Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Приведенные ниже теоретические сведения могут быть полезны при подготовке к лабораторным работам 6, 7, 8 в лаборатории "Электричество и магнетизм". Для более подробного изучения рекомендуем учебник С. Г. Калашникова "Электричество" (Москва, "Наука"-1985), на основе которого составлено данное методическое пособие.
Рассмотрим электрические колебания, возникающие в том случае, когда в цепи имеется генератор, электродвижущая сила которого изменяется периодически. Далее мы ограничимся изучением электрических цепей с сосредоточенными емкостями и индуктивностями и будем считать переменные токи квазистационарными. Квазистационарность означает, что мгновенные значения силы тока i практически одинаковы во всех участках последовательной цепи. Это условие будет выполнено, если за время прохождения сигнала по цепи (-длина цепи, c - скорость света) сила тока меняется незначительно (, где T - период колебаний). Если принять l = 1 м, то токи можно считать квазистационарными при частотах 300 МГц.
Будем рассматривать только такие токи, которые изменяются по синусоидальному закону. Это объясняется несколькими причинами. Во-первых, многие технические генераторы переменного тока имеют ЭДС, изменяющуюся по закону, близкому к синусоидальному, и потому создаваемые ими токи практически являются синусоидальными. Во-вторых, теория синусоидальных токов особенно проста, и поэтому на примере таких токов можно легко выяснить основные особенности электрических колебаний. В-третьих, согласно известной математической теореме Фурье всякая функция довольно общего вида может быть представлена в виде суммы синусоидальных функций. Поэтому теория синусоидального тока позволяет получать важные результаты и для тока, изменяющегося во времени по произвольному (несинусоидальному) закону.
Наконец, везде, где это не отмечено особо, будем считать, что колебания являются установившимися. Иными словами, будем предполагать, что с момента начала колебаний прошло достаточно большое время, так что амплитуды тока и напряжения уже достигли своих постоянных значений и далее не изменяются.
Рассмотрим сначала частный случай, когда генератор переменного тока замкнут на внешнюю цепь, имеющую настолько малые индуктивность и емкость, что ими можно пренебречь. Предположим, что в цепи имеется переменный ток
,
(i - мгновенное значение силы тока, - амплитуда тока, - циклическая частота) и найдем, по какому закону изменяется напряжение между концами цепи а и b (рис.1) . Применяя к участку аRb закон Ома, получим
.
Таким образом, напряжение на концах участка цепи зависит от времени также по закону косинуса, причем разность фаз между колебаниями тока и напряжения равна нулю (их колебания происходят синфазно): напряжение и ток одновременно достигают максимальных значений и одновременно обращаются в нуль (рис.2). Максимальное значение напряжения есть
.
Рис.1. Резистор в цепи переменного тока |
Рис.2. Зависимости тока через резистор и напряжения от времени |
Рассмотрим теперь, чему равна работа, совершаемая в цепи. В течение малого промежутка времени переменный ток можно рассматривать как постоянный, и поэтому мгновенная мощность переменного тока
.
Рис.3. Зависимости тока через резистор , напряжения и мгновенной мощности от времени
Изменение мгновенной мощности с течением времени изображено на рис.3. Здесь же даны кривые колебаний тока i и напряжения u. Обычно необходимо знать не мгновенное значение мощности, а ее среднее значение за большой промежуток времени, охватывающий много периодов колебаний. Так как мы имеем дело с периодическим процессом, то для нахождения этого среднего значения достаточно, очевидно, вычислить среднее значение мощности за один полный период. Работа переменного тока за малое время dt есть
,
а, следовательно, работа A за время полного периода колебаний T выражается формулой
.
Но
.
Поэтому . Отсюда для средней мощности получаем
.
Так как , то можно также записать
.
Обозначим через и силу тока и напряжение постоянного тока, который выделяет в сопротивлении R то же количество теплоты, что и данный переменный ток. Тогда
.
