У вас вопросы?
У нас ответы:) SamZan.net

Обычно компонент который в данных условиях находится в том же агрегатном состоянии что и образующийся раст.html

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

PAСТВОРЫ

По характеру агрегатного состояния растворы могут быть газообразными, жидкими и твердыми. Обычно компонент, который в данных условиях находится в том же агрегатном состоянии, что и образующийся раствор, считают растворителем, остальные составляющие раствора – растворенными веществами. В случае одинакового агрегатного состояния компонентов растворителем считают тот компонент, который преобладает в растворе.

В зависимости от размеров частиц растворы делятся на:

  •  истинные и
  •  коллоидные.

В истинных растворах (часто называемых просто растворами) растворенное вещество диспергировано до атомного или молекулярного уровня, частицы растворенного вещества не видимы ни визуально, ни под микроскопом, свободно передвигаются в среде растворителя. Истинные растворы – термодинамически устойчивые системы, неограниченно стабильные во времени.

Концентрация насыщенного раствора определяется растворимостью вещества при данной температуре. Растворы с меньшей концентрацией называются ненасыщенными.

Растворимость для различных веществ колеблется в значительных пределах и зависит от:

  •  их природы,
  •  взаимодействия частиц растворенного вещества между собой и с молекулами растворителя
  •  внешних условий (давления, температуры и т. д.)

В химической практике наиболее важны растворы, приготовленные на основе жидкого растворителя. Именно жидкие смеси в химии называют просто растворами. Наиболее широко применяемым неорганическим растворителем является вода. Растворы с другими растворителями называются неводными.

Растворы имеют чрезвычайно большое практическое значение, в них протекают многие химические реакции, в том числе и лежащие в основе обмена веществ в живых организмах.

Концентрация растворов

Важной характеристикой растворов служит их концентрация, которая выражает относительное количество компонентов в растворе. Различают массовые и объемные концентрации, размерные и безразмерные.

К безразмерным концентрациям (долям) относятся следующие концентрации:

  •  Массовая доля растворенного вещества W(B) выражается в долях единицы или в процентах:

  или   

где m(B) и m(A) – масса растворенного вещества B и масса растворителя A.

  •  Объемная доля растворенного вещества σ(B) выражается в долях единицы или объемных процентах:

    или    

где Vi – объем компонента раствора, V(B) – объем растворенного вещества B. Объемные проценты называют градусами.

Иногда объемная концентрация выражается в тысячных долях (промилле, ‰) или в миллионных долях (млн–1), ppm.

  •  Мольная доля растворенного вещества χ(B) выражается соотношением

   или    

 Сумма мольных долей k компонентов раствора χi равна единице .

К размерным концентрациям относятся следующие концентрации:

  •  Моляльность растворенного вещества Cm(B) определяется количеством вещества n(B) в 1 кг (1000 г) растворителя, размерность моль/кг.

  •  Молярная концентрация вещества B в растворе C(B) – содержание количества растворенного вещества B в единице объема раствора, моль/м3, или чаще моль/литр:

 где μ(B) – молярная масса B, V – объем раствора.

  •  Молярная концентрация эквивалентов вещества B Cn(B) (нормальность – устаревш.) определяется числом эквивалентов растворенного вещества в единице объема раствора, моль/литр:

 где nЭ(B) – количество вещества эквивалентов, μЭ – молярная масса эквивалента.

  •  Титр раствора вещества B(TB) определяется массой растворенного вещества в г, содержащегося в 1 мл раствора:

    или    

Массовые концентрации (массовая доля, процентная, моляльная) не зависят от температуры; объемные концентрации относятся к определенной температуре.

Все вещества в той или иной степени способны растворяться и характеризуются растворимостью. Некоторые вещества неограниченно растворимы друг в друге (вода-ацетон, бензол-толуол, жидкие натрий-калий). Большинство соединений ограниченно растворимы (вода-бензол, вода-бутиловый спирт, вода-поваренная соль), а многие малорастворимы или практически нерастворимы (вода-BaSO4, вода-бензин).

В таком растворе достигается равновесие между растворяемым веществом и раствором. В отсутствие равновесия раствор остается стабильным, если концентрация растворенного вещества меньше его растворимости (ненасыщенный раствор), или нестабильным, если в растворе содержится вещества больше его растворимости (пересыщенный раствор).

При повышении температуры растворимость газов обычно уменьшается. Растворимость твердых веществ меняется по-разному, что определяется знаком теплового эффекта процесса растворения: растворение большинства твердых веществ – процесс эндотермический (H>0), поэтому с повышением температуры растворимость их увеличивается.

