Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Билет №5. Определенный интеграл и его свойства.Формула Ньютона-Лейбница. |
Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю: где Свойства определенного интеграла 1. 2.где k - константа; 3. 4. 5. 6. Формула Ньютона-Лейбница Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на[a, b], то Билет №6.Метод подстановк в определенном интеграле Определенный интеграл по переменной x можно преобразовать в определенный интеграл относительно переменной t с помощью подстановки x = g (t): Новые пределы интегрирования по переменной t определяются выражениями где g -1 - обратная функция к g, т.е. t = g -1(x). Интегрирование по частям для определенного интеграла В этом случае формула интегрирования по частям имеет вид: где означает разность значений произведения функций uv при x = b и x = a. |
Пример 1 |
Вычислить интеграл .
Применяя формулу Ньютона-Лейбница, получаем
|
Пример 2 |
Вычислить интеграл .
|
Пример 3 |
Вычислить интеграл .
Сделаем замену:
Пересчитаем пределы интегрирования. Если x = 0, то t = −1. Если же x = 1, то t = 2. Тогда интеграл через новую переменную t легко вычисляется:
|
Пример 4 |
Вычислить интеграл .
Запишем интеграл в виде
Используем интегрирование по частям: . В нашем случае пусть будет
Следовательно, интеграл равен
|