Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
1.Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек па которые это тело можно разбить:
Если тело вращается вокруг неподвижной оси с угловой скоростью , то линейная скорость i-ой точки равна , где , - расстояние от этой точки до оси вращения. Следовательно.
(5.11) |
где - момент инерции тела относительно оси вращения.
В общем случае движение твердого тела можно представить в виде суммы двух движений - поступательного со скоростью, равной скорости центра инерции тела, и вращения с угловой скоростью вокруг мгновенной оси, проходящей через центр инерции. При этом выражение для кинетической энергии тела преобразуется к виду
(5.12) |
где - момент инерции тела относительно мгновенной оси вращения, проходящей через центр инерции.
Сведя задачу о движении двух тел к задаче о движении одного тела, мы пришли к вопросу об определении движения частицы во внешнем поле, в котором ее потенциальная энергия зависит только от расстояния r до определенной неподвижной точки; такое поле называют центральным. Сила
F = − = − ,
действующая на частицу, по абсолютной величине зависит при этом тоже только от r и направлена в каждой точке вдоль радиус-вектора.
При движении в центральном поле сохраняется момент системы относительно центра поля. Для одной частицы это есть
М = [rр].
Поскольку векторы М и r взаимно перпендикулярны, постоянство М означает, что при движении частицы ее радиус-вектор все время остается в одной плоскости плоскости, перпендикулярной к М.
Таким образом, траектория движения частицы в центральном поле лежит целиком в одной плоскости. Введя в ней полярные координатыr, φ, напишем функцию Лагранжа в виде
L = (2 + r 2 2) − U(r ). (14.1)
Эта функция не содержит в явном виде координату φ. Всякую обобщенную координату не входящую явным образом в лагранжеву функцию, называют циклической. В силу уравнения Лагранжа имеем для такой координаты:
= = 0,
Т.е. соответствующий ей обобщенный импульс pi = ∂L/∂i является интегралом движения. Это обстоятельство приводит к существенному упрощению задачи интегрирования уравнений движения при наличии циклических координат.
В данном случае обобщенный импульс
рφ = mr 2
совпадает с моментом Mz = М, так что мы возвращаемся к известному уже нам закону сохранения момента
М = mr 2 = const. (14.2)
Заметим, что для плоского движения одной частицы в центральном поле этот закон допускает простую геометрическую интерпретацию. Выражение (1/2)r•rdφ представляет собой площадь сектора, образованного двумя бесконечно близкими радиус-векторами и элементом дуги траектории (рис. 8).
Рис. 8
Обозначив ее как dƒ, напишем момент частицы в виде
М = 2m, (14.3)
где производную называют векториальной скоростью. Поэтому сохранение момента означает постоянство секториальной скорости за равные промежутки времени радиус-вектор движущейся точки описывает равные площади (так называемый второй закон Кеплера).
Полное решение задачи о движении частицы в центральном поле проще всего получить, исходя из законов сохранения энергии и момента, не выписывая при этом самих уравнений движения. Выражая через М из (14.2) и подставляя в выражение для энергии, получим
E = (2 + r 2 2) + U(r ) = + + U (r ). (14.4)
Отсюда
≡ = (14.5)
или, разделяя переменные и интегрируя
t = + const. (14.6)
Далее, написав (14.2) в виде
d φ = dt,
подставив сюда dt из (14.5) и интегрируя, находим
φ = + const. (14.7)
Первый закон Кеплера.
Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце. Форма эллипса и степень его сходства с окружностью характеризуется отношением , где расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), большая полуось. Величина называется эксцентриситетом эллипса. При , и, следовательно, эллипс превращается в окружность
Второй закон Кеплера.
Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.
Применительное к нашей Солнечной системе, с этим законом связаны два понятия: перигелий ближайшая к Солнцу точка орбиты, иафелий наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.
Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.
Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.
, где и периоды обращения двух планет вокруг Солнца, а и длины больших полуосей их орбит.
Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен в действительности в него входит и масса планеты: , где масса Солнца, а и массы планет.
Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.
Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X(t), изменяющего по гармоническому закону:
Если рассматривать механические колебания, то роль X(t) играет внешняя вынуждающая сила
(147.1)
С учетом (147.1) закон движения для пружинного маятника (146.9) запишется в виде
Используя (142.2) и (146.10), придем к уравнению
(147.2)
Если рассматривать электрический колебательный контур, то роль X(t) играет подводимая к контуру внешняя периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение
(147.3)
Тогда уравнение (143.2) с учетом (147.3) можно записать в виде
Используя (143.4) и (146.11), придем к уравнению
(147.4)
Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.
Уравнения (147.2) и (147.4) можно свести к линейному неоднородному дифференциальному уравнению
(147.5)
применяя впоследствии его решение для вынужденных колебаний конкретной физической природы (x0 в случае механических колебаний равно F0/m, в случае электромагнитных Um/L).
Решение уравнения (147.5) равно сумме общего решения (146.5) однородного уравнения (146.1) и частного решения неоднородного уравнения. Частное решение найдем в комплексной форме. Заменим правую часть уравнения (147.5) на комплексную величину х0:
(147.6)
Частное решение этого уравнения будем искать в виде
Подставляя выражение для s и его производных в уравнение (147.6), получаем
(147.7)
Так как это равенство должно быть справедливым для всех моментов времени, то время t из него должно исключаться. Отсюда следует, что h=w. Учитывая это, из уравнения (147.7) найдем величину s0 и умножим ее числитель и знаменатель на
Это комплексное число удобно представить в экспоненциальной форме:
где
(147.8)
(147.9)
Следовательно, решение уравнения (147.6) в комплексной форме примет вид
Его вещественная часть, являющаяся решением уравнения (147.5), равна
(147.10)
где А и j задаются соответственно формулами (147.8) и (147.9).
Таким образом, частное решение неоднородного уравнения (147.5) имеет вид
(147.11)
Решение уравнения (147.5) равно сумме общего решения однородного уравнения
(147.12)
(см. (146.5)) и частного решения (147.11). Слагаемое (147.12) играет существенную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, определяемого равенством (147.8). Графически вынужденные колебания представлены на рис. 209. Следовательно, в установившемся режиме вынужденные колебания происходят с частотой w и являются гармоническими; амплитуда и фаза колебаний, определяемые выражениями (147.8) и (147.9), также зависят от w.
Запишем формулы (147.10), (147.8) и (147.9) для электромагнитных колебаний, учитывая, что (см. (143.4)) и (см. (146.11)):
(147.13)
Продифференцировав Q=Qmcos(wta) по t, найдем силу тока в контуре при установившихся колебаниях:
(147.14)
где
(147.15)
Выражение (147.14) может быть записано в виде
где j=a p/2 сдвиг по фазе между током и приложенным напряжением (см. (147.3)). В соответствии с выражением (147.13)
(147.16)
Из формулы (147.16) вытекает, что ток отстает по фазе от напряжения (j>0), если wL>1/(wС), и опережает напряжение (j<0), если wL<1/(wС).
Формулы (147.15) и (147.16) можно также получить с помощью векторной диаграммы.