Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Модель - материальный объект, система математических зависимостей или программа, имитирующая структуру или функционирование исследуемого объекта.
Моделирование - представление различных характеристик поведения физической или абстрактной системы с помощью другой системы.
Математическое моделирование - метод исследования процессов и явлений на их математических моделях.
Изучение компьютерного математического моделирования открывает широкие возможности для осознания связи информатики с математикой и другими науками - естественными и социальными. Компьютерное математическое моделирование в разных своих проявлениях использует практически весь аппарат современной математики.
Математическое моделирование не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограничены и, как правило, эти методы гораздо сложнее численных. В компьютерном моделировании доминируют численные методы, реализуемые на компьютерах. Однако понятия "аналитическое решение" и "компьютерное решение" отнюдь не противостоят друг другу, так как:
а) все чаще компьютеры при математическом моделировании используются не только для численных расчетов, но и для аналитических преобразований:
б) результат аналитического исследования математической модели часто выражен столь сложной формулой, что при взгляде на нее не складывается восприятия описываемого ей процесса. Эту формулу нужно представить графически, проиллюстрировать в динамике, иногда даже озвучить, т.е. проделать то, что называется "визуализацией абстракций". При этом компьютер - незаменимое техническое средство.
К классификации математических моделей можно подходить по-разному, положив в основу классификации различные принципы.
Пример.
Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле.
Имитационная модель - описание системы и ее поведения, которое может быть реализовано и исследовано в ходе операций на компьютере.
Имитационное моделирование - исследование поведения сложной системы на ее модели.
Можно сказать, что чаще всего имитационное моделирование применяется для того, чтобы описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и четко сформулировано. Математическое описание тогда сводится к уровню статистической обработки результатов моделирования при нахождении макроскопических характеристик системы. Такой компьютерный эксперимент фактически претендует на воспроизведение натурного эксперимента.
Имитационное моделирование позволяет осуществить проверку гипотез, исследовать влияние различных факторов и параметров.
Здесь мы рассмотрим процесс компьютерного математического моделирования, включающий численный эксперимент с моделью (рис. 6.1).
Рис. 6.1 - Общая схема процесса компьютерного математического моделирования
Первый этап - определение целей моделирования.
Основные из них таковы:
Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был вполне безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.
Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если относительно легко ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве, то несравненно труднее проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.
Составим список величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Обозначим первые (входные) величины через x1, х2, ..., хn; вторые (выходные) через y1,y2,...,yk.
Символически поведение объекта или процесса можно представить в виде: yj = Fj(x1, х2, ..., хn) (j =1,2 ,... , k),
где F - те действия, которые следует произвести над входными параметрами, чтобы получить результаты.
Входные параметры, могут быть известны "точно", т.е. поддаваться (в принципе) измерению однозначно и с любой степенью точности - тогда они являются детерминированными величинами. Так, в классической механике, сколь сложной ни была бы моделируемая система, входные параметры детерминированы - соответственно, детерминирован, однозначно развивается во времени процесс эволюции такой системы.
Однако в природе и обществе гораздо чаще встречаются процессы иного рода, когда значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры, являются вероятностными (стохастическими), и, соответственно, таким же является процесс эволюции системы (случайный процесс).
"Случайный" - не значит "непредсказуемый"; просто характер исследования, задаваемых вопросов резко меняется (они приобретают вид "С какой вероятностью...", "С каким математическим ожиданием..."и т.п.). Примеров случайных процессов не счесть как в науке, так и в обыденной жизни (силы, действующие на летящий самолет в ветреную погоду, переход улицы при большом потоке транспорта и т.д.).
Для стохастической модели выходные параметры могут быть как величинами вероятностными, так и однозначно определяемыми.
Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием (разделением по рангам). Чаще всего невозможно (да и не нужно) учитывать все факторы, которые могут повлиять на значения интересующих нас величин у.
От того, насколько умело выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективность достижения цели. Выделить более важные (или, как говорят, значимые) факторы и отсеять менее важные может лишь специалист в той предметной области, к которой относится модель.
Отбрасывание (по крайней мере при первом подходе) менее значимых факторов огрубляет объект моделирования и способствует пониманию его главных свойств и закономерностей. Умело ранжированная модель должна быть адекватна исходному объекту или процессу в отношении целей моделирования. Обычно определить, адекватна ли модель, можно только в процессе экспериментов с ней, анализа результатов.
Следующий этап - поиск математического описания. На этом этапе необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстает перед нами в виде уравнения, системы уравнений, системы неравенств, дифференциального уравнения или системы таких уравнений и т.д.
Когда математическая модель сформулирована, выбирается метод ее исследования. Как правило, для решения одной и той же задачи есть несколько конкретных методов, различающихся эффективностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса.
Разработка алгоритма и составление программы для ЭВМ - это творческий и трудноформализуемый процесс. В настоящее время при компьютерном математическом моделировании часто используются приемы процедурно-ориентированного (структурного) программирования.
При создании имитационной модели можно также воспользоваться возможностями одного из пакетов математической поддержки (MATHEMATICA, MathCad, MathLab и др).
