Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
24
Національна академія наук України
Інститут кібернетики імені В.М. Глушкова
ДОНЧЕНКО Володимир Степанович
МНОЖИННИЙ ПІДХІД ДО ОПИСУ НЕВИЗНАЧЕНОСТІ В МАТЕМАТИЧНОМУ МОДЕЛЮВАННІ
01.05.02 математичне моделювання та обчислювальні методи
Автореферат
дисертації на здобуття наукового ступеня
доктора фізико-математичних наук
Київ 2007
Дисертацією є рукопис.
Робота виконана на кафедрі системного аналізу та теорії прийняття рішень факультету кібернетики Київського національного університету імені Тараса Шевченка.
Науковий консультант: |
доктор фізико-математичних наук, професор Кириченко Микола Федорович, Інститут кібернетики ім. В.М. Глушкова НАН України, провідний науковий співробітник |
Офіційні опоненти: |
доктор фізико-математичних наук, професор, академік НАН України Королюк Володимир Семенович, Інститут математика НАН України, |
доктор фізико-математичних наук, професор Кнопов Павло Соломонович, Інститут кібернетики ім. В.М. Глушкова НАН України, завідувач відділу математичних методів дослідження операцій, |
|
доктор фізико-математичних наук, професор Сопронюк Федір Олексійович, Чернівецький національний університет ім. Ю. Федьковича, факультет компютерних наук, декан |
|
Провідна установа: |
Інститут космічних досліджень НАН України та НКАУ, відділ системного аналізу та керування, м. Київ |
Захист відбудеться “ 8 ” червня 2007 р. об 11 годині на засіданні спеціалізованої вченої ради Д 26.194.02 при Інституті кібернетики
ім. В.М. Глушкова НАН України за адресою:
03680, МСП, Київ-187, проспект Академіка Глушкова, 40.
З дисертацією можна ознайомитися в науково-технічному архіві інституту
Автореферат розісланий |
“ 4 “ травня 2007 р. |
Учений секретар спеціалізованої вченої ради |
СИНЯВСЬКИЙ В.Ф. |
Загальна характеристика роботи
Актуальність теми. Розвиток та впровадження інформаційних техно-логій, систем штучного інтелекту неможливе без адекватного розвитку та вдосконалення методів математичного моделювання. Повною мірою це стосу-ється засобів математичного опису та моделювання невизначеності: від засобів статистичної обробки інформації, до обробки зображень, обробки мовних сигналів, теорії оптимального керування, засобів прогнозу особливо в умовах модельної невизначеності, систем підтримки прийняття рішень з відповідними областями застосування та технологічними засобами реалізації. Загалом, питання невизначеності в прикладних математичних дослідженнях є принци-повим і визначає, власне, метод дослідження конкретних систем та обєктів. Тому дослідження, повязані з вивченням природи невизначеності та розвитком засобів її математичного моделювання, набувають особливої актуальності.
Довгий час класичними методами, які використовувалися для опису невизначеності в математичному моделюванні обєктів, були статистичні (теоретико імовірнісні) методи та детерміновані в тому числі у вигляді методів розвязку „обернених” задач. Важливим у розвитку засобів опису невизначеності та побудовою адекватних засобів розвязання практичних задач були 5060-ті роки ХХ століття, коли бурхливий розвиток техніки, проми-слових технологій, та широке впровадження обчислювальної техніки в матема-тичному моделюванні призвів до появи й формування майже одночасно декількох нових напрямків опису та врахування невизначеності. Серед них є
Зазначимо, що саме з останнім із згаданих напрямків повязана поява терміну „множинні моделі невизначеності”, як характеризації невизначеності та джерела її появи. Значення цього терміну виходить за рамки області, в якій він зявився, тому що може бути основою погляду на джерела та характеризацію невизначеності загалом. Саме ця точка зору пропонується та обґрунтовується
у пропонованій дисертаційній роботі на основі концепції спостережень у вузь-кому сенсі, фіксації результатів спостережень та спостережень з керованими параметрами. Зазначимо, що предметом дисертаційної роботи є також розвиток теорії нечітких підмножин та створення математичного ґрунту для пере-творення Гока зображень, створення математичних засобів опису й оптимізації для задачі синтезу прогнозних засобів в умовах модельної невизначеності у вигляді „функціональних мереж”, що узагальнюють штучні нейронні мережі.
