У вас вопросы?
У нас ответы:) SamZan.net

1] Схема установки [0.html

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

Оглавление

Центробежные насосы

[0.0.1] Центробежные насосы

[0.1] Общие сведения

[0.1.1] Схема установки

[0.1.2] Область применения

[0.1.3] Обозначения

[0.2] Конструкция центробежного насоса

[0.2.1] Конструкция ступени

[0.2.2] Осевые опоры и радиальные подшипники вала насоса

[0.2.3] Типы и конструкция погружных электродвигателей

[0.2.4] Конструкция кабельного ввода

[0.2.5] Газосепараторы.

[0.2.6] Гидрозащита

[0.2.7] Кабель

[0.3] Поверхностное оборудование

[0.3.1] Станции управления

[0.3.2] Трансформаторы

[0.4] Устьевая арматура УЭЦН

[0.4.1] Конструкция вывода кабеля

[0.4.2] Устьевая арматура

[0.4.3] Оборудование для монтажа и заправки маслом узлов УЭЦН на устье скважины

[0.5] Основные положения методики подбора УЭЦН к нефтяной скважине.

[0.6] Общие сведения

[0.6.1] Принцип действия

[0.6.2] Схема и комплектация

[0.6.3] Обозначение

[0.7] Конструкция

[0.7.1] Эксцентриковые муфты

[0.7.2] Предохранительный и перепускной клапаны

[0.7.3] Характеристика насоса

[0.8] Состав оборудования. Принцип действия. Схема установки

[0.9] Характеристика

[0.10] Принцип действия гидропоршневого насоса

[0.11] Наземное оборудование.

[0.12] Принцип действия

[0.12.1] Список литературы

УСТАНОВКИ УЭЦН

Общие сведения

Схема установки

Рис. 1. Схема установки скважинного

   центробежного насоса с электроприводом

1—компенсатор; 2 — погружной электродвигатель;  3 — гидрозащита; 4 — приемная сетка насоса;

5 — насос; 6 — плоский кабель; 7 — обратный клапан;  8 — хомут,  крепящий кабель к трубам;

9 — спускной клапан; 10 — круглый кабель;  11— колонна НКТ;  12 — оборудование устья;

13 — опоры кабеля;  14 — трансформатор;

15 — станция управления

Скважинный насос многоступенчатый и имеет до 80-400 ступеней. Жидкость поступает в насос через сетку, расположенную в его нижней части. Насос подает жидкость из скважины в НКТ. Погружной электродвигательмаслозаполненный, герметизированный. Для предотвращения попадания в него пластовой воды имеется узел гидрозащиты. Вал двигателя соединен с валом гидрозащиты и через него с валом насоса.

Электроэнергия с поверхности к двигателю подается по кабелю. Рядом с НКТ идет круглый, а около насосного агрегата - плоский кабель. Использование плоского кабеля позволяет несколько увеличить диаметр насоса и двигателя.

Автотрансформатор или трансформатор применяют для повышения напряжения тока, получаемого от промысловой сети (обычно 380 В). У двигателя напряжение обычно больше (400-2000 В). Кроме  того необходимо скомпенсировать снижение напряжения в длинном кабеле.

Станция управления позволяет включать и отключать установку и имеет приборы, показывающие силу тока и напряжение.

Колонна НКТ оборудуется обратным 7 и спускным 9 клапанами. Обратный клапан размещается в специальной муфте, конические резьбы по концам которой позволяют встроить ее в НКТ. Обратный клапан позволяет при остановках насоса сохранить в колонне НКТ жидкость. Запуск происходит при заполненной жидкостью колонне подъемных труб, т. е. при большом напоре. При больших напорах центробежный насос требует меньшей приводной мощности. Спускной клапан позволяет освободить колонну труб от жидкости перед подъемом агрегата из скважины, если в колонне установлен обратный клапан. Установки ЭЦН разработаны для скважин с обсадными колоннами 146 и 168 мм. Для обсадных колонн каждого размера имеются погружные агрегаты двух габаритов.

Область применения

УЭЦН предназначен для добычи нефти из скважин со средним и высоким дебитом.

Для УЭЦН характерно:

  1.  Широкий диапазон подач:  Q = 10 – 1000 .
  2.  Напор: до 3500 (м).
  3.  Самый высокий КПД в области больших подач среди всех механизированных способов добычи:   при Q = 50 – 300 , но в области малых подач КПД резко падает.
  4.  В отличие от ШСНУ, УЭЦН менее подвержены влиянию кривизны ствола скважины в процессе эксплуатации.
  5.  Добыча высокообводнённого пластового флюида (до 99% воды).
  6.  УЭЦН плохо работают в условиях:
  •  коррозионно – агрессивной среды
  •  при выносе песка
  •  при повышенных температурах
  •  при высоком содержании газа

Показатели назначения по перекачиваемым средам следующие:

  •  среда — пластовая жидкость (смесь нефти, попутной воды и нефтяного газа);
  •  максимальная кинематическая вязкость однофазной жидкости, при которой обеспечивается работа насоса без изменения напора и кпд — 1 мм/с;
  •  водородный показатель попутной воды рН 6,0—8,5;
  •  максимальное массовое содержание твердых частиц — 0,01 % (0,1 г/л);
  •  микротвердость частиц — не более 5 баллов по Моосу;
  •  максимальное содержание попутной воды — 99%;
  •  максимальное содержание свободного газа у основания двигателя—25%, для установок с насосными модулями - газосепараторами (по вариантам комплектации) — 55 %, при этом соотношение в откачиваемой жидкости нефти и воды регламентируется универсальной методикой подбора УЭЦН к нефтяным скважинам (УМП ЭЦН-79);
  •  максимальная концентрация сероводорода: для установок обычного исполнения—0,001% (0,01 г/л); для установок коррозионностойкого исполнения—0,125% (1,25 г/л);
  •  температура перекачиваемой жидкости в зоне работы погружного агрегата — не более 90 °С.

 Обозначения

Все насосы делятся на две основные группы: обычного и износостойкого исполнения. Подавляющая часть действующего фонда насосов (около 95 %)  - обычного исполнения.

Насосы износостойкого исполнения предназначены для работы в скважинах, в продукции которых имеется небольшое количество песка и других механических примесей (до 1 % по массе).

По поперечным размерам все насосы делятся на 3 условные группы: 5, 5А и 6, что означает номинальный диаметр обсадной колонны, (в дюймах), в которую может быть спущен данный насос.

Группа 5 имеет наружный диаметр корпуса 92 мм, группа 5А - 103 мм и группа 6 - 114 мм. Частота вращения вала насосов соответствует частоте переменного тока в электросети. В России это частота  -  50 Гц, что дает синхронную скорость (для двухполюсной машины) 3000 мин-1. В шифре ПЦЭН заложены их основные номинальные параметры, такие как подача и напор при работе на оптимальном режиме. Например, ЭЦН5-40-950 означает центробежный электронасос группы 5 с подачей 40 м3/сут (по воде) и напором 950 м. ЭЦН5А-360-600 означает насос группы 5А с подачей 360 м3/сут и напором 600 м.

В шифре насосов износостойкого исполнения имеется буква И, означающая износостойкость. В них рабочие колеса изготовляются не из металла, а из полиамидной смолы (П-68). В корпусе насоса примерно через каждые 20 ступеней устанавливаются промежуточные резино-металлические центрирующие вал подшипники, в результате чего насос  износостойкого   исполнения имеет меньше ступеней и соответственно напор.

Конструкция центробежного насоса

Конструкция ступени

Рабочим органом скважинного центробежного насоса служит ступень насосная (СН) с цилиндрическими (ЦЛ) или наклонно- цилиндрическими лопатками (НЦЛ), состоящая из рабочего колеса и направляющего аппарата (рис. 2).

                                              Рис. 2. Ступень ЭЦН

Ступени с ЦЛ применяются на номинальные подачи до 125 м3/сут (включительно) в насосах с наружным диаметром 86 и 92 мм, до 160 м3/сут в насосах с диаметром 103 мм и до 250 м3/сут в насосах с диаметром 114 мм.