В настоящее время существуют проблемно-ориентированные имитационные языки, в которых объединяются различные альтернативные подходы, и которые самой своей структурой определяют возможную схему действий разработчика модели. Характерным примером такого рода является имитационный язык СЛАМ II (SLAM - Simulating Language for Alternative Modeling имитационный язык для альтернативного моделирования).
После составления программы решаем с ее помощью простейшую тестовую задачу (желательно, с заранее известным ответом) с целью устранения грубых ошибок. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. По существу, тестирование может продолжаться долго и закончиться тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.
Затем следует собственно численный эксперимент, и выясняется, соответствует ли модель реальному объекту (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментальными с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.
Моделирование случайных процессов - мощнейшее направление в современном математическом моделировании.
Событие называется случайным, если оно достоверно непредсказуемо. Случайность окружает наш мир и чаще всего играет отрицательную роль в нашей жизни. Однако есть обстоятельства, в которых случайность может оказаться полезной. В сложных вычислениях, когда искомый результат зависит от результатов многих факторов, моделей и измерений, можно сократить объем вычислений за счет случайных значений значащих цифр.
При вероятностном моделировании используют различные методы, которые позволяют решать задачи из различных областей. Ниже перечислены сферы применения вероятностных методов.
Метод статистического моделирования: решение краевых задач математической физики, решение систем линейных алгебраических уравнений, обращение матриц и сводящиеся к ним сеточные методы решения систем дифференциальных уравнений, вычисление кратных интегралов, решение интегральных уравнений, задач ядерной физики, газовой динамики, фильтрации, теплотехники.
Метод имитационного моделирования: моделирование систем массового обслуживания, задачи АСУ, АСУП и АСУТП, задачи защиты информации, моделирование сложных игровых ситуаций и динамических систем.
Метод стохастической аппроксимации: рекуррентные алгоритмы решения задач статистического оценивания.
Метод случайного поиска: решение задач оптимизации систем, зависящих от большого числа параметров, нахождение экстремумов функции большого числа переменных.
Другие методы: вероятностные методы распознавания образов, модели адаптации, обучения и самообучения.
При компьютерном математическом моделировании случайных процессов нельзя обойтись без наборов так называемых случайных чисел, удовлетворяющих заданному закону распределения. На самом деле эти числа генерирует компьютер по определенному алгоритму, т.е. они не являются вполне случайными хотя бы потому, что при повторном запуске программы с теми же параметрами последовательность повторится; такие числа называют "псевдослучайными".
Для не слишком требовательного пользователя обычно достаточны возможности датчика (генератора) случайных чисел, встроенного в большинство языков программирования. Так, в языке Паскаль есть функция random, значения которой - случайные числа из диапазона [0, 1]. Ее использованию обычно предшествует использование процедуры randomize, служащей для начальной 'настройки" датчика, т.е. получения при каждом из обращений к датчику разных последовательностей случайных чисел. Для задач, Решение которых требует очень длинных некоррелированных последовательностей, вопрос осложняется и требует нестандартных
Для анализа производственных систем, которые очень сложны, разноплановы, не имеют исчерпывающего математического описания, а также проходят ряд этапов проектирования, реализации и развития, адекватные математические модели, будь то логические или числовые, построить не представляется возможным. Естественным здесь является использование методов имитационного моделирования.
Система может быть однозначно описана набором значений производственных параметров, характерных для каждого конкретного ее состояния. Если эти значения внести в компьютер, то изменения их в ходе вычислительного процесса можно интерпретировать как имитацию перехода системы из одного состояния в другое. При таких предположениях имитационное моделирование можно рассматривать как динамическое представление системы путем продвижения ее одного состояния к другому по характерным для нее операционным правилам.
При имитационном моделировании производственных систем изменения их состояния происходят в дискретные моменты времени. Основная концепция имитационного моделирования системы и в этом случае состоит в отображении изменений ее состояния с течением времени. Таким образом, здесь определяющим является выделение и однозначное описание состояний моделируемой системы.
Имитационные модели позволяют без использования каких-либо аналитических или других функциональных зависимостей отображать сложные объекты, состоящие из разнородных элементов, между которыми существуют разнообразные связи. В эти модели может быть включен также и человек.
Без принципиальных усложнений в такие модели могут быть включены как детерминированные, так и стохастические потоки (материальные и информационные). С помощью имитационного моделирования можно отображать взаимосвязи между рабочими местами, потоками материалов и изделий, транспортными средствами и персоналом.
Несмотря на такие очевидные преимущества, прежде всего заключающиеся в широте и универсальности применения, при этом методе из вида упускается существование логических связей, что исключает возможность полной оптимизации получаемых на этой модели решений. Гарантируется лишь возможность отбора лучшего из просмотренных вариантов.
Практически же имитационное моделирование во многих реальных случаях - единственно возможный способ исследования. После разработки имитационной модели с ней проводятся компьютерные эксперименты, которые позволяют сделать выводы о поведении производственной системы.
Появление и развитие методов компьютерного имитационного моделирования стало возможным также и в результате развития метода статистических испытаний, позволившего моделировать случайные события и процессы, занимающие большое место в реальных производствах.
При составлении имитационной модели и проведении с ее помощью моделирования исследуемого объекта необходимо решение нескольких связанных между собой задач. К ним относятся:
PAGE 1