Сравнивая эти выражения с выражениями для мощности переменного тока, имеем
.
Величина называется эффективным (или действующим) значением силы переменного тока, а - эффективным значением напряжения. Пользуясь эффективными значениями, можно выразить среднюю мощность переменного тока теми же формулами, что и мощность постоянного тока.
Положим теперь, что участок цепи содержит конденсатор емкости C, причем сопротивлением и индуктивностью участка можно пренебречь, и посмотрим, по какому закону будет изменяться напряжение на концах участка в этом случае. Обозначим напряжение между точками а и b через u и будем считать заряд конденсатора q и силу тока i положительными, если они соответствуют рис.4. Тогда
,
и, следовательно,
.
Если сила тока в цепи изменяется по закону
, (1)
то заряд конденсатора равен
.
Постоянная интегрирования q0 здесь обозначает произвольный постоянный заряд конденсатора, не связанный с колебаниями тока, и поэтому мы положим . Следовательно,
. (2)
Рис.4. Конденсатор в цепи переменного тока |
Рис.5. Зависимости тока через конденсатор и напряжения от времени |
Сравнивая (1) и (2), мы видим, что при синусоидальных колебаниях тока в цепи напряжение на конденсаторе изменяется также по закону косинуса. Однако колебания напряжения на конденсаторе отстают по фазе от колебаний тока на p/2. Изменения тока и напряжения во времени изображены графически на рис.5. Полученный результат имеет простой физический смысл. Напряжение на конденсаторе в какой-либо момент времени определяется существующим зарядом конденсатора. Но этот заряд был образован током, протекавшим предварительно в более ранней стадии колебаний. Поэтому и колебания напряжения запаздывают относительно колебаний тока.
Формула (2) показывает, что амплитуда напряжения на конденсаторе равна
.
Сравнивая это выражение с законом Ома для участка цепи с постоянным током (), мы видим, что величина
играет роль сопротивления участка цепи, она получила название емкостного сопротивления. Емкостное сопротивление зависит от частоты w, и при высоких частотах даже малые емкости могут представлять совсем небольшое сопротивление для переменного тока. Важно отметить, что емкостное сопротивление определяет связь между амплитудными, а не мгновенными значениями тока и напряжения.
Мгновенная мощность переменного тока
меняется со временем по синусоидальному закону с удвоенной частотой. В течение времени от 0 до T/4 мощность положительна, а в следующую четверть периода ток и напряжение имеют противоположные знаки и мощность становится отрицательной. Поскольку среднее значение за период колебаний величины равно нулю, то средняя мощность переменного тока на конденсаторе .
Рассмотрим, наконец, третий частный случай, когда участок цепи содержит только индуктивность. Обозначим по-прежнему через U напряжение между точками а и б и будем считать ток I положительным, если он направлен от а к б (рис.6). При наличии переменного тока в катушке индуктивности возникнет ЭДС самоиндукции, и поэтому мы должны применить закон Ома для участка цепи, содержащего эту ЭДС:
.
В нашем случае R = 0, а ЭДС самоиндукции
.
Поэтому
. (3)
Если сила тока в цепи изменяется по закону
,
то
. (4)
Рис.6. Катушка индуктивности в цепи переменного тока |
Рис.7. Зависимости тока через катушку индуктивности и напряжения от времени |
Видно, что колебания напряжения на индуктивности опережают по фазе колебания тока на p/2. Когда сила тока, возрастая, проходит через нуль, напряжение уже достигает максимума, после чего начинает уменьшаться; когда сила тока становится максимальной, напряжение проходит через нуль, и т.д. (рис.7).
Из (4) следует, что амплитуда напряжения равна
,
и , следовательно, величина
играет ту же роль, что сопротивление участка цепи. Поэтому называют индуктивным сопротивлением. Индуктивное сопротивление пропорционально частоте переменного тока, и поэтому при очень больших частотах даже малые индуктивности могут представлять значительное сопротивление для переменных токов.