Ступени с НЦЛ применяются в насосах с большей подачей. В области своего применения ступени с НЦЛ имеют более высокий КПД и более, чем в 1,5 раза увеличенную подачу, чем ступени с ЦЛ в тех же диаметральных габаритах. Наружный диаметр ступеней 70, 80, 90 и 100 мм.

Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции насоса может размещаться от 39 до 200 ступеней в зависимости от их монтажной высоты. Максимальное количество ступеней в насосах достигает 550 штук.

Для возможности сборки ЭЦН с таким количеством ступеней и разгрузки вала от осевой силы применяется плавающее рабочее колесо. Рабочее колесо в насосе не фиксируется на валу в осевом направлении и удерживается от проворота призматической шпонкой. Колесо может свободно перемещаться в осевом направлении в промежутке, ограниченном опорными поверхностями направляющих аппаратов.

Колесо опирается на индивидуальную для каждой СН осевую опору, состоящую из опорного бурта направляющего аппарата предыдущей ступени и антифрикционной износостойкой шайбы, запрессованной в расточку рабочего колеса; при этом утечка через переднее уплотнение колеса практически равна нулю. Но механический КПД ступени с плавающим рабочим колесом снижается из-за потерь трения в нижней опоре колеса. Величина этих потерь в первом приближении пропорциональна осевой силе, действующей на рабочее колесо ступени.

Относительная характеристика ступени насоса представлена на рис. 3. Под относительной величиной понимается отношение фактической величины к соответствующей величине на оптимальном режиме, при котором КПД достигает максимального значения.

Рис. 3. Относительная характеристика ступени:

1— относительный КПД (Л);

2— относительный напор (Н);

3— относительная осевая сила (Р);

4—относительная мощность (N);

 q — относительная подача; Q — фактическая подача; 

Qo — оптимальная подача, соответствующая максимальному КПД

На режимах, примерно на 10% превышающих подачу нулевой осевой силы, рабочее колесо СН может «всплыть», т.е. переместиться вверх вплоть до упора, выполненного в виде верхней осевой опоры, состоящей из опорного бурта на направляющем аппарате и шайбы, запрессованной в расточку рабочего колеса. Всплытие рабочего колеса сопровождается скачкообразным снижением напора, КПД и резким повышение потребляемой мощности при увеличении подачи. При уменьшении подачи от режима открытой задвижки рабочее колесо может опускаться в нижнее положение при значениях относительной подачи q= 0,9-1,0.

Наиболее распространенный в настоящее время способ разгрузки колеса от осевой силы в ступенях с НЦЛ — создание при помощи выполненного у колеса второго верхнего уплотнения камеры за ведущим диском колеса, в котором давление с помощью отверстий в ведущем диске уравнивается с давлением у входа в колесо (рис. 4, а). Разгрузка рабочего колеса позволяет существенно снизить осевую силу. Такие ступени по сравнению с аналогичными ступенями с неразгруженными рабочими колесами имеют ряд преимуществ: повышенный ресурс работы индивидуальной нижней опоры рабочего колеса, увеличенный КПД

ступени.

Рис. 4. Конструкции ступеней:

а — с разгруженным рабочим колесом, б — двухопорная.

1 — корпус; 2 — направляющий аппарат; 3 — рабочее колесо

Недостатками ступеней с разгруженными рабочими колесами является усложнение технологии и повышение трудоемкости изготовления, функциональный отказ способа разгрузки при засорении разгрузочных отверстий и при износе верхнего уплотнения рабочего колеса.

Усиление пары индивидуальной осевой опоры и межступенного уплотнения СН может быть достигнуто применением двухопорной конструкции ступени (рис. 1.3, б). Двухопорная конструкция СН имеет по сравнению с одноопорной ступенью, повышенный ресурс индивидуальной нижней пяты ступени, более надежную изоляцию вала от абразивной и коррозионно-агрессивной протекающей жидкости, увеличенный ресурс работы и большую жесткость вала насоса из-за увеличенных осевых длин межступенных уплотнений, служащих в ЭЦН помимо уплотнения дополнительными радиальными подшипниками.

Двухопорная конструкция ступени по сравнению с одноопорной более трудоемка в изготовлении.

В погружном центробежном насосе для добычи нефти в зависимости от перекачиваемой продукции, в первую очередь, изнашиваются поверхности трения осевых и радиальных опор, в том числе осевых опор рабочих колес и радиальных межступен- ных уплотнений, а также поверхности каналов, контактирующие с потоком перекачиваемой жидкости. Повышение надежности и долговечности ступеней достигается путем уменьшения осевой силы, действующей на рабочие колеса, усиления пары трения осевой и радиальной опор, использования соответствующих износостойких и коррозионностойких материалов, уменьшением действия радиальных сил на ротор путем повышения точности изготовления, балансировки рабочих колес.

Ответственной с точки зрения повышения надежности СН является верхняя пята рабочего колеса. Рабочее колесо работает на верхней пяте кратковременно на пусковых режимах и на режимах, лежащих правее рекомендованного диапазона подач, т.е. в режимах возможного всплытия рабочего колеса. При нарушении правил эксплуатации — установлении рабочего режима регулированием подачи от открытой задвижки — всплывшее рабочее колесо может не опускаться в свое нижнее положение и продолжительное время будет работать на своей верхней пяте.

Условия трения в верхней пяте рабочего колеса менее благоприятные, чем условия трения нижней пяты из-за меньшего перепада давления в пяте, и, следовательно, худшей смазки поверхности трения.

Износ поверхности каналов СН, контактирующих с потоком жидкости, возникает в случае применения СН для перекачивания жидкостей, содержащих механические примеси, твердость которых превышает твердость материалов СН.

В насосах типа ЭЦН, ЭЦНИ и ЭЦНК используются ступени с одними и теми же проточными частями. Ступени в насосах разных исполнений отличаются друг от друга материалами рабочих органов, пар трения и некоторыми конструктивными элементами.

Осевые опоры и радиальные подшипники вала насоса

При работе насоса осевые усилия от рабочих колес передаются на направляющие аппараты и на корпус насоса.

При этом на вал насоса действует осевая сила от перепада давления на торец вала и осевая сила, действующая на рабочие колеса, прихваченные к валу из-за наличия в пластовой жидкости коррозионно-активных элементов и механических примесей. Для восприятия осевых сил, действующих на вал, в конструкции насоса предусмотрены осевые опоры.

Осевые усилия в таком насосе воспринимаются осевой опорой вала самого насоса (в отечественных конструкциях ЭЦН) или осевой опорой гидрозащиты (большая часть насосов импортного производства).

На рис. 5 показан скважинный центробежный насос в сборе. Осевое усилие, действующее на вал, воспринимается гидродинамической пятой 1. Вал 3 расположен в радиальных подшипниках скольжения 2 и 8. Радиальными подшипниками вала являются и опоры скольжения у втулок вала и внутреннего диаметра направляющих аппаратов 5 у каждой ступени. Крутящий момент передается от вала к рабочим колесам 7 через шпонку 6. Вся сборка ротора насоса размещена в корпусе 4 и сжата сверху корпусом подшипника 2, а внизу — основанием 10, на котором размещена приемная сетка 9. В верхней части насоса на корпус подшипника 2 навернута ловильная головка насоса, в которой имеется резьба для соединения с НКТ. Вал насоса соединяется с валом гидрозащиты шлицевой муфтой 11.

В секции или модуль-секции насоса (рис. 5) обычного исполнения применяется упорный подшипник или гидродинамическая пята (рис. 6), состоящий из кольца 1 с сегментами на обеих плоскостях, устанавливаемого между двумя гладкими шайбами 2, 3.

