово-хозяйственной деятельности только с привлечением данных об инфляции. Различные области экономической теории и практики еще далеко не согласованы. При оценке и сравнении инвестиционных проектов принято использовать такие характеристики, как чистый приведенный доход, внутренняя норма доходности, основанные на учете изменения стоимости денежной единицы во времени (учет осуществляется с помощью дисконтирования). А при анализе финансово-хозяйственной деятельности организации на основе данных бухгалтерской отчетности про необходимость дисконтирования "забывают".  

В середине 1980-х годов в советской средней школе ввели новый предмет "Информатика". И сейчас молодое поколение превосходно владеет компьютерами, мгновенно осваивая быстро появляющиеся новинки, и этим заметно отличается от тех, кому за 40-50 лет. Если бы удалось ввести в средней школе курс вероятности и статистики - а такой курс есть в Японии и США, Швейцарии, Кении и Ботсване, почти во всех странах мира (см. подготовленный ЮНЕСКО сборник докладов [3]) - то ситуация с применением эконометрики в нашей стране могла бы быть резко улучшена.  

Статистические технологии применяют для анализа данных двух принципиально различных типов. Один из них - это результаты измерений различных видов, например, результаты управленческого или бухгалтерского учета, данные Госкомстата и др. Короче, речь идет об объективной информации. Другой - это оценки экспертов, на основе своего опыта и интуиции делающих заключения относительно экономических явлений и процессов. Очевидно, это - субъективная информация. Стабильная экономическая ситуация позволяет рассматривать длинные временные ряды тех или иных экономических величин, полученных в сопоставимых условиях. В подобных условиях данные первого типа вполне адекватны. В быстро меняющихся условиях приходятся опираться на экспертные оценки. Такая новейшая часть эконометрики, как статистика нечисловых данных, была создана как ответ на запросы теории и практики экспертных оценок [4].

Для решения каких управленческих и экономических задач может быть полезна эконометрика? Практически для всех, использующих конкретную информацию о реальном мире. Только чисто абстрактные, отвлеченные от реальности исследования могут обойтись без нее. В частности, эконометрика необходима для прогнозирования, в том числе поведения потребителей, а потому и для планирования. Выборочные исследования, в том числе выборочный контроль, основаны на эконометрике. Но планирование и контроль - основа контроллинга [5, 6]. Поэтому эконометрика - важная составляющая инструментария контроллера, воплощенного в компьютерной системе поддержки принятия решений. Прежде всего оптимальных решений, которые предполагают опору на адекватные эконометрические модели. В производственном менеджменте это может означать, например, использование оптимизационных эконометрических моделей типа тех, что применяются при экстремальном планировании эксперимента (они позволяют повысить выход полезного продукта на 30-300%).

Высокие статистические технологии в эконометрике предполагают адаптацию применяемых методов к меняющейся ситуации. Например, параметры прогностического индекса меняются вслед за изменением характеристик используемых для прогнозирования величин. Таков метод экспоненциального сглаживания. В соответствующем алгоритме расчетов значения временного ряда используются с весами. Веса уменьшаются по мере удаления в прошлое. Многие методы дискриминантного анализа основаны на применении обучающих выборок. Например, для построения рейтинга надежности банков можно с помощью экспертов составить две обучающие выборки - надежных и ненадежных банков. А затем с их помощью решать для вновь рассматриваемого банка, каков он - надежный или ненадежный, а также оценивать его надежность численно, т.е. вычислять значение рейтинга.

Один из способов построения адаптивных эконометрических моделей - нейронные сети [7]. При этом упор делается не на формулировку адаптивных алгоритмов анализа данных, а - в большинстве случаев - на построение виртуальной адаптивной структуры. Термин "виртуальная" означает, что "нейронная сеть" - это специализированная компьютерная программа. Термин "нейроны" используются лишь при общении человека с компьютером. Методология нейронных сетей идет от идей кибернетики 1940-х годов. В компьютере создается модель мозга человека (весьма примитивная с точки зрения физиолога). Основа модели - весьма простые базовые элементы, называемые нейронами. Они соединены между собой, так что нейронные сети можно сравнить с хорошо знакомыми менеджерам, экономистам и инженерам блок-схемами. Каждый нейрон находится в одном из заданного множества состояний. Он получает импульсы от соседей по сети, изменяет свое состояние и сам рассылает импульсы. В результате состояние множества нейтронов изменяется, что соответствует проведению эконометрических вычислений.