Влияние давления на растворимость газов в жидкостях выражает закон Генри:

где   молярная доля растворенного вещества в насыщенном растворе;

 k  коэффициент пропорциональности, называемый константой (коэффициентом) Генри;

  р  парциальное давление.

Закон Генри справедлив для случая сравнительно разбавленных растворов, невысоких давлений и отсутствия химического взаимодействия между молекулами растворяемого газа и растворителя.

Присутствие посторонних веществ, как правило, уменьшает растворимость данного вещества. Уменьшение растворимости веществ в присутствии солей называется высаливанием. Растворимость малорастворимых электролитов уменьшается при введении в насыщенный раствор одноименных ионов.

Разбавленные растворы неэлектролитов

Свойства разбавленных растворов неэлектролитов, относящихся к нелетучим веществам, описываются следующими законами.

Давление пара над растворами

где  – давление насыщенного пара чистого растворителя при данной температуре;             – давление насыщенного пара растворителя над раствором;  – соответственно молярная доля растворенного вещества;  - мольная доля растворителя.

Температуры кипения и отвердевания растворов

Из первого закона Рауля вытекает, что растворы нелетучих веществ должны кипеть при более высокой температуре и отвердевать при более низкой по сравнению с чистым растворителем.

 

  

где Е и К – коэффициенты пропорциональности, соответственно эбулиоскопическая и криоскопическая константы, зависящие только от природы растворителя, для воды К=1,86, Е= 0,516,

b – моляльность раствора.

Рис. 1. Зависимость повышения температуры кипения ΔTкип и понижения температуры замерзания  ΔTзам раствора от концентрации растворенного вещества.

Осмос

Если система, разделенная мембраной, представляет собой растворы, в которых через мембрану способны проходить только молекулы растворителя, то свойства ее будут определяться разностью мольных долей (концентраций) растворителя по обе стороны мембраны.

Явление, связанное со способностью проходить через мембрану, в частности, только молекул растворителя, называется осмосом, а вызываемое им изменение давления по обе стороны мембраны – осмотическим давлением. Явление осмоса чрезвычайно разнообразно и во многом определяется природой мембраны и компонентов раствора.

Представим, что сосуд с двумя горлами для залива раствора разделен мембраной M (рис. 2). В каждую часть сосуда зальем растворы, отличающиеся только концентрацией. Поскольку мольные доли растворителя по обе стороны мембраны не совпадают, то стремление их к выравниванию приведет к переходу части растворителя в ту часть сосуда, где концентрация растворенного вещества больше. Увеличение количества растворителя эквивалентно возрастанию давления, и если мембрана способна к деформации, она изогнется в сторону с меньшей концентрацией растворенного вещества (рис. 2а).

Если мембрана жесткая, то в отсеке с большей концентрацией количество растворителя будет возрастать до тех пор, пока гидростатическое давление h (рис. 2б) не станет равным осмотическому давлению и не прекратит осмос.

Рис. 2. Схема разности осмотических давлений при χ1 < χ2 при эластичной (а) и жесткой (б) мембранах

По Вант-Гофф осмотическое давление раствора численно равно тому газовому давлению, которое имело бы растворенное вещество, будучи переведенным в газообразное состояние в том же объеме и при той же температуре. Поскольку объем (разбавление) обратно пропорционален концентрации, то закон Вант-Гоффа можно записать в виде

Р = СRT

Так как объем одного моля газообразного вещества при нормальных условиях равен 22,4 литра, то осмотическое давление раствора, содержащего 1 моль вещества, равно 22,4 атм.

Измерение осмотического давления раствора используется для определения молекулярных масс даже разбавленных растворов, что позволяет оценивать молекулярные массы растворимых высокомолекулярных соединений, в частности, биополимеров. Заменив C(B) в формуле Вант-Гоффа соотношением (m(B) ∙ 1000 / μ(B) ∙ V), получим уравнение, позволяющее вычислять молекулярные массы растворенных веществ:

m(B) – масса растворенного вещества, V – объем раствора.

Если растворы характеризуются одинаковыми осмотическими давлениями, то по Вант-Гоффу такие растворы называются изотоническими. Независимо от природы растворенного вещества, изотоничность является следствием одинакового числа частиц в растворе.

Поскольку при растворении реальное число частиц может отличаться от числа растворенных молекул, Вант-Гофф ввел понятие изотонического коэффициента i. По определению это отношение числа всех частиц к числу растворенных молекул:

В бензольном растворе уксусной кислоты i < 1, ибо в этом растворе число частиц меньше числа молекул, в результате реакции ассоциации в соответствие с уравнением

2CH3COOH  (CH3COOH)2

Если же в растворе преобладает не ассоциативный, а диссоциативный или ионизационный механизмы взаимодействия, то i > 1. Так, в водном растворе уксусная кислота диссоциирует CH3COOH CH3COO + H+, и число частиц становится больше числа молекул.