 

Рис. 5. Модуль-секция насоса

1 — головка; 2 — вал; 3 — опора; 4 — верхний подшипник; 5 — кольцо; 6 — направляющий аппарат; 7 — рабочее колесо; 8 — корпус; 9 — нижний подшипник; 10 — ребро; 11 — основание

Сегменты на шайбе пяты 1 выполнены с наклонной поверхностью с углом а = 5—7° и плоской площадкой длиной (0,5—0,7)L (где L — полная длина сегмента). Ширина сегмента В равна (1...1,4)Х. Для компенсации неточностей изготовления и восприятия ударных нагрузок под гладкие кольца помещены эластичные резиновые шайбы-амортизаторы 4, 5, запрессованные в верхнюю 6 и нижнюю 7 опоры. Осевая сила от вала передается через пружинное кольцо 8 опоры вала и дистанционную втулку 9 упорному подшипнику.

Рис 6. Упорный подшипник

Гидродинамическая пята выполнена с радиальными канавками, скосом и плоской частью на поверхности трения о подпятник. Она обычно изготавливается из бельтинга (технической ткани с крупными ячейками), пропитанного графитом с резиной и завулканизированного («запеченного») в пресс-форме. При вращении пяты жидкость идет от центра к периферии по канавкам, попадает под скос и нагнетается в зазор между плоскими частями подпятника и пяты. Таким образом, подпятник скользит по слою жидкости. Такое жидкостное трение (не в пусковом, а в рабочем режиме пяты) обеспечивает низкий коэффициент трения, незначительные потери энергии на трение в пяте, малый износ деталей пяты при достаточном осевом усилии, которое она воспринимает.

Радиальный подшипник ЭЦН воспринимает радиальные нагрузки, возникающие при работе насоса. Радиальный подшипник (рис. 7) состоит из опорной втулки с вкладышем 1, которые является неподвижными деталями и втулки 2, вращающейся вместе с валом. В каждой модуль-секции насоса обычного исполнения вал имеет два радиальных подшипника — верхний и нижний, а в модуль-секциях насосов износостойкого исполнения, кроме перечисленных радиальных подшипников, используются промежуточные радиальные опоры.

Рис. 7. Радиальный подшипник

Типы и конструкция погружных электродвигателей

Погружные электродвигатели, служащие для привода центробежных насосов, — асинхронные, с короткозамкнутыми роторами, маслоза- полненные. При частоте тока 50 Гц синхронная частота вращения их вала равна 3000 мин-1.

Двигатели, как и насосы, имеют малые диаметры, различные для скважин с обсадными колоннами 168 и 146 мм. Их мощность достигает 125 кВт. Напряжение тока у двигателей (400—2000 В) зависит от типоразмера двигателя. Рабочая сила тока 20—85 А, скольжение 6 %.

Малые диаметры и большие мощности вызывают необходимость увеличивать длину двигателей, которая иногда превышает 8 м.

       Погружной электродвигатель (рис. 8), как и всякий электродвигатель, имеет статор и ротор. Статор и ротор погружного электродвигателя секционные. Каждая секция длиной около 300 мм. Секция статора имеет набор магнитных жестей 9, по обе стороны которого имеется пакет немагнитных жестей 8, в последних расположены корпуса радиальных опор скольжения 7 вала 11. Секция ротора имеет набор жестей ротора 10 и втулки опор 7 вала. Жести статорных секций имеют отверстия для катушек обмотки статора. В жестях роторных секций расположена «беличья клетка». Статор запрессован в корпус 12. Ротор собран на валу 11. Число секций ротора и статора доходит до 12—15.  В верхней части двигателя имеется головка 2, в которой размещена осевая опора вала (детали 3 и 4) и подсоединение кабеля (кабельный ввод) 5. Вал двигателя в верхней части заканчивается шлицевой муфтой 1, соединяющей валы двигателя и гидрозащиты. В нижней части двигателя, в его основании 14, расположен фильтр 13 и клапаны, соединяющие полость двигателя с компенсатором, расположенным ниже двигателя.

Двигатель заполнен изоляционным сухим трансформаторным маслом. При большой длине статора двигателя масло в зазоре между статором и ротором перегревается. Для того чтобы избежать местного перегрева масла, в двигателе осуществляется его циркуляция. Вал двигателя имеет отверстие, по которому масло поступает от фильтра 13 к турбинке 6. Турбинка, вращаясь с валом, нагнетает масло из внутренней полости вала в верхнюю часть двигателя. Создается перепад давления масла, находящегося в верхней части двигателя и у фильтра. Масло движется сверху к фильтру по зазору между статором и двигателем.

       Рис. 8. Схема  погружного  электродвигателя

Таким образом уравнивается температура всего масла, заполняющего двигатель, и в то же время масло способствует отбору теплоты от перегретых частей двигателя. На своем пути масло подается и к радиальным опорам вала для их смазки.

Теплостойкость обмоточных проводов электродвигателя ограничивается 130 °С. С учетом перегрева двигателя за счет потерь энергии в нем температура окружающей среды ограничена у большинства двигателей 60—70 °С. Имеются отдельные двигатели, предназначенные для работы при температуре окружающей среды до 90 °С. Эта группа двигателей в последние годы расширяется.

Если невозможно выполнить двигатель необходимой мощности в одном корпусе, двигатель может быть составлен из двух секций, подобно тому как составляются секционные насосы. 

Погружные электродвигатели изготавливают двух типов: со стержневой и протяжной обмотками. Стержневая обмотка представляет собой стержни из медного провода, изолированные стекломиколентой, пропитанной грифтальмасляным лаком или фторпластовой лентой. Протяжную обмотку выполняют из медного обмоточного провода, изолированного лавсановой пленкой с подклейкой полиамидным лаком, или из медного провода с фторопластовой изоляцией. За счет более полного заполнения паза статора протяжной обмоткой повышается мощность двигателя и уменьшается его длина.

В шифре электродвигателей, например, ПЭДС-90-117В5 приняты следующие обозначения: ПЭД — погружной электродвигатель, С — секционный, 90 — номинальная мощность (в кВт), 117—внешний диаметр двигателя (в мм), В5—исполнение двигателя, соответствующее климатическим условиям применения.

Конструкция кабельного ввода

Узел токоввода служит для питания обмотки статора и содержит кабельную муфту и электроизоляционную колодку (рис. 9). В колодке размещены составные электрические контакты, связанные с выводами обмотки статора. Соединение кабельной муфты с головкой ПЭД герметично, при этом электрические контакты узла токоввода находятся в полости двигателя, заполненного диэлектрическим маслом.

Колодка имеет три отверстия для установки контактных гильз и центральное отверстие для прохода диэлектрического масла. Она выполнена из электроизоляционных пластмасс.

Рис. 9. Токоввод

Выводной провод обмотки статора с впаянным наконечником имеет резьбовое окончание для соединения с контактной гильзой. Материал выводного провода типа ПФС или ПФТ, наконечник выполнен из меди.

Контактная гильза выполнена из латуни, имеет в осевом направлении разрезы, а в верхней части кольцевую пружину, которая предназначена для сжатия лепестков гильзы. В нижней части контактной гильзы имеется резьбовое отверстие, которое предназначено для соединения составных контактов (наконечника и гильзы). В отверстиях колодки токоввода имеются буртики, удерживающие гильзу с наконечником от перемещения в осевом направлении.

Установленные в колодке контакты (гильзы) имеют незначительную свободу перемещения, что обеспечивает их самоустановку при соединении с контактами кабельной муфты.

Газосепараторы.

Позволяют отделить часть газа до его входа в насос. Имеет центробежный принцип действия (но не колесо, а шнек).

Вал вращается. Т.к. среда не однородная, то к стенке отделяется более тяжелая среда (жидкость), а в центре около вала остается газ. Есть специальное устройство, которое переводит газ в затрубье и газ из затрубья отделяется.

