У вас вопросы?
У нас ответы:) SamZan.net

Пример постановки задачи оптимизации Для изготовления 3х видов изделий А В и С используется токарное ф

Работа добавлена на сайт samzan.net: 2015-07-10

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 5.4.2025

1. Пример постановки задачи оптимизации

Для изготовления 3-х видов изделий А, В и С используется токарное, фрезерное, сварочное и шлифовальное оборудование. Затраты времени на обработку одного изделия приведены в таблице.

Тип оборудования

Затраты времени (станко-ч.) на обработку одного изделия вида

Общий фонд рабочего времени

А

В

С

Фрезерное

2

4

5

120

Токарное

1

8

6

280

Сварочное

7

4

5

240

Шлифовальное

4

6

7

360

Прибыль

10

14

12

Определить, сколько изделий и какого вида следует изготовить предприятию, чтобы прибыль от их реализации была максимальной. Составить математическую модель задачи.

Решение.

Пусть будет изготовлено Х1 единиц изделия А

      Х2 единиц изделия В

      Х3 единиц изделия С.

Тогда при использовании фрезерного оборудования потребуется затратить 2Х1 + 4Х2 + 5Х3 станко-часов.

Но по условию ограничения общего фонда времени

1 + 4Х2 + 5Х3  120.

Аналогично для токарного, сварочного и шлифовального оборудования:

Х1 + 8Х2 + 6Х3  280

1 + 4Х2 + 5Х3  240

1 + 6Х2 + 7Х3  360

При этом, т.к. количество изготовляемых деталей не может быть отрицательным, то

Х1  0, Х2  0, Х3  0.

Далее, если будет изготовлено Х1 изделий А, Х2 изделий В и Х3 изделий С, то прибыль от их реализации составит

F = 10Х1 + 14Х2 + 12Х3

Итак, мы получаем систему четырех линейных неравенств с тремя неизвестными (Xj (j = 1…3):

1 + 4Х2 + 5Х3  120

Х1 + 8Х2 + 6Х3  280

1 + 6Х2 + 7Х3  360

Х1  0, Х2  0, Х3  0.

и линейную функцию F = 10Х1 + 14Х2 + 12Х3 относительно этих же переменных.

Требуется среди всех неотрицательных решений системы неравенств найти такое, при котором целевая функция F принимает максимальное значение.




1. Писпи Андроид сенсорный Виктория 3000 руб
2. Pinnacle Studi
3. Красноярский государственный медицинский университет имени профессора В1
4. Он играл за СССР на чемпионатах мира 1958 1962 и 1966 году и был в сборной которая выиграла футбольный турнир Оли.html
5. История аэропорта Великие Луки
6. Сущность и классификация основных фондов промышленного предприятия Основные фонды срва труда кот нео
7. Буржуазные реформы 18601870 гг
8. Во Чел Тарифн Ставка T эф Тарифн фонд
9. Применение логистики на предприятии
10. На тему ldquo;Складнопідрядні реченняrdquo; Складнопідрядним називається таке складне речення