Мгновенная мощность переменного тока
также, как и в случае идеальной емкости, меняется со временем по синусоидальному закону с удвоенной частотой. Очевидно, что средняя за период мощность равна нулю.
Таким образом, при протекании переменного тока через идеальные емкость и индуктивность обнаруживается ряд общих закономерностей:
где X - реактивное (емкостное или индуктивное сопротивление). Важно иметь в виду, что это сопротивление связывает между собой не мгновенные значения тока и напряжения, а только их максимальные значения. Реактивное сопротивление отличается от омического (резистивного) сопротивления еще и тем, что оно зависит от частоты переменного тока.
Резистивный элемент, который описывается в рассматриваемом частотном диапазоне законом Ома для мгновенных токов и напряжений
,
называют омическим или активным сопротивлением. На активных сопротивлениях происходит выделение мощности.
Пользуясь полученными выше результатами, можно найти соотношения между колебаниями тока и напряжения в любой цепи. Рассмотрим последовательное соединение резистора, конденсатора и катушки индуктивности (рис. 8.).
Рис.8. Последовательное соединение резистора, конденсатора и катушки индуктивности |
Рис.9. Векторная диаграмма |
Положим по-прежнему, что ток в цепи изменяется по закону
,
и вычислим напряжение между концами цепи u. Так как при последовательном соединении проводников складываются напряжения, то искомое напряжение u есть сумма трех напряжений: на сопротивлении , на емкости и на индуктивности , причем каждое из этих напряжений, как мы видели, изменяется со временем по закону косинуса:
, (5)
, (6)
. (7)
Для сложения этих трех колебаний воспользуемся векторной диаграммой напряжений. Колебания напряжения на сопротивлении изображаются на ней вектором , направленным вдоль оси токов и имеющим длину , колебания же напряжений на емкости и индуктивности - векторами и , перпендикулярными к оси токов, с длинами (Im/wC) и (ImwL) (рис.9.). Представим себе, что эти векторы вращаются против часовой стрелки вокруг общего начала с угловой скоростью w. Тогда проекции на ось токов векторов , и , будут описываться соответственно формулами (5)-(7). Очевидно, что проекция на ось токов суммарного вектора
равна сумме , то есть равна общему напряжению на участке цепи. Максимальное значение этого напряжения равно модулю вектора . Эта величина легко определяется геометрически. Сначала целесообразно найти модуль вектора :
,
а затем по теореме Пифагора:
. (8)
Из рисунка также видно, что
. (9)
Для напряжения на участке цепи можно записать
,
где амплитуда напряжения и фазовый сдвиг между током и напряжением определяются формулами (8), (9). Если , то напряжение по фазе опережает ток, в противном случае - напряжение отстает по фазе.
Формула (8) имеет сходство с законом Ома в том смысле, что амплитуда напряжения пропорциональна амплитуде тока. Поэтому ее иногда называют законом Ома для переменного тока. Однако нужно помнить, что эта формула относится только к амплитудам, но не к мгновенным значениям и . Величину
называют сопротивлением цепи для переменного тока, величину
называют реактивным сопротивлением цепи, а величину R - активным сопротивлением.
Полученные формулы справедливы и для замкнутой цепи, включающей в себя генератор переменного напряжения, если под R, C и L понимать их значения для всей цепи (например R представляет собой суммарное активное сопротивление цепи, включая и внутреннее сопротивление генератора). В этом случае во всех формулах следует заменить u на ЭДС генератора. Действительно, для всех наших рассуждений было безразлично, в каком именно месте сосредоточены емкость, индуктивность и сопротивление, поэтому в замкнутой цепи (рис.8) мы можем считать, что представляет собой суммарное активное сопротивление цепи, включая и внутреннее сопротивление генератора, а и - емкость и индуктивность цепи, и заменить реальный генератор воображаемым, у которого внутреннее сопротивление равно нулю. При этом напряжение u между точками a и b будет равно ЭДС генератора . Отсюда следует, что формулы (8), (9) справедливы и для замкнутой цепи переменного тока, если под , , и понимать их значения для всей цепи и заменить во всех формулах u на ЭДС генератора .