Рис. 10. Газосепаратор типа МН(К)-ГСЛ

1- корпус; 2 - головка; 3 - основание; 4 - вал; 5 - канал для газа, б - канал для жидкости;

7 - радиальный подшипник; 8 - приемные каналы; 9 - подпятник; 10 - радиальный подшипник; 11 - пята, 12 - шнек; 13 - осевое колесо; 14 - сепараторы;

15 - втулки подшипников; 16 - направляющий аппарат

Гидрозащита

Для увеличения работоспособности погружного электродвигателя большое значение имеет надежная работа его гидрозащиты, предохраняющей электродвигатель от попадания в его внутреннюю полость пластовой жидкости и компенсирующей изменение объема жидкости в двигателе при его нагреве и охлаждении, а также при утечке масла через негерметичные элементы конструкции. Пластовая жидкость, попадая в электродвигатель, снижает изоляционные свойства масла, проникает через изоляцию обмоточных проводов и приводит к короткому замыканию обмотки. Кроме того, ухудшается смазка подшипников вала двигателя.

В настоящее время на промыслах Российской Федерации широко распространена гидрозащита типа Г.

Гидрозащита типа Г состоит из двух основных сборочных единиц: протектора, который устанавливается между насосом и двигателем, и компенсатора, расположенного в нижней части двигателя.

Протектор гидрозащиты типа Г (рис. 11) состоит из головки, верхнего, среднего и нижнего ниппелей, нижнего корпуса и основания, последовательно соединенных между собой резьбой.

Рис .11. Протектор гидрозащиты типа Г

На валу протектора установлены три радиальных подшипника скольжения. Осевые нагрузки через пяту воспринимаются верхним и нижним подпятниками. На обоих концах вала — шлицы для соединения с двигателем и насосом. На валу последовательно установлены три торцовых уплотнения, зафиксированные пружинными кольцами. Внутри корпусов размещены две короткие диафрагмы — верхняя и нижняя, концы которых посредством хомутов герметично закреплены на опорах. Внутренняя полость нижней диафрагмы сообщается при соединении протектора с двигателем с его внутренней полостью. Задиафрагменная полость нижней диафрагмы продольными каналами в нижнем ниппеле сообщена с внутренней полостью верхней диафрагмы, а полость верхней диафрагмы продольными каналами в среднем ниппеле сообщается с полостью между верхним и средним торцовыми уплотнениями. Протектор заполняют маслом через отверстия под пробки с обратными клапанами, выпуская при этом воздух через соответствующие пробки.

Защита от проникновения пластовой жидкости обеспечивается торцовыми уплотнениями и резиновой диафрагмой.

При работе электродвигателя в процессе его включений и выключений масло, его заполняющее, периодически нагревается и охлаждается, изменяясь соответственно в объеме. Изменение объема масла компенсируется за счет деформации эластичной диафрагмы компенсатора.

В процессе работы происходит утечка масла через торцовые уплотнения. По мере расхода масла диафрагма компенсатора складывается, а диафрагмы протектора расширяются. После полного расхода масла из компенсатора наступает второй период работы гидрозащиты, когда используются компенсационные возможности диафрагмы протектора. При падении давления во внешней полости диафрагмы протектора, при остановке электродвигателя и охлаждении масла обратный клапан открывается и впускает во внешнюю полость пластовую жидкость, тем самым выравнивая давления.

Последовательное дублирование эластичных диафрагм и торцовых уплотнений в протекторе повышает надежность защиты электродвигателя от попадания в него пластовой жидкости.

Компенсатор (рис. 12) расположен в нижней части двигателя и предназначен для выравнивания давления в двигателе и пополнения его маслом.

Рис. 12. Конструкция компенсатора гидрозащиты типа Г:

1 — поршень автоматического клапана; 2 — диафрагма

Компенсатор состоит из корпуса и каркаса, к которому крепится диафрагма. Полость за диафрагмой сообщена с затруб- ным пространством отверстиями в корпусе компенсатора. Пробка, расположенная на наружной поверхности компенсатора, предназначена для закачки масла в компенсатор, а внутренне отверстие под заглушку — для выхода воздуха при заполнении его маслом, а также для сообщения полости двигателя и компенсатора. После заполнения маслом компенсатора заглушка должна быть закрыта, а после монтажа установки и спуска ее в скважину заглушка автоматически открывается, при погружении компенсатора под уровень пластовой жидкости на 15—30 м.

В шифре гидрозащиты, например, 1Г51 приняты следующие обозначения: 1 — модификация, Г — тип защиты, 5 — условный размер обсадной колонны, 1 — номер разработки.

Кроме гидрозащиты типа Г, на нефтяных промыслах России нашла широкое применение гидрозащита типа П.

Рис. 13. Протектора типа П

1 — головка верхняя; 2 — трубка; 3 — пробка; 4 — пробка; 5 — корпус; 6 — диафрагма; 7 — пробка; 8 — пробка; 9 — диафрагма; 10 — подпятник; 11 — пята; 12— торцевое уплотнение; 13 — вал; 14— подшипник; 15 — трубка; 16 — трубка; 17 — корпус; 18 — нижняя головка

Основные составные части протектора типа П (рис. 13): вал, торцовые уплотнения, корпуса, камеры, связанные гидравлически между собой последовательно с помощью отверстий, выполненных во фланцах в месте установки торцевых уплотнений. Внутренние полости диафрагм заполнены маслом. Торцовые уплотнения с двумя диафрагмами, закрепленными на цилиндрах, образуют верхнюю камеру над торцовым уплотнением, в районе верхней диафрагмы — среднюю камеру, в районе нижней диафрагмы — нижнюю камеру. Трубки между полостями камер расположены таким образом, что при движении сверху жидкость должна проходить по лабиринту и в двух местах этот путь механически разделяется двумя диафрагмами.

Полости, образованные диафрагмами, снабжены клапанами, через которые сбрасывается масло при избыточном давлении.

Заполнение полости протектора производится снизу. Диэлектрическое масло проходит по валу к трубке, через отверстия в трубе заполняет нижнюю полость, воздух и избыток масла через отверстия в трубе поступает в зону нижнего торцового уплотнения, заполняет его полость и под избыточным давлением через клапан выходит в следующую полость. Воздух выходит в отверстие ниппеля под пробку между нижней и средней камерами, а масло стекает на дно полости, заполняет ее до появления в отверстие под пробку и после ее закрытия пробкой продолжает поступать в полость верхней диафрагмы. Далее заполняют полости в средней и верхней камеры, при этом для удаления воздуха используются пробки в верхней головке.

Полости внутри диафрагмы защищены от проникновения пластовой жидкости по валу торцевым уплотнением. Нижний конец диафрагмы протектора закреплен герметично, верхний имеет упругое крепление при помощи браслетных пружин, что позволяет осуществлять регулирование давления при температурных расширениях масла [3].

Для устранения перепада давления в верхней камере имеется трубка, через которую поступает пластовая жидкость в наружную полость, расположенную над диафрагмой средней камеры.

При работе двигателя масло расширяется, при этом растягивает резиновую диафрагму и прижимает ее к внутренней поверхности корпуса протектора. Лишний объем масла будет выдавлен через верхний конец диафрагмы, который имеет упругое крепление.

При остановке и охлаждении двигателя объем масла будет уменьшаться и резиновая диафрагма, воспринимая давление окружающей среды, будет втягиваться внутрь и пополнять маслом полость двигателя.

При последующем включении двигателя процесс изменения объема масла повторится, то есть при любых изменениях объема и давления масла диафрагмы будут «дышать» и отслеживать объем находящегося масла в двигателе и уравновешивать давление в его полости с давлением окружающей среды.

Основным узлом протекторов являются торцевые уплотнения, предназначенные для герметизации вращающихся валов диаметром 25 мм и 35 мм. Торцовые уплотнения производятся по техническим условиям:

ТУ 3639-003-00217573-93. Торцовые уплотнения;

ТУ 3632-14-00217573-97. Уплотнения УТ1Р.025;

ТУ УЗ. 10-00216852-013-97. Уплотнения торцовые релито- вые серии 2Р;

ТУ 3639-006-46874052-01. Уплотнения торцовые для гидрозащит погружных электродвигателей.