Важливість засобів опису невизначеності загалом та в рамках конкретних методів у математичному моделюванні визначає актуальність досліджень дисертаційної роботи.
Звязок роботи з науковими програмами, планами, темами. Результати досліджень, наведені в дисертації, увійшли складовою частиною до наукових тем, що виконувались у Київському національному університеті
імені Тараса Шевченка, і фінансувались з державного бюджету:
Крім того, наукові результати, представлені в роботі, впроваджені і зна-йшли своє відбиття в результатах теми ВФК.115.05 “Розробка високо-продуктивних інформаційних технологій прогнозу та розпізнавання ситуацій в системах прийняття рішень ”, що виконувалась в рамках наукової програми НАН України у відділі № 115 Інституту кібернетики ім. В.М. Глушкова НАН України, державний номер реєстрації 0102U003209, (20022006 рр.).
Мета і задачі дослідження полягають в обґрунтуванні та формуванні загальної концепції в погляді на джерела та прояви невизначеності у вигляді концепції „множинних моделей невизначеності”, розробці методів та засобів такого опису, дослідженню властивостей основних складових такого опису. Останнє стосується теорії нечітких множин, створення математичної теорії
Гок-перетворення: ПГ(с)-теорії (статистичної теорії перетворення Гока), вдосконалення засобів псевдообернення у математичному описі множинності розвязків лінійних систем для операторів у гільбертових просторах, розвитку методів градієнтної оптимізації для систем керування з дискретним часом з метою створення ефективних засобів синтезу та оптимізації прогнозних засобів для функцій, представлених своїми значеннями.
Наукова новизна. У дисертації особисто автором отримані такі нові результати:
Теоретична і практична цінність одержаних результатів полягає в тому, що запропонована автором концепція множинних моделей невизна-ченості дозволяє: з єдиних для різних засобів моделювання невизначеності позицій систематизувати джерела, витоки та прояви невизначеності; визначити місце та значення кожного із засобів в математичному моделюванні. Для класичної теорії нечітких підмножин отримані результати, які визначають роль та місце цієї теорії в рамках концепції множинних моделей невизначеності, що розширює рамки застосування нечіткого підходу використанням статистичних методів. Стає коректним питання про спостереження обєкта в рамках нечіткого його опису загалом та застосування статистичних методів в оці-нюванні характеристик нечіткості класичними статистичними методами. Запропонована математична теорія перетворення Гока для опису перетворення Гока зображень, в рамках такого формалізму досліджені статистичні властиво-сті основних елементів як у скалярному, так і в узагальнених варіантах розгляду.
Для узагальнених варіантів визначення перетворення Гока на основі псевдообернення запропоновані конструктивні методи оцінювання. Висунута
й обґрунтована загальна концепція Гок-пари просторів як одного із засобів опису невизначеності в рамках концепції множинних моделей невизначеності. Запропонований варіант перетворення у вигляді кластеризації за гіпер-площинами в евклідових та сепарабельних гільбертових просторах Наведені результати щодо перетворення Гока та його узагальнень надають можливість розглядати його як ще один метод опису невизначеності поза стандартними рамками застосування цього засобу.
Результати теоретичних досліджень можуть бути використані
Результати дисертації опубліковані у 71 публікації: 57 у наукових журналах, збірниках наукових праць та тезах 14 конференцій. Загалом результати були представлені на 20 конференціях. Всі основні результати дисертації отримані автором особисто і достатньо відображені в роботах.
Особистий внесок здобувача. Всі результати, які складають суть дисер-таційної роботи, отримані здобувачем самостійно. З праць, виконаних із спів-авторами, до захисту виносяться лише результати, отримані особисто здобувачем.
У роботах [15], виконаних спільно із В.М. Шпаком, В.С. Донченку належать постановка задачі та основні результати, В.С. Шпаку програмна реалізація та обчислення там, де це необхідно. У спільній роботі з
М.Ф. Кириченком [24] автору належать основні результати, М.Ф. Кириченку обговорення результатів; у спільній роботі з Ю.В. Козієм [26] автору належать постановка задачі та ідея дослідження, Ю.В. Козію розробка програм та обчи-слювальний експеримент. У спільних роботах з М.Ф. Кириченком та Ю.Г. Кри-воносом [25, 28] автору належать основні результати, М.Ф. Кириченку та
Ю.Г. Кривоносу обговорення результатів. У спільній роботі з М.Ф. Кири-ченком [29] автору належать результати, повязані із дослідженням розвязків задачі термінального спостереження, а також оптимізація синтезу, повязаного із заміною рядків у можливій матриці спостережень, та частина, повязана з досяжністю в нерівності Гьольдера для комбінованих норм, М.Ф. Кириченку результати щодо опису всіх можливих розвязків задачі термінального спостереження. У роботах [30, 36, 38, 39] В.С. Донченку належать дослідження динамічних систем із запізненням та загальний результат для них про спряжену систему, функцію Гамільтона та градієнтну оптимізацію.