Растворы слабых электролитов

Растворение некоторых веществ сопровождается высвобождением или образованием ионов. При этом возможны диссоциативный и ионизационный механизмы. Диссоциативный механизм превалирует при разрушении ионной кристаллической решетки под воздействием сольватирующего растворителя. Так, ионы, составляющие кристаллическую решетку KCl, приобретают способность проводить электрический ток в любом из двух случаев разрушения кристаллической решетки – под воздействием тепловой энергии (расплав) или под воздействием сольватирующего растворителя (растворение). В последнем случае в раствор переходят готовые ионы, окруженные молекулами растворителя. Процесс взаимодействия ионов кристаллической решетки с молекулами растворителя называется сольватацией.

Рис. 3. Процесс растворения КСl

Ионизационный механизм состоит в том, что в молекулах газообразных, твердых и жидких веществ под воздействием полярных молекул растворителя увеличивается доля ионности настолько, что в раствор могут переходить сольватированные ионы. В зависимости от природы растворителя электролит может быть полностью диссоциирован, либо будет вести себя как слабый электролит:

В воде равновесие смещено вправо и растворенный хлористый водород диссоциирован полностью. В бензоле растворенный HCl ведет себя как слабый электролит.

Важной характеристикой электролитов служит степень диссоциации α:

По величине степени диссоциации электролиты делятся на слабые и сильные. Для сильных электролитов, к которым относятся некоторые минеральные кислоты и щелочи, большинство солей, α > 30 %. К слабым относят некоторые минеральные кислоты (HNO2, HCN, H2SO3), большинство оснований, практически все органические кислоты.

Важнейшей характеристикой слабого электролита служит константа диссоциации.

Рассмотрим равновесную реакцию диссоциации слабого электролита HAn:

Константа равновесия Kр этой реакции и есть Kд:

Если выразить равновесные концентрации через концентрацию слабого электролита C и его степень диссоциации α, то получим

Это соотношение называют законом разбавления Оствальда. Для очень слабых электролитов при α << 1 это уравнение упрощается:

   Тогда

Это позволяет заключить, что при бесконечном разбавлении степень диссоциации α стремится к единице.

Рассмотрим диссоциацию N моль электролита, диссоциирующего на n ионов. Тогда  

Решая его относительно α, получим

Определив экспериментально изотонический коэффициент, можно найти степень диссоциации α в условиях эксперимента.

Кислоты и основания диссоциируют ступенчато. Каждая ступень диссоциации характеризуется своей константой. Так, трехосновная ортофосфорная кислота H3PO4 диссоциирует следующим образом

Реакция

Константа диссоциации Kд

Степень диссоциации α

H3PO4  H+ + H2PO4 

K1=7,1103

α = 27 %

H2PO4  H+ + HPO42

K2=6,2108

α = 0,15 %

HPO42  H+ + PO43

K3=5,01013

α = 0,005 %

Таблица 1. Константа диссоциации и степень диссоциации H3PO4

Важное значение имеет диссоциация воды, поскольку, являясь слабым электролитом и обычным растворителем, она участвует в кислотно-основном равновесии растворенных в ней электролитов.

Вода диссоциирует на ионы:

H2O H+ + OH

ее константа при 298 K равна

При столь малой константе диссоциации концентрация воды остается практически неизменной и равной

Отсюда произведение постоянных величин Kд∙[H2O] = [H+]∙[OH] = const.

Численная величина произведения ионов, на которые диссоциирует вода, называемое ионным произведением воды Kв, равна

Таким образом, в пределах 15–25 °C ионное произведение воды Kв = 10–14.

Равенство [H+] и [OH] соответствует

  •  нейтральной среде [H+] = [OH] = 1 ∙ 10–7,
  •  при [H+] > 1 ∙ 10–7кислой,
  •  при [H+] < 1 ∙ 10–7щелочной.

Водородный показатель pH

Для определения кислотно-основных свойств раствора пользуются водородным показателем pH. По определению, это отрицательный десятичный логарифм концентрации водородных ионов: pH = –lg [H+].

Тогда  pH < 7 указывает на кислую среду,

 pH > 7 соответствует щелочной среде,

 pH = 7 – нейтральной среде.

Поскольку pH + pOH = 14, можно видеть, что pH может меняться от небольших отрицательных значений до величин, немного превышающих 14 (pH NaOH c C = 2 равен 14,3). На рис. приведены pH некоторых бытовых растворов и пищевых продуктов.

Рисунок 4. pH различных веществ и систем.

