Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Под технической скоростью передачи VT называемой также скоростью манипуляции подразумевают число элемен

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 6.11.2024

22 Скорость передачи информации и пропускная способность дискретного канала 

Характеризуя дискретный канал связи, используют два понятия скорости передачи: технической и информационной.

Под технической скоростью передачи VT, называемой также скоростью манипуляции, подразумевают число элементарных сигналов (символов), передаваемых по каналу в единицу времени. Она зависит от свойств линии связи и быстродействия аппаратуры канала.

С учетом возможных различий в длительностях символов скорость

где  — среднее значение длительности символа.

При одинаковой продолжительности τ всех передаваемых символов  = τ.

Единицей измерения технической скорости служит бод — скорость, при которой за одну секунду передается один символ.

Информационная скорость, или скорость передачи информации, определяется средним количеством информации, которое передается по каналу в единицу времени. Она зависит как от характеристик данного канала связи, таких, как объем алфавита используемых символов, техническая скорость их передачи, статистические свойства помех в линии, так и от вероятностей поступающих на вход символов и их статистической взаимосвязи.

При известной скорости манипуляции VT скорость передачи информации по каналу Ī(V,U) задается соотношением

где I(V,U) — среднее количество информации, переносимое одним символом.

Пропускная способность дискретного канала без помех. Для теории и практики важно выяснить, до какого предела и каким путем можно повысить скорость передачи информации по конкретному каналу связи. Предельные возможности канала по передаче информации характеризуются его пропускной способностью.

Пропускная способность канала Сд равна той максимальной скорости передачи информации по данному каналу, которой можно достигнуть при самых совершенных способах передачи и приема:

При заданном алфавите символов и фиксированных основных характеристиках канала (например, полосе частот, средней и пиковой мощности передатчика) остальные характеристики должны быть выбраны такими, чтобы обеспечить наибольшую скорость передачи по нему элементарных сигналов, т. е. обеспечить максимальное значение VТ. Максимум среднего количества информации, приходящейся на один символ принятого сигнала I(V,U), определяется на множестве распределений вероятностей между символами .

Пропускная способность канала, как и скорость передачи информации по каналу, измеряется числом двоичных единиц информации в секунду (дв. ед./с).

Так как в отсутствие помех имеет место взаимно-однозначное соответствие между множеством символов {ν} на выходе канала и {u} на его входе, то I(V,U) = =I(U,V) = H(U). Максимум возможного количества информации на символ равен  log m, где m — объем алфавита символов, откуда пропускная способность дискретного канала без помех

Следовательно, для увеличения скорости передачи информации по дискретному каналу без помех и приближения ее к пропускной способности канала последовательность букв сообщения должна подвергнуться такому преобразованию в кодере, при котором различные символы в его выходной последовательности появлялись бы по возможности равновероятно, а статистические связи между ними отсутствовали бы. Доказано (см. § 5.4), что это выполнимо для любой эргодической последовательности букв, если кодирование осуществлять блоками такой длины, при которой справедлива теорема об их асимптотической равновероятности.

Расширение объема алфавита символов m приводит к повышению пропускной способности канала (рис. 4.4), однако возрастает и сложность технической реализации.

Пропускная способность дискретного канала с помехами. При наличии помех соответствие между множествами символов на входе и выходе канала связи перестает быть однозначным. Среднее количество информации I(V,U), передаваемое по каналу одним символом, определяется в этом случае соотношением

Если статистические связи  между символами отсутствуют, энтропия сигнала на выходе линии связи равна

При наличии статистической связи энтропию определяют с использованием цепей Маркова. Поскольку алгоритм такого определения ясен и нет необходимости усложнять изложение громоздкими формулами, ограничимся здесь только случаем отсутствия связей.

Апостериорная энтропия характеризует уменьшение количества переданной информации вследствие возникновения ошибок. Она зависит как от статистических свойств последовательностей символов, поступающих на вход канала связи, так и от совокупности переходных вероятностей, отражающих вредное действие помехи.