Апробація результатів дисертації. Основні результати роботи доповідались і обговорювались на наукових конференціях та семінарах:
Публікації. Результати дисертації опубліковані в 39 статтях у наукових журналах та збірниках наукових праць, із них 6 у збірниках наукових праць конференцій та симпозіумів; 29 статей опубліковані у фахових виданнях за списком ВАК України, у тому числі 18 одноосібних робіт.
Структура та обсяг дисертації. Дисертація складається із вступу, чотирьох розділів, висновків, списку використаних джерел та додатку. Повний обсяг дисертації без додатку та списку використаної літератури складає
299 сторінок, у цілому 349 сторінок. Список використаної літератури налічує 309 найменувань.
ОСНОВНИЙ ЗМІСТ
У вступі обґрунтовується актуальність теми дисертації, формулюються мета й задачі дослідження, коротко викладено зміст дисертації та її основні результати, виділено їх новизну і практичну цінність.
Функції Гамільтона визначаються стандартним для теорії керування чином: для комбінованої
=,
для простої
H(p(k+1),x(k-s(k)),u(k),k)=, .
Спряжені системи та відповідні їм функції Гамільтона для досліджуваних систем керування із запізненням визначені таким чином, що для них вико-нуються аналоги класичних теорем теорії керування про градієнтну оптиміза-цію: теорема 4.11 та теорема 4.12 п. 4.3.
Теорема 4.11. За стандартних припущень неперервної диференційо-ваності за дійсними аргументами функцій, що визначають фазові переходи та функціонал якості, градієнти функціонала якості за керуваннями для комбіно-ваної системи визначаються градієнтами від відповідних функцій Гамільтона:
, .
Теорема 4.12. За неперервної диференційованості функцій, що визначають фазові переходи, та функціоналу якості градієнти функціонала якості за керуваннями для простої системи визначаються градієнтами від відповідних функції Гамільтона:
, .
У додаток А винесені доведення теорем про градієнтну оптимізацію для систем керування із запізненням з розділу 4 та розгляд і доведення варіантів нерівності Гьольдера для комбінованих норм і відповідних умов досяжності для різних варіантів комбінації просторів, за якими комбіновані норми будуються.
ВИСНОВКИ
У роботі запропонована та розвинута концепція „множинних моделей невизначеності” як загального підходу до опису невизначеності. Зазначений підхід розвиває концепцію множинних моделей невизначеності, що зявилася в рамках мінімаксного підходу. Концепція „множинних моделей невизначеності” дозволяє з єдиних методологічних позицій моделювати та досліджувати при-кладні задачі в умовах невизначеності, дозволяючи узгодженим чином охопити детермінований, статистичний, мінімаксний нечіткий (fuzzy), інтервальний підходи до опису та формалізації невизначеності в рамках концепції моделі спостережень з керованими параметрами, зокрема статистичної моделі спостережень з керованими параметрами. Запропонована в роботі концепція дозволяє визначити і відповідне місце для такого інженерного засобу обробки зображень як перетворення Гока для обробки зображень. В рамках розвиненої
в роботі концепції множинних моделей невизначеності запропонована статистична інтерпретація нечітких за Л. Заде підмножин, яка дає можливість вести мову про спостереження нечітких множин та застосовувати статистичні методи дослідження за їхнього застосування. Розвинений математичний формалізм для опису перетворення Гока як статистичного засобу. Досліджені статистичні властивості основних елементів опису за нескінченного збільшення кількості спостережень та зменшення геометричних розмірів зондуючих множин для різних варіантів просторів та параметричних сімейств відображень між ними.
