У вас вопросы?
У нас ответы:) SamZan.net

Обычно компонент который в данных условиях находится в том же агрегатном состоянии что и образующийся раст.html

Работа добавлена на сайт samzan.net: 2016-01-17

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.6.2025

PAСТВОРЫ

По характеру агрегатного состояния растворы могут быть газообразными, жидкими и твердыми. Обычно компонент, который в данных условиях находится в том же агрегатном состоянии, что и образующийся раствор, считают растворителем, остальные составляющие раствора – растворенными веществами. В случае одинакового агрегатного состояния компонентов растворителем считают тот компонент, который преобладает в растворе.

В зависимости от размеров частиц растворы делятся на:

  •  истинные и
  •  коллоидные.

В истинных растворах (часто называемых просто растворами) растворенное вещество диспергировано до атомного или молекулярного уровня, частицы растворенного вещества не видимы ни визуально, ни под микроскопом, свободно передвигаются в среде растворителя. Истинные растворы – термодинамически устойчивые системы, неограниченно стабильные во времени.

Концентрация насыщенного раствора определяется растворимостью вещества при данной температуре. Растворы с меньшей концентрацией называются ненасыщенными.

Растворимость для различных веществ колеблется в значительных пределах и зависит от:

  •  их природы,
  •  взаимодействия частиц растворенного вещества между собой и с молекулами растворителя
  •  внешних условий (давления, температуры и т. д.)

В химической практике наиболее важны растворы, приготовленные на основе жидкого растворителя. Именно жидкие смеси в химии называют просто растворами. Наиболее широко применяемым неорганическим растворителем является вода. Растворы с другими растворителями называются неводными.

Растворы имеют чрезвычайно большое практическое значение, в них протекают многие химические реакции, в том числе и лежащие в основе обмена веществ в живых организмах.

Концентрация растворов

Важной характеристикой растворов служит их концентрация, которая выражает относительное количество компонентов в растворе. Различают массовые и объемные концентрации, размерные и безразмерные.

К безразмерным концентрациям (долям) относятся следующие концентрации:

  •  Массовая доля растворенного вещества W(B) выражается в долях единицы или в процентах:

  или   

где m(B) и m(A) – масса растворенного вещества B и масса растворителя A.

  •  Объемная доля растворенного вещества σ(B) выражается в долях единицы или объемных процентах:

    или    

где Vi – объем компонента раствора, V(B) – объем растворенного вещества B. Объемные проценты называют градусами.

Иногда объемная концентрация выражается в тысячных долях (промилле, ‰) или в миллионных долях (млн–1), ppm.

  •  Мольная доля растворенного вещества χ(B) выражается соотношением

   или    

 Сумма мольных долей k компонентов раствора χi равна единице .

К размерным концентрациям относятся следующие концентрации:

  •  Моляльность растворенного вещества Cm(B) определяется количеством вещества n(B) в 1 кг (1000 г) растворителя, размерность моль/кг.

  •  Молярная концентрация вещества B в растворе C(B) – содержание количества растворенного вещества B в единице объема раствора, моль/м3, или чаще моль/литр:

 где μ(B) – молярная масса B, V – объем раствора.

  •  Молярная концентрация эквивалентов вещества B Cn(B) (нормальность – устаревш.) определяется числом эквивалентов растворенного вещества в единице объема раствора, моль/литр:

 где nЭ(B) – количество вещества эквивалентов, μЭ – молярная масса эквивалента.

  •  Титр раствора вещества B(TB) определяется массой растворенного вещества в г, содержащегося в 1 мл раствора:

    или    

Массовые концентрации (массовая доля, процентная, моляльная) не зависят от температуры; объемные концентрации относятся к определенной температуре.

Все вещества в той или иной степени способны растворяться и характеризуются растворимостью. Некоторые вещества неограниченно растворимы друг в друге (вода-ацетон, бензол-толуол, жидкие натрий-калий). Большинство соединений ограниченно растворимы (вода-бензол, вода-бутиловый спирт, вода-поваренная соль), а многие малорастворимы или практически нерастворимы (вода-BaSO4, вода-бензин).

В таком растворе достигается равновесие между растворяемым веществом и раствором. В отсутствие равновесия раствор остается стабильным, если концентрация растворенного вещества меньше его растворимости (ненасыщенный раствор), или нестабильным, если в растворе содержится вещества больше его растворимости (пересыщенный раствор).

При повышении температуры растворимость газов обычно уменьшается. Растворимость твердых веществ меняется по-разному, что определяется знаком теплового эффекта процесса растворения: растворение большинства твердых веществ – процесс эндотермический (H>0), поэтому с повышением температуры растворимость их увеличивается.