Растворы сильных электролитов

Принципиальное отличие сильных электролитов от слабых состоит в том, что равновесие диссоциации сильных электролитов полностью смещено вправо:

H2SO4 H+ + HSO4

а потому константа равновесия (диссоциации) оказывается величиной неопределенной. Снижение электропроводности при увеличении концентрации сильного электролита обусловлено электростатическим взаимодействием ионов.

Дебай и Хюккель, предложив модель, которая легла в основу теории сильных электролитов, постулировали:

  1.   Электролит полностью диссоциирует, но в сравнительно разбавленных растворах (C = 0,01 моль·л–1).
  2.   Каждый ион окружен оболочкой из ионов противоположного знака. В свою очередь, каждый из этих ионов сольватирован. Это окружение называется ионной атмосферой.

Гидролиз солей

В водных растворах соли полностью диссоциируют на катионы и анионы. Кроме них в растворе есть ионы H+ и OH, образующиеся вследствие диссоциации молекул воды. Если эти ионы при взаимодействии с ионами соли образуют плохо диссоциирующие соединения, то идет гидролиз соли – разложение соли водой с образованием слабого электролита. Возможность и характер протекания гидролиза определяется природой соли:

1. NH4Cl + H2O NH3H2O + HCl

NH4+ + H2O NH3H2O + H+

2. NaCN + H2O HCN + NaOH

CN + H2O HCN + OH

3. NH4CN + H2O  NH3H2O + HCN

NH4+ + CN + H2O  NH3H2O + HCN

В первом случае гидролиз идет по катиону и pH < 7, во втором по аниону – pH > 7, а в третьем – по аниону и катиону, и величина pH в этом случае зависит от относительной силы образующихся кислоты и основания. Соли, образованные сильными основаниями и сильными кислотами, гидролизу не подвергаются.

Константа равновесия для первого случая

Так как [H2O] = const, то K∙ [H2O] = Kг – константа гидролиза. Тогда

Умножив числитель и знаменатель на [OH], получим

Аналогично для гидролиза по аниону

Для гидролиза по катиону и аниону одновременно

Связь константы гидролиза со степенью гидролиза выводится подобно закону разбавления Оствальда и записывается так:

C – концентрация соли в моль/л.

Для малых значений αг

Для многозарядных катионов и анионов гидролиз протекает ступенчато, причем в основном по 1-й ступени.

Например, для хлорида железа (FeCl3 → Fe3+ + 3Cl) имеем:

Распространенной ошибкой при составлении уравнений гидролиза является использование сразу более одной молекулы воды.

Сравните:

  •  Правильно:
  •  
  •  Неправильно:
  •  

Гидролиз хлорида железа идет преимущественно по первой ступени из-за накапливания ионов H+ и недостатка гидроксильных ионов, необходимых для протекания реакции гидролиза ( ничтожно мала).

В результате гидролиза многозарядных катионов образуются основные соли Fe(OH)Cl2, Fe(OH)2Cl, а гидролиз многозарядных анионов приводит к образованию кислых солей (NaHCO3, NaH2PO4).

Явление гидролиза следует учитывать при приготовлении растворов. Для предотвращения гидролиза растворы солей, подвергающиеся гидролизу по катиону, необходимо подкислять.




1. вариантом английского слова innovtion
2. Учет расчетов с дебиторами в бюджетном учреждени
3. Перед кратологией необъятный мир власть во всех ее видах формах и проявлениях и во всех слагаемых этой об
4. .1 Понятие и состав административных правонарушений [2
5. ПСИХОЛОГИЯ И ПЕДАГОГИКА Семинарское занятие 1 Психологические основы организации учебной деятельн
6. Реферат Совет Европы
7. Теоретичне обґрунтування необхідності та перспективності розробки фірмової страви
8. Реферат на тему- Утоплення Людину що тоне необхідно передусім витягнути з води на берег чи палубу судна
9. Дипломная работа- ПРАКТИКА И ТЕОРИЯ ИНДИВИДУАЛЬНОЙ ПСИХОЛОГИИ
10. Политическая элита современной России c точки зрения социального представительства
11.  Расчет основных параметров установки
12. варианты ответов но все они имеют свои слабые стороны
13. Вывод законов отражения и преломления из принципов Гюйгенса и принципа Ферма
14. Сети ЭВМ и телекоммуникации 1 л-р 2 л-р.html
15. тема ее характеристика
16. недель В течение этого времени происходит обратное развитие инволюция всех органов и систем которые подв
17. Влияние выхлопных газов автомобилей на размер прироста, биомассу и жизнеспособность пыльцы хвойных растений
18. на тему-Конкурентоспособность коммерческих автомобилей на примере ГАЗель Next Iveco Dily Ford Trnsit
19. тема 3 Учебновоспитательный процесс система образования ценность результат Научнотехнический прогр
20. СОШ 21