Нейроны обычно объединяются в слои (как правило, два-три). Среди них выделяются входной и выходной слои. Перед началом решения той или иной задачи производится настройка. Во-первых, устанавливаются связи между нейронами, соответствующие решаемой задаче. Во-вторых, проводится обучение, т.е. через нейронную сеть пропускаются обучающие выборки, для элементов которых требуемые результаты расчетов известны. Затем параметры сети модифицируются так, чтобы получить максимальное соответствие выходных значений заданным величинам.

С точки зрения точности расчетов (и оптимальности в том или ином эконометрическом смысле) нейронные сети не имеют преимуществ перед другими адаптивными эконометрическими системами. Однако они более просты для восприятия. Надо отметить, что в эконометрике используются и модели, промежуточные между нейронными сетями и "обычными" системами регрессионных уравнений (одновременных и с лагами). Они тоже используют блок-схемы, как, например, универсальный метод моделирования связей экономических факторов ЖОК [1].

Заметное место в математико-компьютерном обеспечении принятия решений в контроллинге занимают методы теории нечеткости (по-английски - fuzzy theory, причем термин fuzzy переводят на русский язык по-разному: нечеткий, размытый, расплывчатый, туманный, пушистый и др.). Начало современной теории нечеткости положено работой Л.А.Заде 1965г., хотя истоки прослеживаются со времен Древней Греции [4,8] Это направление прикладной математики получило бурное развитие. К настоящему времени по теории нечеткости опубликованы тысячи книг и статей, издается несколько международных журналов (больше половины - в Китае и Японии), постоянно проводятся международные конференции. В области теории нечеткости выполнено достаточно много как теоретических, так и прикладных научных работ, практические приложения дали ощутимый технико-экономический эффект.

В работах Лотфи А. Заде теория нечетких множеств рассматривается как аппарат анализа и моделирования гуманистических систем, т.е. систем, в которых участвует человек. Его подход опирается на предпосылку о том, что элементами мышления человека являются не числа, а элементы некоторых нечетких множеств или классов объектов, для которых переход от "принадлежности" к "непринадлежности" не скачкообразен, а непрерывен. В настоящее время методы теории нечеткости используются почти во всех прикладных областях, в том числе при управлении качеством продукции и технологическими процессами.

Нечеткая математика и логика - мощный элегантный инструмент современной науки, который на Западе и на Востоке (в Японии, Китае) можно встретить в программном обеспечении десятков видов изделий - от бытовых видеокамер до систем управления вооружениями. В России он был известен с начала 1970-х годов. Однако первая монография российского автора по теории нечеткости [8] была опубликована лишь в 1980 г. В дальнейшем раз в год всесоюзные конференции собирали около 100 участников - по мировым меркам немного.

При изложении теории нечетких множеств обычно не подчеркивается связь с вероятностными моделями. В нашей стране в середине 1970-х годов установлено [4,8], что теория нечеткости в определенном смысле сводится к теории случайных множеств. В США подобные работы появились лет на пять позже.

Итак, при решении задач управления, в частности, контроллинга полезны многочисленные интеллектуальные инструменты анализа данных, относящиеся к высоким статистическим технологиям и эконометрике.

3.3.2. Метод наименьших квадратов для линейной функции

Начнем с задачи точечного и доверительного оценивания линейной прогностической функции одной переменной.

Исходные данные –набор n пар чисел (tk , xk), k = 1,2,…,n, где tk –независимая переменная (например, время), а xk –зависимая (например, индекс инфляции, курс доллара США, объем месячного производства или размер дневной выручки торговой точки). Предполагается, что переменные связаны зависимостью

xk = a (tk - tср)+ b + ek , k = 1,2,…,n,

где a и b –параметры, неизвестные исследователю и подлежащие оцениванию, а ek –погрешности, искажающие зависимость. Среднее арифметическое моментов времени

tср = (t1 + t2 +…+tn ) / n

введено в модель для облегчения дальнейших выкладок.

Обычно оценивают параметры a и b линейной зависимости методом наименьших квадратов. Затем восстановленную зависимость используют для точечного и интервального прогнозирования.