Висунута та обґрунтована концепція Гок-пари просторів як абстрактного варіанта схеми перетворення Гока, досліджені властивості перетворення в рам-ках такої схеми. Засобами псевдообернення досліджений варіант перетворення Гока як засобу кластеризації за гіперплощинами в евклідових чи сепарабельних гільбертових просторах. Розвинуті математичні методи оптимізації синтезу засобів апроксимації та прогнозу функції, представленої своїми значеннями, що мають вигляд „функціональних мереж” спеціального вигляду і узагальнюють концепцію штучних нейромереж. Власне, йдеться про перенесення на системи керування з дискретним часом із запізненнями класичних результатів щодо спряженої системи, функції Гамільтона та диференціювання функціонала яко-сті за керуваннями.
Досліджена задача термінального спостереження за різних варіантів умов на завади та помилки, у тому числі в термінах комбінованих норм для ситуації повного опису множини можливих розвязків задачі. Важливу роль у дослід-женнях цієї задачі в роботі посідає застосування псевдообернення за Mooreом та Penroseом і розвитку відповідної техніки в роботах М.Ф. Кириченка.
В рамках запропонованої та розвиненої в роботі концепції множинних моделей невизначеності отримані наступні результати.
Отримані результати можуть бути застосовані:
ОСНОВНІ ПОЛОЖЕННЯ ДИСЕРТАЦІЇ ОПУБЛІКОВАНІ
В ТАКИХ ПРАЦЯХ
Інші.
Автор висловлює щиру подяку своєму науковому консультантові доктору фізико-математичних наук, професору Кириченку Миколі Федоровичу
за постановку та обговорення проблем досліджуваної області, прихильну увагу до роботи та корисні поради у її написанні та оформленні. Так само висловлюю щиру подяку всім, хто виявив увагу та щиру зацікавленість у обговоренні проблем, представлених у роботі.
АНОТАЦІЇ
Донченко В.С. Множинний підхід до опису невизначеності в матема-тичному моделюванні. Рукопис.
Дисертація на здобуття наукового ступеня доктора фізико-математичних наук за спеціальністю 01.05.02 математичне моделювання та обчислювальні методи. Інститут кібернетики ім. В.М. Глушкова НАН України, Київ, 2007.
Мета роботи розробка загального підходу до опису невизначеності
у вигляді концепції „множинних моделей невизначеності”, а також методів та засобів такого опису в рамках пропонованої концепції, дослідження вла-стивостей відповідних обєктів. Це стосується: запропонованої в роботі стати-стичної інтерпретації та модифікації визначення нечітких підмножин, математичній теорії Гок-перетворення та його використання на основі псевдо- обернення як засобу кластеризації за гіперплощинами в евклідових та сепара-бельних гільбертових просторах; розвитку методів градієнтної оптимізації для систем керування з дискретним часом з запізненням та їхнього використання для створення ефективних методів апроксимації функцій, представлених своїми спостереженнями.
Ключові слова: статистичні моделі спостережень, нечіткі підмножини, псевдообернення, перетворення Гока, кластеризація, системи керування із запізненнями.
Донченко В.С. Множественный подход к описанию неопределённости
в математическом моделировании. Рукопись.
Диссертация на соискание учёной степени доктора физико-математи-ческих наук по специальности 01.05.02 математическое моделирование и вы-числительные методы. Институт кибернетики им. В.М. Глушкова НАН Укра-ины, Киев, 2007.
Цель работы разработка общего похода к описанию неопределенности
в виде концепции множественных моделей неопределённости, а также конкрет-ных методов и способов описания неопределённости в рамках предложенной концепции, исследование свойств соответствующих объектов.
В работе предложен подход, который позволяет рассматривать источники и методы описания неопределённости в рамках единой концепции множест-венных моделей неопределённости. Указанная концепция в свою очередь использует представления о наблюдениях с управляемыми параметрами и фик-сации их результатов. Получены также результаты, развивающие конкретные методы описания неопределённости в рамках предложенной концепции.
В частности, представлены результаты, касающиеся статистической интер-претации функции принадлежности классического нечёткого подмножества как для дискретного варианта носителя Е, так и для случая, когда он представляет собой пространство с мерой. Предложена модификация опреде-ления нечёткого подмножества, в которой в определение функции принад-лежности введён объект нечёткого описания. Статистическая интерпретация
в рамках модифицированного определения даёт возможность говорить о на-блюдениях нечётких подмножеств, и, таким образом, обеспечивает возмож-ность применения статистических методов в рамках нечёткого подхода.