Уплотнения (рис. 1.104 и 1.105) состоят из двух колец (вращающегося и невращающегося), поджатых друг к другу пружиной. На вращающемся кольце установлен сильфон, обжимаемый каркасом, другой конец сильфона через обойму с корпусом поджимается к валу. На невращающемся кольце установлена манжета или резиновое уплотнительное кольцо.

Рис. 14. Гидрозащита типа ГД.

Гидрозащита типа ГД (рис. 14.) состоит из двух узлов: протектора, защищающего полость двигателя от попадания пластовой жидкости, и компенсатора, компенсирующего утечки через торцовое уплотнение жидкого масла и температурные изменения объема масла в системе «двигатель — гидрозащита».

Гидрозащита ГД применяется в установках с насосами, имеющими в основании радиально-упорный подшипник и набивное уплотнение.

Протектор гидрозащиты ГД устанавливается между насосом и двигателем. Компенсатор подсоединяется к нижней части двигателя при помощи переводника.

Протектор (рис. а) состоит из двух камер А и Б. Камеры А и В разделяются между собой эластичным элементом (резиновой диафрагмой 7) и торцовым уплотнением 2. Камера А защищена от проникновения  пластовой жидкости по   валу набивным уплотнением,   расположенным в насосе, и заполняется густым маслом. Избыточное     давление   в протекторе  создается   лопастным   колесом 10. Вал протектора     размещен   в трех подшипниках  скольжения 1, 5 и 11 и зафиксирован в осевом направлении при помощи пят 4 и 6. Компенсатор (рис. б) состоит из   камеры, образованной эластичным элементом   (резиновой   диафрагмой 15) и заполненной жидким    маслом.    Диафрагма  помещена в  стальном кожухе  14,   защищающем ее от повреждений. Масло   заправляют   через отверстие В. Полость за резиновой диафрагмой сообщена со скважиной  отверстиями Г и Д.

Кабель

ПЭД питается электроэнергией по трехжильному кабелю, спускаемому в скважину параллельно с НКТ. Кабель крепится к внешней поверхности НКТ металлическими поясками по два на каждую трубу. Кабель работает в тяжелых условиях. Верхняя его часть находится в газовой среде, иногда под значительным давлением, нижняя  -  в нефти и подвергается еще большему давлению. При спуске и подъеме насоса, особенно в искривленных скважинах, кабель подвергается сильным механическим воздействиям (прижимы, трение, заклинивание между колонной и НКТ и т. д.). По кабелю передается электроэнергия при высоких напряжениях. Использование высоковольтных двигателей позволяет уменьшить ток и, следовательно, диаметр кабеля. Однако кабель для питания высоковольтного ПЭДа должен обладать и более надежной, а иногда и более толстой изоляцией. Все кабели, применяемые для УПЦЭН, сверху покрыты эластичной стальной оцинкованной лентой для защиты от механических повреждений. Необходимость размещения кабеля по наружной поверхности ПЦЭН уменьшает габариты последнего. Поэтому вдоль насоса укладывается плоский кабель, имеющий толщину примерно в 2 раза меньше, чем диаметр круглого, при одинаковых сечениях токопроводящих жил.

Все кабели, применяемые для УПЦЭН, делятся на круглые и плоские. Круглые кабели имеют резиновую (нефтестойкая резина) или полиэтиленовую изоляцию, что отображено в шифре: КРБК означает кабель резиновый бронированный круглый или КРБП  -  кабель резиновый бронированный плоский. При использовании полиэтиленовой изоляции в шифре вместо буквы Р пишется П: КПБК  -  для круглого кабеля и КПБП -  для плоского.

Круглый кабель крепится к НКТ, а плоский  -  только к нижним трубам колонны НКТ и к насосу. Переход от круглого кабеля к плоскому сращивается методом горячей вулканизации в специальных прессформах и при недоброкачественном выполнении такой сростки может служить источником нарушения изоляции и отказов. В последнее время переходят только к плоским кабелям, идущим от ПЭДа вдоль колонны НКТ до станции управления. Однако изготовление таких кабелей сложнее, чем круглых (табл. 1).

Имеются еще некоторые разновидности кабелей с полиэтиленовой изоляцией, не упомянутые в таблице. Кабели с полиэтиленовой изоляцией на 26 - 35 % легче кабелей с резиновой изоляцией. Кабели с резиновой изоляцией предназначены для использования при номинальном напряжении электрического тока не более 1100 В, при температурах окружающей среды до 90 °С и давлении до 1 МПа. Кабели с полиэтиленовой изоляцией могут работать при напряжении до 2300 В, температуре до 120 °С и давлении до 2 МПа. Эти кабели обладают большей устойчивостью против воздействия газа и высокого давления.

Все кабели имеют броню из волнистой оцинкованной стальной ленты, что придает им нужную прочность.

 

Рис. 15. Схема  кабеля.

1— жила  кабеля; 2 — электроизоляция и слой, защищающий  от внешней среды;

3 — подложка  под броню;   

4 — металлическая броня

Поверхностное оборудование

Станции управления

Станции управления выпускают различных модификаций. Станции управления типа ПГХ5071 применяются только для установок погружных электронасосов, двигатели которых питаются электроэнергией через автотрансформатор; станции управления типа ПГХ5072 — только для установок погружных электронасосов, двигатели которых питаются электроэнергией через трансформатор.

Станции управления обеспечивают:

1) ручное и автоматическое управление установкой;

2) управление установкой с диспетчерского пункта (в станциях предусмотрены контакты для присоединения к системам телеуправления);

3) работу установки по заданной программе подключением к станциям управления программного реле КЭП-12У;

4) самозапуск в режиме автоматического управления, т. е. автоматическое включение установки с регулируемой выдержкой времени от 0 до 15 с;

5) мгновенное отключение установки при токах межфазного короткого замыкания и при значительных перегрузках двигателя по току;

6) отключение установки с выдержкой времени около 20 с при перегрузке двигателя по току;

7) отключение установки при срыве подачи жидкости насосом (минимальная токовая защита) - установка должна автоматически отключаться при снижении тока, потребляемого двигателем;

8) подключение при помощи штепсельного разъема двигателя привода кабельного барабана автонаматывателя и других нагрузок с потребляемым током не выше 26 А;

9) контроль за работой установки амперметром, измеряющим ток, который потребляется двигателем, и вольметром, измеряющего напряжение сети;

10) автоматическое отключение установки при обрыве любой из фаз питающей сети;

11) автоматическое включение и выключение установки в зависимости от давления в нагнетательном трубопроводе;

12) мгновенное отключение установки при замыкании токоведущих частей на землю (только станции управления ПГХ5071);

13) непрерывный контроль состояния изоляции установки и мгновенное отключение установки при снижении сопротивления изоляции ниже 30 кОм (только станции управления ПГХ5072).

Станции управления работают при температурах окружающего воздуха от минус 35 до плюс 40° С. Их нельзя применять для работы: в среде, насыщенной токопроводящей пылью; в местах, не защищенных от попадания влаги; в среде, содержащей едкие газы и пары в концентрациях, разрушающих металл и изоляцию; во взрывоопасной среде; при наличии ударов и сотрясений; при наклонах, превышающих угол на 5° и более от вертикали.

Трансформаторы

Комплектные трансформаторные подстанции КТППН обеспечивают индикацию текущих параметров работы насосной установки, а именно:

  •  напряжения питающей сети;
  •  тока нагрузки погружного электродвигателя;
  •  сопротивления изоляции системы «токоподвод — погружной электродвигатель». Конструкция КТППН предусматривает возможность подключения прибора учета электроэнергии и регистрирующего амперметра.

Комплектные трансформаторные подстанции для кустов скважин серии КТППНКС предназначены для энергоснабжения, управления и защиты четырех центробежных электронасосов (ЭЦН) с погружными электродвигателями мощностью от 16 до 125 кВт для добычи нефти из кустов скважин и четырех электродвигателей станков-качалок и передвижных токоприемников при выполнении ремонтных работ .