Положим, что в цепи, содержащей последовательно соединенные емкость , индуктивность и обладающей активным сопротивлением , действует переменная ЭДС, изменяющаяся по закону
.
Тогда согласно сказанному в предыдущем разделе, в цепи будет протекать переменный ток
,
амплитуда которого связана с амплитудой ЭДС законом Ома для переменного тока
, (10)
где - есть сопротивление всей цепи:
, (11)
а фазовый угол , на который колебания тока отстают от колебаний напряжения, определяется формулой (9).
Допустим теперь, что мы изменяем частоту колебаний . Как показывают формулы (9)-(11), это вызовет изменение и амплитуды тока , и сдвига фазы .
Остановимся сначала на изменениях амплитуды тока. Если , то . Тогда сопротивление цепи обращается в бесконечность и . Это и понятно, так как при мы имеем постоянный ток, а постоянный ток не проходит через конденсатор. При увеличении квадрат реактивного сопротивления сначала уменьшается. Поэтому и сопротивление уменьшается, а увеличивается. При частоте , определяемой условием
, (12)
реактивное сопротивление обращается в нуль, а сопротивление цепи становится наименьшим, равным активному сопротивлению цепи. Сила тока достигает при этом максимума. При квадрат реактивного сопротивления снова не равен нулю и увеличивается с возрастанием . В соответствии с этим сопротивление увеличивается, а амплитуда тока уменьшается, асимптотически приближаясь к нулю при увеличении .
Зависимость от , выражаемая формулами (10), (11) приведена на рис.10, где показаны две кривые, соответствующие различным значениям активного сопротивления . Чем меньше , тем выше и острее максимумы кривых.
Обратимся теперь к к сдвигу фаз между током и ЭДС. Из (9) видно, что при очень малых частотах, когда , очень велик и отрицателен, и, следовательно, . В этом случае ток опережает напряжение и цепь имеет емкостной характер. При возрастании частоты реактивное сопротивление , оставаясь отрицательным, уменьшается по абсолютной величине и разность фаз уменьшается. Когда , формула (9) дает , а значит, . При дальнейшем увеличении реактивное сопротивление становится положительным и увеличивается с возрастанием . Следовательно, при ток отстает от напряжения и цепь приобретает индуктивный характер, причем угол асимптотически стремится к предельному значению при увеличении частоты .
Рис.10. Амплитудно-частотная зависимость |
Рис.11. Фазово-частотная зависимость |
Зависимость сдвига фаз от частоты колебаний изображена графически на рис. 11. Также, как и , фазовый сдвиг зависит от активного сопротивления контура . Чем меньше , тем быстрее изменяется вблизи , и в предельном случае изменение фазы приобретает скачкообразный характер.
Резюмируя сказанное, мы видим, что особым является случай, когда частота ЭДС генератора (или приложенного внешнего напряжения) равна частоте . При этом амплитуда тока достигает максимального значения, а сдвиг фаз между током и напряжением равен нулю, или иными словами, контур действует как чисто активное сопротивление. Этот важный случай вынужденных колебаний называется резонансом напряжений.
Отметим, что частота , при которой наступает резонанс равна частоте собственных колебаний контура без активного сопротивления (без затухания).
Найдем теперь, чему равны амплитуда колебаний напряжения на конденсаторе и фазовый сдвиг между этими колебаниями и колебаниями приложенного к контуру напряжения. Амплитуда напряжения на конденсаторе
, (13)
где - коэффициент затухания контура. Фазовый сдвиг между колебаниями напряжения на конденсаторе и колебаниями приложенной ЭДС, как следует из рис.9, равен
, . (14)
Основные качественные особенности зависимостей и приведены в теоретической части описания лабораторной работы "Вынужденные колебания в последовательном колебательном контуре".
144
PAGE 145