Важным направлением, развивающим методы и возможности иссле-дования объектов в условиях неопределённости, представленным в работе, является развитая в работе статистическая теория преобразования Хока
(ПХ (с)). Эта теория, лежащая в русле предложенной концепции множест-венных моделей неопределенности, позволяет рассматривать преобразование Хока из арсенала инженерных методов обработки изображений как статисти-ческий метод исследования неопределённости, в частности, в условиях, когда
в серии наблюдений присутствуют пары, представляющие разные (неизвест-ные) функции известного параметрического семейства.
Исследованы статистические свойства преобразования Хока для разных вариантов параметрических семейств отображений и разных вариантов про-странств, между которыми указанные отображения действуют. В частности, исследованы свойства основных элементов ПХ(с) при бесконечном увеличении числа наблюдений и при бесконечном уменьшении геометрических размеров множеств зондов, в том числе для семейств аффинных отображений между эвклидовыми и сепарабельними гильбертовыми пространствами, для простых
и сложных наблюдений. Для таких отображений предложен вариант ПХ в виде кластеризации по гиперплоскостям, к которым могут относиться элементы последовательности наблюдений.
Методами псевдообращения в работе получены явные формулы, опи-сывающие основные элементы задачи, предложен алгоритм кластеризации, реализующий соответствующие результаты. Кроме того, в работе в рамках ПХ(с) выдвинут и обоснован общий вариант преобразования Хока: подход на основе Хок-пары пространств, который позволяет строить теорию преобра-зования Хока без использования параметрических семейств, задающих двой-ственность между пространствами. Приведены и исследованы свойства ПХ для модельных примеров Хок-пар пространств, в том числе, и для наблюдений при наличии возмущений. Важными являются также те результаты работы, которые касаются создания математических методов описания в решении задачи син-теза и оптимизации специальных средств аппроксимации функций, представ-ленных своими значениями. Такими специальными средствами являются функции, построенные соединением в соответствии с определёнными правила-ми базовых функциональных элементов, аналогичных нейронам, в соответст-вии с графом, который можно назвать “функциональной сетью”. Базовые элементы, топология и композиция соединений строятся адаптивным образом
в процессе выполнения рекуррентной процедуры. Средством описания таких “функциональных сетей” являются дискретные системы управления с запаз-дыванием. Для двух типов этих систем управления, введенных в работе, получены результаты, касающиеся построения сопряжённых систем, постро-ения функций Гамильтона и соответствующие утверждения о выражении градиентов функционала качества по управлениям через функцию Гамильтона. Средствами псевдообращения получены также результаты, связанные с мно-жественностью всех решений (наличием “свободного параметра”) в задаче терминального наблюдения для систем управления с дискретным временем. Получены условия оптимальности для “свободного параметра” в минимаксной и среднеквадратической постановке.
Ключевые слова: статистические модели наблюдений, нечёткие под-
множества, псевдообращение, преобразование Хока, кластеризация, системы управления с запаздыванием.
Donchenko V.S. Plural approach to uncertainty description in the mathematical modelling. Manuscript.
Thesis for a doctor's degree of physics and mathematics by speciality 01.05.02 mathematical modelling and methods of calculations. Glushkov Institute of Cybernetics, NAS Ukraine, Kyiv, 2007.
The purpose of the work is to develop the conception of the plural model of the uncertainty as the general approach to its description as well as the concrete methods and tools of the uncertainty description within the conception proposed. These regard: to the statistical interpretation and modification of the fuzzy subsets proposed in the work; to the mathematical theory of the Hough Transform and to proposition to usу it as a clustering tool along a hyper planes in Euclidian space and in the separable Hilbert space on the base of the pseudo inverse; to the development of the gradient optimization methods for the beam dynamics with delay and proposition to use them for to construct efficient approximation methods for the functions, represented by its observations.
Key words: statistical observation models, Hough transform, Fuzzy subsets, pseudo inverse, clusterization, systems dynamics with delay.
Підп. до друку 24 .04.2007. Формат 6084/16.
Папір офс. Офс. друк .Ум. друк. арк. 1.86.
Ум. фарбо.-відб. 1.98. Обл.- вид. арк. 2.0.
Зам.57. Тираж 120 прим.
______________________________________________________
Редакційно-видавничий відділ з поліграфічною дільницею
²íñòèòóòу ê³áåðíåòèêè ³ìåí³ Â.Ì. Ãëóøêîâà ÍÀÍ Óêðà¿íè,
03680 ÌÑÏ, Êè¿â-187, ïðîñïåêò Àêàäåì³êà Ãëóøêîâà, 40.