Первичные обмотки трехфазных трансформаторов и автотрансформаторов всегда рассчитаны на напряжение промысловой электросети, т. е. на 380 В, к которой они и подсоединяются через станции управления. Вторичные обмотки рассчитаны на рабочее напряжение соответствующего двигателя, с которым они связаны кабелем. Эти рабочие напряжения в различных ПЭДах изменяются от 350В (ПЭД10-103) до 2000 В (ПЭД65-117; ПЭД125-138). Для компенсации падения напряжения в кабеле от вторичной обмотки делается 6 отводов (в одном типе трансформатора 8 отводов), позволяющих регулировать напряжение на концах вторичной обмотки с помощью перестановки перемычек. Перестановка перемычки на одну ступень повышает напряжение на 30 - 60 В в зависимости от типа трансформатора.

Все трансформаторы и автотрансформаторы немаслозаполненные с воздушным охлаждением закрыты металлическим кожухом и предназначены для установки в укрытом месте. Они комплектуются с подземной установкой, поэтому их параметры соответствуют данному ПЭДу.

В последнее время трансформаторы находят более широкое распространение, так как это позволяет непрерывно контролировать сопротивление вторичной обмотки трансформатора, кабеля и статорной обмотки ПЭДа. При уменьшении сопротивления изоляции до установленной величины (30 кОм) установка автоматически отключается.

При автотрансформаторах, имеющих прямую электрическую связь между первичной и вторичной обмотками, такого контроля изоляции осуществлять нельзя.

Трансформаторы и автотрансформаторы имеют КПД около 98 - 98,5 %. Масса их в зависимости от мощности колеблется от 280 до 1240 кг, габариты от 1060 х 420 х 800 до 1550 х 690 х 1200 мм.

Устьевая арматура УЭЦН

Конструкция вывода кабеля

Наиболее распространенным способом уплотнения кабелей в устьевой арматуре скважин является их заделка с помощью резиновых сальниковых уплотнителей (шайб). Данные «катушки» предназначены для эксплуатации в интервале температур от -60 до +100 °С.

Уплотнение российских кабелей производится по изоляции токопроводящих жил, уплотнение кабелей иностранных фирм — по оболочкам жил или по общим шланговым оболочкам (в зависимости от конструкций кабелей). Данный способ трудоемок и не исключает деформацию изоляции и оболочек жил кабелей

Рядом ведущих фирм мира разработаны и успешно эксплуатируются узлы вывода кабеля через устьевую арматуру скважин, представляющие собой разъемные герметические соединения концов основного кабеля кабельной линии и питающего наземного кабеля.

Рис. 14. Катушки с кабельным вводом

 Устьевая арматура

Оборудование устья скважины, эксплуатируемой глубинным центробежным насосом, предназначено для отвода в манифольд продукции скважины, герметизации пространства между обсадной колонной и насосно-компрессорными  трубами с учетом ввода в это пространство кабеля и перепуска газа из этого пространства при чрезмерном увеличении его давления. Кроме того, оборудование должно давать возможность использовать приборы при  исследовании скважины (замере давления на выкиде у насосно-компрессорных      труб      и      в затрубном пространстве, замере уровня жидкости в ней и т. д.). 

Рис.17. Схема оборудования устья скважины при эксплуатации ее ЭЦН.

Крестовик 1 (Рис. 17.), соединенный с обсадной колонной, имеет разъемный конус 2, на котором подвешиваются НКТ. Над конусом расположено резиновое уплотнение 3, герметизирующее место вывода труб и кабеля 4. Уплотнение поджимается разъемным фланцем 5. Затрубное пространство скважины соединяется с выкидом из НКТ через колено 6 и обратный клапан 7. Крестовик 1 имеет специальное отверстие для применения эхолота или других приборов. Все основные узлы оборудования устья унифицированы с узлами фонтайной арматуры и устья штанговых скважинных насосных установок, что существенно упрощает комплектацию оборудования устья и его эксплуатацию. Рабочее давление, на которое рассчитано оборудование устья, составляет 14 и 21 МПа, давление, на которое рассчитан устьевой сальник, — 4 МПа, диаметр условного прохода запорных органов — 65 мм.

Оборудование для монтажа и заправки маслом узлов УЭЦН на устье скважины

Установка ЭЦН чаще всего имеет довольно большую длину (до 25 м и более), в связи с чем монтаж отдельных узлов и заправка маслом погружного электродвигателя и гидрозащиты проводится непосредственно на устье скважины. Для проведения этих работ применяются специальные виды инструментов и приспособлений.

Монтажный хомут-элеватор ХМ-3 предназначен для подъема, спуска, удержания на весу или на фланце колонной головки гидрозащиты, секций насоса и всего насосного агрегата.

Монтажный хомут-элеватор (рис. 18) состоит из корпуса 1, затвора 2, двух откидных болтов 3 и двух гаек 4. Откидные болты вращаются вокруг осей 5. Корпус представляет собой скобу с приваренными к ней проушинами, в которых имеются окна и отверстия для стропов и штырей 6. На внутренних поверхностях корпуса и затвора имеется кольцевой выступ, который при закрытии элеватора входит в кольцевую проточку на головке секции насоса или гидрозащиты. Грузоподъемность монтажного хомута-элеватора 3 т, масса 12,5 кг.

Грузоподъемность монтажного хомута-элеватора 3 т, масса 12,5 кг.

Рис. 18. Монтажный хомут-элеватор ХМ-3

Хомут-элеватор ХМД-2 предназначен для подъема, спуска, удержания на весу или на фланце колонной головки секций электродвигателя.

Хомут-элеватор (рис. 19) состоит из корпуса 1, затвора 2, откидного болта 3 и гайки 4. Затвор вращается вокруг оси 5, а откидной болт — вокруг оси 6. Корпус представляет собой скобу с проушинами, в которых имеются окна и отверстия для стропов и штырей 7. На внутренних поверхностях корпуса и затвора имеются выступы. Грузоподъемность хомута-элеватора 2 т, масса 11 кг.

Рис. 19. Хомут-элеватор ХМД-2

Заправочный насос МЦ2 предназначен для заправки электродвигателя и гидрозащиты диэлектрическим маслом.

Заправочный насос (рис. 20) состоит из емкости 1, в которую вмонтирован ручной поршневой насос 2. Масло ручным насосом нагнетается по шлангу 3 через присоединительный штуцер 4 в заправляемый двигатель. Масло в емкость заливается через горловину 5. Объем емкости 20 литров.

Рис. 20. Заправочный насос МЦ2

     Для контроля давления масла в электродвигателе и протекторе при проверке герметичности соединения секций электродвигателя, соединения кабеля и протектора с электродвигателем в процессе монтажа на скважине предназначен опрессовочный штуцер с манометром.

Для контроля затяжки крепежных деталей при монтаже погружной установки служит динамометрический ключ. Ключ состоит из профилированного трубчатого корпуса, внутри которого концентрично размещены рычаг и подпружиненный ролик. Регулировка ключа производится сжатием пружины при навинчивании рукоятки на корпус и фиксируется контргайкой. На наружном конце рычага устанавливается необходимого размера гаечный ключ. При превышении допустимой величины момента затяжки в процессе монтажа рычаг ключа, проворачиваясь вокруг пальца и сжимая пружину, ударяет по корпусу. Толчок и звук удара являются предупредительным сигналом о необходимости окончания завинчивания крепежной детали.

Вилка для кабельной муфты используется для отделения корпуса муфты от головки электродвигателя при демонтаже установки.

Основные положения методики подбора УЭЦН к нефтяной скважине.

Как уже указывалось ранее, методика подбора УЭЦН к скважинам основывается на знаниях законов фильтрации пластового флюида в пласте и призабойной зоне пласта, на законах движения водо-газо-нефтяной смеси по обсадной колонне скважины и по колонне НКТ, на зависимостях гидродинамики центробежного погружного насоса. Кроме того, часто необходимо знать точные значения температуры как перекачиваемой жидкости, так и элементов насосной установки, поэтому в методике подбора важное место занимают термодинамические процессы взаимодействия насоса, погружного электродвигателя и токонесущего кабеля с откачиваемым многокомпонентным пластовым флюидом, термодинамические характеристики которого меняются в зависимости от окружающих условий .