Как известно, метод наименьших квадратов был разработан великим немецким математиком К. Гауссом в 1794 г. Согласно этому методу для расчета наилучшей функции, приближающей линейным образом зависимость x от t, следует  рассмотреть функцию двух переменных

Оценки метода наименьших квадратов - это такие значения a* и b*, при которых функция f(a,b) достигает минимума по всем значениям аргументов. Чтобы найти эти оценки, надо вычислить частные производные от функции f(a,b) по аргументам a и b, приравнять их 0, затем из полученных уравнений найти оценки: Имеем:

Преобразуем правые части полученных соотношений. Вынесем за знак суммы общие множители 2 и (-1). Затем рассмотрим слагаемые. Раскроем скобки в первом выражении, получим, что каждое слагаемое разбивается на три. Во втором выражении также каждое слагаемое есть сумма трех. Значит, каждая из сумм разбивается на три суммы. Имеем:

Приравняем частные производные 0. Тогда в полученных уравнениях можно сократить множитель (-2). Поскольку

 (1)

уравнения приобретают вид

Следовательно, оценки метода наименьших квадратов имеют вид

 (2)

В силу соотношения (1) оценку а* можно записать в более симметричном виде:

Эту оценку нетрудно преобразовать и к виду

Следовательно, восстановленная функция, с помощью которой можно прогнозировать и интерполировать, имеет вид

x*(t) = a*(t - tср)+ b*.

Обратим внимание на то, что использование tср  в последней формуле ничуть не ограничивает ее общность. Сравним с моделью вида

xk = c tk+ d + ek , k = 1,2,…,n.

Ясно, что

Аналогичным образом связаны оценки параметров:

Для получения оценок параметров и прогностической формулы нет необходимости обращаться к какой-либо вероятностной модели. Однако для того, чтобы изучать погрешности оценок параметров и восстановленной функции, т.е. строить доверительные интервалы для a*, b* и x*(t), подобная модель необходима.

 Непараметрическая вероятностная модель. Пусть значения независимой переменной t детерминированы, а погрешности ek , k = 1,2,…,n, - независимые одинаково распределенные случайные величины с нулевым математическим ожиданием и дисперсией неизвестной исследователю.

В дальнейшем неоднократно будем использовать Центральную Предельную Теорему (ЦПТ) теории вероятностей для величин ek , k = 1,2,…,n (с весами), поэтому для выполнения ее условий необходимо предположить, например, что погрешности ek , k = 1,2,…,n, финитны или имеют конечный третий абсолютный момент. Однако заострять внимание на этих внутриматематических "условиях регулярности" нет необходимости.

 Асимптотические распределения оценок параметров. Из формулы (2) следует, что

 (5)

Согласно ЦПТ оценка b* имеет асимптотически нормальное распределение с математическим ожиданием b и дисперсией оценка которой приводится ниже.

Из формул (2) и (5) вытекает, что

Последнее слагаемое во втором соотношении при суммировании по i обращается в 0, поэтому из формул (2-4) следует, что

  (6)

Формула (6) показывает, что оценка  является асимптотически нормальной с математическим ожиданием и дисперсией

Отметим, что многомерная нормальность имеет быть, когда каждое слагаемое в формуле (6) мало сравнительно со всей суммой, т.е.




1. ТЕМА ПРАВА Москва 1997 г
2. крепостнический строй в России но одновременно они дали большой толчок к развитию внутреннего социальноэк
3. Определение стойкости цеха к поражающим факторам ядерного взрыва
4. Лекція 4 Тренінги та ігри в цілях особистісного зростання План 1
5. реферату- Регулювання виробничого процесуРозділ- Організація виробництва Регулювання виробничого процесу.
6. Величина стран по размеру экономики
7. го тысячелетия до н
8. . Микроэкономика ~ представляет собой раздел экономической теории изучающей поведение потребителей и фирмы.
9. Введение.5
10. Тема- Животноводство в нашем крае
11. Классификация кровотечений и первая медицинская помощь при них
12. О государственной гражданской службе Российской Федерации
13. закон сохранения электрического заряда
14. Митні платежі
15. она и откровеннее он
16. Варіант 1 Жорсткий диск вінчестер основний пристрій тривалого збереження інформації; на жорсткому д
17. I Роль экономического образования в современном обществе
18. Реферат- Бізнес-етика в міжнародних відносинах та особливості етичної бізнес-діяльності в Україні
19. методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебног
20. ТЕМАХ Спеціальність 05