Влияние давления на растворимость газов в жидкостях выражает закон Генри:

где   молярная доля растворенного вещества в насыщенном растворе;

 k  коэффициент пропорциональности, называемый константой (коэффициентом) Генри;

  р  парциальное давление.

Закон Генри справедлив для случая сравнительно разбавленных растворов, невысоких давлений и отсутствия химического взаимодействия между молекулами растворяемого газа и растворителя.

Присутствие посторонних веществ, как правило, уменьшает растворимость данного вещества. Уменьшение растворимости веществ в присутствии солей называется высаливанием. Растворимость малорастворимых электролитов уменьшается при введении в насыщенный раствор одноименных ионов.

Разбавленные растворы неэлектролитов

Свойства разбавленных растворов неэлектролитов, относящихся к нелетучим веществам, описываются следующими законами.

Давление пара над растворами

где  – давление насыщенного пара чистого растворителя при данной температуре;             – давление насыщенного пара растворителя над раствором;  – соответственно молярная доля растворенного вещества;  - мольная доля растворителя.

Температуры кипения и отвердевания растворов

Из первого закона Рауля вытекает, что растворы нелетучих веществ должны кипеть при более высокой температуре и отвердевать при более низкой по сравнению с чистым растворителем.

 

  

где Е и К – коэффициенты пропорциональности, соответственно эбулиоскопическая и криоскопическая константы, зависящие только от природы растворителя, для воды К=1,86, Е= 0,516,

b – моляльность раствора.

Рис. 1. Зависимость повышения температуры кипения ΔTкип и понижения температуры замерзания  ΔTзам раствора от концентрации растворенного вещества.

Осмос

Если система, разделенная мембраной, представляет собой растворы, в которых через мембрану способны проходить только молекулы растворителя, то свойства ее будут определяться разностью мольных долей (концентраций) растворителя по обе стороны мембраны.

Явление, связанное со способностью проходить через мембрану, в частности, только молекул растворителя, называется осмосом, а вызываемое им изменение давления по обе стороны мембраны – осмотическим давлением. Явление осмоса чрезвычайно разнообразно и во многом определяется природой мембраны и компонентов раствора.

Представим, что сосуд с двумя горлами для залива раствора разделен мембраной M (рис. 2). В каждую часть сосуда зальем растворы, отличающиеся только концентрацией. Поскольку мольные доли растворителя по обе стороны мембраны не совпадают, то стремление их к выравниванию приведет к переходу части растворителя в ту часть сосуда, где концентрация растворенного вещества больше. Увеличение количества растворителя эквивалентно возрастанию давления, и если мембрана способна к деформации, она изогнется в сторону с меньшей концентрацией растворенного вещества (рис. 2а).

Если мембрана жесткая, то в отсеке с большей концентрацией количество растворителя будет возрастать до тех пор, пока гидростатическое давление h (рис. 2б) не станет равным осмотическому давлению и не прекратит осмос.

Рис. 2. Схема разности осмотических давлений при χ1 < χ2 при эластичной (а) и жесткой (б) мембранах

По Вант-Гофф осмотическое давление раствора численно равно тому газовому давлению, которое имело бы растворенное вещество, будучи переведенным в газообразное состояние в том же объеме и при той же температуре. Поскольку объем (разбавление) обратно пропорционален концентрации, то закон Вант-Гоффа можно записать в виде

Р = СRT

Так как объем одного моля газообразного вещества при нормальных условиях равен 22,4 литра, то осмотическое давление раствора, содержащего 1 моль вещества, равно 22,4 атм.

Измерение осмотического давления раствора используется для определения молекулярных масс даже разбавленных растворов, что позволяет оценивать молекулярные массы растворимых высокомолекулярных соединений, в частности, биополимеров. Заменив C(B) в формуле Вант-Гоффа соотношением (m(B) ∙ 1000 / μ(B) ∙ V), получим уравнение, позволяющее вычислять молекулярные массы растворенных веществ:

m(B) – масса растворенного вещества, V – объем раствора.

Если растворы характеризуются одинаковыми осмотическими давлениями, то по Вант-Гоффу такие растворы называются изотоническими. Независимо от природы растворенного вещества, изотоничность является следствием одинакового числа частиц в растворе.