Необходимо отметить, что при любом способе подбора УЭЦН есть необходимость в некоторых допущениях и упрощениях, позволяющих создавать более или менее адекватные модели работы системы «пласт — скважина — насосная установка».

В общем случае к таким вынужденным допущениям, не ведущим к значительным отклонениям расчетных результатов от реальных промысловых данных, относятся следующие положения:

  •  Процесс фильтрации пластовой жидкости в призабой- ной зоне пласта во время процесса подбора оборудования является стационарным, с постоянными значениями давления, обводненности, газового фактора, коэффициента продуктивности и т.д.
  •  Инклинограмма скважины является неизменным во времени параметром.

Общая методика подбора УЭЦН при выбранных допущениях выглядит следующим образом:

  1.  По геофизическим, гидродинамическим и термодинамическим данным пласта и призабойной зоны, а также по планируемому (оптимальному или предельному в зависимости от задачи подбора) дебиту скважины определяются забойные величины — давление, температура, обводненность и газосодержание пластового флюида.
  2.  По законам разгазирования (изменения текущего давления и давления насыщения, температуры, коэффициентов сжимаемости газа, нефти и воды) потока пластовой жидкости, а также по законам относительного движения отдельных составляющих этого потока по колонне обсадных труб на участке «забой скважины — прием насоса» определяется необходимая глубина спуска насоса, или, что практически то же самое — давление на приеме насоса, обеспечивающие нормальную работу насосного агрегата. В качестве одного из критериев определения глубины подвески насоса может быть выбрано давление, при котором свободное газосодержание на приеме насоса не превышает определенную величину. Другим критерием может являться максимально допустимая температура откачиваемой жидкости на приеме насоса. В случае реального и удовлетворяющего потребителя результата расчета необходимой глубины спуска насоса осуществляется переход к п. 3 настоящей методики. Если же результат расчета оказывается нереальным (например — глубина спуска насоса оказывается больше глубины самой скважины), расчет повторяется с п. 1 при измененных исходных данных — например — при уменьшении планируемого дебита, при увеличенном коэффициенте продуктивности скважины (после планируемой обработки призабойной зоны пласта), при использовании специальных предвключенных устройств (газосепараторов, диспергаторов) и т.д. Расчетная глубина подвески насоса проверяется на возможный изгиб насосной установки, на угол отклонения оси скважины от вертикали, на темп набора кривизны, после чего выбирается уточненная глубина подвески.
  3.  По выбранной глубине подвески, типоразмеру обсадных и насосно-компрессорных труб, а также по планируемому дебиту, обводненности, газовому фактору, вязкости и плотности пластовой жидкости и устьевым условиям определяется потребный напор насоса.
  4.  По планируемому дебиту и потребному напору выбираются насосные установки, чьи рабочие характеристики лежат в непосредственной близости от расчетных величин дебита и напора. Для выбранных типоразмеров насосных установок проводится пересчет их «водяных» рабочих характеристик на реальные данные пластовой жидкости — вязкость, плотность, газосодержание.
  5.  По новой «нефтяной» характеристике насоса выбирается количество рабочих ступеней, удовлетворяющих заданным параметрам — подаче и напору. По пересчитанным характеристикам определяется мощность насоса и выбирается приводной электродвигатель, токоведущий кабель и наземное оборудование (трансформатор и станция управления).
  6.  По температуре пластовой жидкости на приеме насоса, по мощности, КПД и теплоотдаче насоса и погружного электродвигателя определяется температура основных элементов насосной установки — обмотки электродвигателя, масла в гидрозащите, токоввода, токоведущего кабеля и т.д. После расчета температур в характерных точках уточняется исполнение кабеля по теплостойкости (строительной длины и удлинителя), а также исполнение ПЭД, его обмоточного провода, изоляции и масла гидрозащиты. Если расчетная температура оказывается выше, чем предельно допустимая для применяемых в данном конкретном регионе элементов насосных установок или заказ высокотемпературных дорогих узлов УЭЦН невозможен, расчет необходимо провести для других насосных установок (с измененными характеристиками насоса и двигателя, например с более высокими КПД, с большим внешним диаметром двигателя и т.д.).
  7.  После окончательного подбора УЭЦН по величинам подачи, напора, температуры и габаритным размерам проводится проверка возможности использования выбранной установки для освоения нефтяной скважины после бурения или подземного ремонта. При этом, в качестве откачиваемой жидкости для расчета принимается тяжелая жидкость глушения или иная жидкость (пена), используемая на данной скважине. Расчет ведется для измененных плотности и вязкости, а также для других зависимостей теплоотвода от насоса и погружного электродвигателя к откачиваемой жидкости. Во многих случаях при указанном расчете определяется максимально возможное время безостановочной работы погружного агрегата при освоении скважины до достижения критической температуры на обмотках статора погружного двигателя.
  8.  После окончания подбора УЭЦН, установка при необходимости проверяется на возможность работы на пластовой жидкости, содержащей механические примеси или коррозионно- активные элементы. При невозможности заказа для данной конкретной скважины специального исполнения износо- или коррозионностойкого насоса определяются необходимые геолого-технические и инженерные мероприятия, позволяющие снизить влияние нежелательных факторов.

ПОГРУЖНЫЕ ВИНТОВЫЕ НАСОСЫ

Общие сведения

Принцип действия

Основным элементом погружного винтового насоса (ПВН) является червячный винт, вращающийся в резиновой обойме специального профиля. В пределах каждого шага винта между ним и резиновой обоймой образуются полости, заполненные жидкостью и перемещающиеся вдоль оси винта. Приводом служит такой же ПЭД, как и для ПЦЭН, с частотой вращения, вдвое меньшей. Это достигается такими соединениями и укладкой статорной обмотки двигателя, что создается четырехполюсное магнитное поле с синхронной частотой вращения 1500 об/мин.

Если для ПЦЭН увеличение частоты вращения улучшает эксплуатационные характеристики насоса, то для ПВН, наоборот, желательно уменьшение частоты вращения вала, так как в противном случае увеличивается износ, нагрев, снижается к. п. д. и другие показатели. Внешне ПВН мало отличается от ПЦЭН.

Схема и комплектация

В комплект установки входят: автотрансформатор или трансформатор на соответствующие напряжения для питания ПЭД; станция управления с необходимой автоматикой и зашитой; устьевое оборудование, герметизирующее устье скважины и ввод кабеля в скважину; электрический кабель круглого сечения, прикрепляемый поясками к НКТ; винтовой насос, состоящий из двух работающих навстречу друг другу винтов с двумя приемными сетками и общим выкидом; гидрозащита электродвигателя; маслонаполненный четырехполюсный электродвигатель переменного тока  -  ПЭД.

Основной рабочий орган винтового насоса (рис. 21) состоит из двух стальных полированных и хромированных одно-заходных винтов 2 и 4 с плавной нарезкой, вращающихся в резинометаллических обоймах 1 и 5, изготовленных из нефтестойкой резины особого состава.

Внутренняя полость обойм представляет собой двухзаходную винтовую поверхность с шагом в два раза больше, чем шаг винта. Винты соединены с ПЭДом и между собой валом с промежуточной эксцентриковой муфтой 3. Оба винта имеют одинаковое направление вращения, но один винт имеет правое направление спирали, а другой  -  левое. Поэтому верхний винт подает жидкость сверху вниз, а нижний  -  снизу вверх. Это позволяет уравновесить винты, так как силы, действующие на них от перепада давления со стороны выкида и приема, будут взаимно противоположны.

Любое поперечное сечение стального винта есть правильный круг, однако центры этих кругов лежат на винтовой линии, ось которой является осью вращения всего винта. В любом сечении винта, перпендикулярном к его оси, круговое сечение оказывается смещенным от оси вращения на расстояние е, называемое эксцентриситетом (рис. 22).