Если объем алфавита входных символов u равен m1, а выходных символов υ m2, то

Подставив выражения (4.18) и (4.19) в (4.17) и проведя несложные преобразования, получим

Скорость передачи информации по каналу с помехами

Считая скорость манипуляции VT предельно допустимой при заданных технических характеристиках канала, величину I(V,U) можно максимизировать, изменяя статистические свойства последовательностей символов на входе канала посредством преобразователя (кодера канала). Получаемое при этом предельное значение СД скорости передачи информации по каналу называют пропускной способностью дискретного канала связи с помехами:

где р{u} — множество возможных распределений вероятностей входных сигналов.

Важно подчеркнуть, что при наличии помех пропускная способность канала определяет наибольшее количество информации в единицу времени, которое может быть передано со сколь угодно малой вероятностью ошибки.

В гл. 6 показано, что к пропускной способности канала связи с помехами можно приблизиться, кодируя эргодическую последовательность букв источника сообщений блоками такой длины, при которой справедлива теорема об асимптотической равновероятности длинных последовательностей.

Произвольно малая вероятность ошибки оказывается достижимой только в пределе, когда длина блоков становится бесконечной.

При удлинении кодируемых блоков возрастает сложность технической реализации кодирующих и декодирующих устройств и задержка в передаче сообщений, обусловленная необходимостью накопления требуемого числа букв в блоке. В рамках допустимых усложнений на практике при кодировании могут преследоваться две цели: либо при заданной скорости передачи информации стремятся обеспечить минимальную ошибку, либо при заданной достоверности — скорость передачи, приближающуюся к пропускной способности канала.

Предельные возможности канала никогда не используются полностью. Степень его загрузки характеризуется коэффициентом использования канала

где — производительность источника сообщений; СД — пропускная способность канала связи.

Поскольку нормальное функционирование канала возможно, как показано далее, при изменении производительности источника в пределах,теоретически может изменяться в пределах от 0 до 1.

Пример 4.4. Определить пропускную способность двоичного симметричного канала (ДСК) со скоростью манипуляции VT в предположении независимости передаваемых символов.

Запишем соотношение (4.19) в следующем виде:

Воспользовавшись обозначениями на графе (рис. 4.5), можем записать

Так как

то

Величина HU(V) не зависит от вероятностей входных символов, что является следствием симметрии канала.

Следовательно, пропускная способность

Максимум H(V) достигается при равенстве вероятностей появления символов, он равен 1. Отсюда

График зависимости пропускной способности ДСК от ρ показан на рис. 4.6. При увеличении вероятности трансформации символа с 0 до 1/2 СД(р) уменьшается от 1 до 0. Если ρ = 0, то шум в канале отсутствует и его пропускная способность равна 1. При р=1/2 канал бесполезен, так как значения символов на приемной стороне с равным успехом можно устанавливать по результатам подбрасывания монеты (герб—1, решетка — 0). Пропускная способность канала при этом равна нулю.




1. Проблемы оценки социальноэкономической эффективности природоохранных мероприятий
2. поведения которые относятся к абстрактным манипуляциям с материалом
3. Sleeved blouses nd skirts below the knee
4. человекмир Исторические типы мировоззрения
5. О прокуратуре включает разные направления прокурорского надзора
6. ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ РАЗРАБОТКИ БИС ГРУППОВОГО КАНАЛЬНОГО ИНТЕРФЕЙСА ЦИФРОВОЙ СИСТЕМЫ ПЕРЕ.html
7. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата медичних наук Киї
8. SKNDINVI5 13Нормативно правовая база магазина SKNDINVI9 ГЛАВА 2
9. Тема- Створення макросу автоматизованої побудови типової форми
10. ВАРИАНТ 28 Задача 1 Определить степень влияния факторов на выпуск продукции- построить факторную мо
11. Реферат- Политическая карта мира и мировые природные ресурсы
12. Курсовая работа- Деление чисел в нормализованной форме
13. Історія України для II курсу 1
14. менеджер - секретарь Зарплата- 27 000 руб
15. Лекция 2 Функции торговой марки и этапы ее создания Вопрос 1
16. Тема- Алименты Начало формы Конец формы Если родители уклонялись от выполнения обязанностей роди
17. Лабораторная работа 7 Внешнее ориентирование снимков и уравнивание триангуляционной сети Задание 1- вып
18. 10.1989 Гендерная психология
19. Задание Составить уравнение и по нему определить критерии подобия процесса изменения переменной uвыхt в ц
20. Арістотель Аристотель написав цей рядок 2300 років тому а він залишається влучним і зараз коли