Поскольку при растворении реальное число частиц может отличаться от числа растворенных молекул, Вант-Гофф ввел понятие изотонического коэффициента i. По определению это отношение числа всех частиц к числу растворенных молекул:

В бензольном растворе уксусной кислоты i < 1, ибо в этом растворе число частиц меньше числа молекул, в результате реакции ассоциации в соответствие с уравнением

2CH3COOH  (CH3COOH)2

Если же в растворе преобладает не ассоциативный, а диссоциативный или ионизационный механизмы взаимодействия, то i > 1. Так, в водном растворе уксусная кислота диссоциирует CH3COOH CH3COO + H+, и число частиц становится больше числа молекул.

Растворы слабых электролитов

Растворение некоторых веществ сопровождается высвобождением или образованием ионов. При этом возможны диссоциативный и ионизационный механизмы. Диссоциативный механизм превалирует при разрушении ионной кристаллической решетки под воздействием сольватирующего растворителя. Так, ионы, составляющие кристаллическую решетку KCl, приобретают способность проводить электрический ток в любом из двух случаев разрушения кристаллической решетки – под воздействием тепловой энергии (расплав) или под воздействием сольватирующего растворителя (растворение). В последнем случае в раствор переходят готовые ионы, окруженные молекулами растворителя. Процесс взаимодействия ионов кристаллической решетки с молекулами растворителя называется сольватацией.

Рис. 3. Процесс растворения КСl

Ионизационный механизм состоит в том, что в молекулах газообразных, твердых и жидких веществ под воздействием полярных молекул растворителя увеличивается доля ионности настолько, что в раствор могут переходить сольватированные ионы. В зависимости от природы растворителя электролит может быть полностью диссоциирован, либо будет вести себя как слабый электролит:

В воде равновесие смещено вправо и растворенный хлористый водород диссоциирован полностью. В бензоле растворенный HCl ведет себя как слабый электролит.

Важной характеристикой электролитов служит степень диссоциации α:

По величине степени диссоциации электролиты делятся на слабые и сильные. Для сильных электролитов, к которым относятся некоторые минеральные кислоты и щелочи, большинство солей, α > 30 %. К слабым относят некоторые минеральные кислоты (HNO2, HCN, H2SO3), большинство оснований, практически все органические кислоты.

Важнейшей характеристикой слабого электролита служит константа диссоциации.

Рассмотрим равновесную реакцию диссоциации слабого электролита HAn:

Константа равновесия Kр этой реакции и есть Kд:

Если выразить равновесные концентрации через концентрацию слабого электролита C и его степень диссоциации α, то получим

Это соотношение называют законом разбавления Оствальда. Для очень слабых электролитов при α << 1 это уравнение упрощается:

   Тогда

Это позволяет заключить, что при бесконечном разбавлении степень диссоциации α стремится к единице.

Рассмотрим диссоциацию N моль электролита, диссоциирующего на n ионов. Тогда  

Решая его относительно α, получим

Определив экспериментально изотонический коэффициент, можно найти степень диссоциации α в условиях эксперимента.

Кислоты и основания диссоциируют ступенчато. Каждая ступень диссоциации характеризуется своей константой. Так, трехосновная ортофосфорная кислота H3PO4 диссоциирует следующим образом

Реакция

Константа диссоциации Kд

Степень диссоциации α

H3PO4  H+ + H2PO4 

K1=7,1103

α = 27 %

H2PO4  H+ + HPO42

K2=6,2108

α = 0,15 %

HPO42  H+ + PO43

K3=5,01013

α = 0,005 %

Таблица 1. Константа диссоциации и степень диссоциации H3PO4

Важное значение имеет диссоциация воды, поскольку, являясь слабым электролитом и обычным растворителем, она участвует в кислотно-основном равновесии растворенных в ней электролитов.

Вода диссоциирует на ионы:

H2O H+ + OH

ее константа при 298 K равна

При столь малой константе диссоциации концентрация воды остается практически неизменной и равной

Отсюда произведение постоянных величин Kд∙[H2O] = [H+]∙[OH] = const.

Численная величина произведения ионов, на которые диссоциирует вода, называемое ионным произведением воды Kв, равна

Таким образом, в пределах 15–25 °C ионное произведение воды Kв = 10–14.

Равенство [H+] и [OH] соответствует

  •  нейтральной среде [H+] = [OH] = 1 ∙ 10–7,
  •  при [H+] > 1 ∙ 10–7кислой,
  •  при [H+] < 1 ∙ 10–7щелочной.

Водородный показатель pH

Для определения кислотно-основных свойств раствора пользуются водородным показателем pH. По определению, это отрицательный десятичный логарифм концентрации водородных ионов: pH = –lg [H+].

Тогда  pH < 7 указывает на кислую среду,

 pH > 7 соответствует щелочной среде,

 pH = 7 – нейтральной среде.

Поскольку pH + pOH = 14, можно видеть, что pH может меняться от небольших отрицательных значений до величин, немного превышающих 14 (pH NaOH c C = 2 равен 14,3). На рис. приведены pH некоторых бытовых растворов и пищевых продуктов.

Рисунок 4. pH различных веществ и систем.

Растворы сильных электролитов

Принципиальное отличие сильных электролитов от слабых состоит в том, что равновесие диссоциации сильных электролитов полностью смещено вправо:

H2SO4 H+ + HSO4

а потому константа равновесия (диссоциации) оказывается величиной неопределенной. Снижение электропроводности при увеличении концентрации сильного электролита обусловлено электростатическим взаимодействием ионов.

Дебай и Хюккель, предложив модель, которая легла в основу теории сильных электролитов, постулировали:

  1.   Электролит полностью диссоциирует, но в сравнительно разбавленных растворах (C = 0,01 моль·л–1).
  2.   Каждый ион окружен оболочкой из ионов противоположного знака. В свою очередь, каждый из этих ионов сольватирован. Это окружение называется ионной атмосферой.

Гидролиз солей

В водных растворах соли полностью диссоциируют на катионы и анионы. Кроме них в растворе есть ионы H+ и OH, образующиеся вследствие диссоциации молекул воды. Если эти ионы при взаимодействии с ионами соли образуют плохо диссоциирующие соединения, то идет гидролиз соли – разложение соли водой с образованием слабого электролита. Возможность и характер протекания гидролиза определяется природой соли:

1. NH4Cl + H2O NH3H2O + HCl

NH4+ + H2O NH3H2O + H+

2. NaCN + H2O HCN + NaOH

CN + H2O HCN + OH

3. NH4CN + H2O  NH3H2O + HCN

NH4+ + CN + H2O  NH3H2O + HCN

В первом случае гидролиз идет по катиону и pH < 7, во втором по аниону – pH > 7, а в третьем – по аниону и катиону, и величина pH в этом случае зависит от относительной силы образующихся кислоты и основания. Соли, образованные сильными основаниями и сильными кислотами, гидролизу не подвергаются.

Константа равновесия для первого случая

Так как [H2O] = const, то K∙ [H2O] = Kг – константа гидролиза. Тогда

Умножив числитель и знаменатель на [OH], получим

Аналогично для гидролиза по аниону

Для гидролиза по катиону и аниону одновременно

Связь константы гидролиза со степенью гидролиза выводится подобно закону разбавления Оствальда и записывается так:

C – концентрация соли в моль/л.

Для малых значений αг

Для многозарядных катионов и анионов гидролиз протекает ступенчато, причем в основном по 1-й ступени.

Например, для хлорида железа (FeCl3 → Fe3+ + 3Cl) имеем:

Распространенной ошибкой при составлении уравнений гидролиза является использование сразу более одной молекулы воды.

Сравните:

  •  Правильно:
  •  
  •  Неправильно:
  •  

Гидролиз хлорида железа идет преимущественно по первой ступени из-за накапливания ионов H+ и недостатка гидроксильных ионов, необходимых для протекания реакции гидролиза ( ничтожно мала).

В результате гидролиза многозарядных катионов образуются основные соли Fe(OH)Cl2, Fe(OH)2Cl, а гидролиз многозарядных анионов приводит к образованию кислых солей (NaHCO3, NaH2PO4).

Явление гидролиза следует учитывать при приготовлении растворов. Для предотвращения гидролиза растворы солей, подвергающиеся гидролизу по катиону, необходимо подкислять.




1. участвуют в разработке таможенной политики Российской Федерации и реализуют эту политику; 2 обесп
2. Информационные потребности студента
3. Порядок исчисления и уплаты в бюджет налога на имущество предприятий
4.  Определим минимальное значение целевой функции FX 3x1 6x2 при следующих условияхограничений
5. Угощайся. Вошедший в номер недорогой гостиницы худой и жилистый брюнет лет двадцати пяти с костистым и не.html
6. Границы интерпретационной деятельности Конституционного Суда Украины
7. пиратских досье фиксация тех оригинальных методик технологий ноухау которые созданы фирмой и похищены
8. Лекции по синтаксису русского языка монография Хорошая речь сборника Проблемы речевой коммуникацииВ
9. з курсу Правове основи професійної діяльності регулювання діяльності підприємства
10. Музыкальная психология и педагогика Предмет психологии.html