Рис. 21. Винтовой насос с двумя уравновешенными рабочими органами

Поперечные сечения внутренней полости резиновой обоймы в любом месте вдоль оси винта одинаковые, но повернуты относительно друг друга. Через расстояние, равное шагу, эти сечения совпадают.

Само сечение внутренней полости в любом месте представляет собой две полуокружности с радиусом, равным радиусу сечения винта, раздвинутые друг от друга на расстояние 4е.

При работе двигателя винт вращается вокруг собственной оси. Одновременно сама ось винта совершает вращательное движение по окружности диаметром d = 4е.

Гребень спирали винта по всей своей длине находится в непрерывном соприкосновении с резиновой обоймой. Между винтом и обоймой образуется полость, площадь сечения которой равна произведению диаметра винта D на 4е, а высота этой полости в направлении оси винта равна шагу обоймы Т ( T = 2t, где t  -  шаг винта).

Перекачиваемая жидкость заполняет полость между винтом и обой мой в пределах каждого шага и, так как при вращении винт в осевом направлении не движется, то жидкость будет перемещаться вдоль оси винта на расстояние одного шага при повороте винта на один оборот. Следовательно, суточная подача винтового насоса будет равна

,                  (1)

Рис. 22. Сечение резиновой обоймы и винта насоса

Рис. 23. Положение сечения винта в обойме при его повороте на один оборот

I -  исходное положение, II  -  положение при повороте на 90°, III  -  положение при по вороте на 180º,

IV  -  положение при повороте на 270°, V  -  положение при повороте на 360°;  к  -  фиксированная точка на поверхности винта (вращение против часовой стрелки)

где n  -  частота вращения вала ПЭДа (примерно 1480 мин-1); α  -  коэффициент подачи насоса: коэффициент подачи насоса, учитывает обратные протечки через линию соприкосновения гребня спирали винта с внутренней полостью обоймы; неполное заполнение полостей за счет наличия газа во всасывающей смеси; усадку нефти при переходе ее от термодинамических условий насоса к условиям на поверхности.

На рис. 23 показаны четыре последовательных положения сечения винта в обойме при одном его повороте.

Обозначение

Винтовые насосы имеют шифр, подобный шифру центробежных насосов. Например, ЭВНТ5А-100-1000 означает: электровинтовой насос (ЭВН) тихоходный (Т) под колонну 5А с подачей 100 м3/сут, напором 1000 м. Имеются насосы, развивающие напор 1400 м. Насос ЭВНТ5А-100-1000 имеет на воде максимальный к. п. д. 0,68  -  0,7, а при незначительном повышении вязкости жидкости до 0,4 см2/с его максимальный к. п. д. увеличивается до 0,73  -  0,75.

Конструкция

Эксцентриковые муфты

Для того чтобы верхний и нижний винты имели возможность вращаться не только вокруг своей оси, но и по окружности диаметром d = 2е, они соединены между собой специальными эксцентриковыми муфтами (см. рис. 7). Конец вала, выходящего из верхнего сальника и подшипника узла гидрозащиты, соединяется с нижним винтом также с помощью эксцентриковых муфт 3.

Эксцентриковые муфты работают в жидкости, откачиваемой насосом Насос имеет двухсторонний прием жидкости и общий выкид в пространство между верхним и нижним винтами. Далее жидкость проходит по кольцевому зазору между корпусом металло-резиновой обоймы верхнего винта и кожухом насоса. Затем по специальным косым каналам, минуя приемную сетку верхнего винта, жидкость попадает в головную часть ПВН, в которой имеется многофункциональный предохранительный клапан поршеньково-золотникового типа. Обойдя по сверлению предохранительный клапан, жидкость проходит шламовую трубу и попадает в НКТ.

В нижней части насоса, ниже герметизирующего сальника и двухрядного радиально-упорного подшипника размещается пусковая муфта. Она соединяет вал протектора и двигателя с валом насоса только после того, как вал двигателя разовьет число оборотов, соответствующее максимальному крутящему моменту двигателя. Для этого в пусковой муфте имеются выдвижные эксцентриковые кулачки, входящие в зацепление при определенной частоте вращения вала. Такая пусковая муфта обеспечивает надежный запуск насоса при максимальном крутящем моменте двигателя.

Кроме того, она не позволяет вращаться валу насоса в сторону, противоположную заданному направлению. В этом случае в муфте происходит свободное проворачивание валов без зацепления, чем предупреждается развинчивание деталей насоса и резьбовых соединений, а резиновые обоймы рабочих органов предохраняются, таким образом, от перегрева и сухого трения, так как при обратном вращении жидкость из НКТ откачалась бы в кольцевое пространство. Такое обратное вращение может произойти при ошибочной перестановке двух концов электрического кабеля на трансформаторе.

Четыре эксцентриковые муфты позволяют за счет подвижности шарниров передавать необходимый крутящий момент и одновременно совершать винтам сложное планетарное движение в резиновых обоймах.

Предохранительный и перепускной клапаны

Поршеньково-золотниковый предохранительный клапан выполняет следующие функции.

Так как сквозной проток жидкости при неподвижном винте в ПВН невозможен, то при его спуске в скважину на НКТ под уровень жидкости возникает необходимость заполнения НКТ жидкостью из межтрубного пространства. В этом случае поршеньково-золотниковый предохранительный клапан устанавливает сообщение внутренней полости НКТ с межтрубным пространством.

При подъеме ПВН из скважины жидкость из НКТ по тем же причинам не может перетечь в межтурбное пространство. Поршеньково-золотниковый клапан в этом случае также устанавливает сообщение внутренней полости НКТ с межтрубным пространством и жидкость сливается.

При недостаточном притоке жидкости из пласта в скважину или при содержании в жидкости большого количества газа золотник предохранительного клапана устанавливается так, что часть жидкости из колонны НКТ перетекает через боковой клапан в межтрубное пространство. Когда насос разовьет нормальную подачу, золотник клапана перекроет боковой спусковой канал и вся жидкость, подаваемая насосом, будет поступать в НКТ.

В противоположность ПЦЭН винтовые насосы, как и все объемные машины, не могут работать при закрытом выкиде. Поэтому при случайном закрытии задвижки на устье ПВН выходит из строя. Для предупреждения подобных явлений золотниковый предохранительный клапан срабатывает и сбрасывает жидкость из НКТ в межтрубное пространство. Для этого клапан регулируется на строго регламентируемую величину давления, при превышении которой происходит сброс.

Золотниковый   предохранительный клапан позволяет откачивать жидкость из скважин с низким динамическим уровнем и не допускает его снижения до приемных сеток насоса, так как в этом случае клапан сбросит жидкость из НКТ в межтрубное пространство. Это приведет к снижению результирующей подачи и срабатыванию релейной защиты на станции управления, отключающей всю установку.

Рис. 24. Предохранительный поршеньково-золотниковый клапан.

Если по каким-либо причинам установка не отключится, то после накопления жидкости в межтрубном пространстве и повышения ее уровня клапан закроет спусковой канал и установка перейдет на нормальный режим работы с полной подачей жидкости в НКТ. Поскольку слабый приток из пласта сохраняется, то это приведет снова к снижению уровня в межтрубном пространстве, клапан снова сработает и сбросит жидкость из НКТ в межтрубное пространство. Такая вынужденная самопроизвольная периодическая эксплуатация будет продолжаться до тех пор, пока станция управления не отключит установку. Назначением золотникового предохранительного клапана является недопущение сухого трения винта в резиновой обойме и выхода из строя насоса по этой причине.

Шламовая труба предохраняет насос от попадания в его рабочие органы твердых частиц окалины со стенок НКТ и стеклянной крошки в случае применения остеклованных или эмалированных НКТ. Она представляет собой обычный патрубок с боковыми отверстиями и заглушенным верхним концом. Оседающие твердые частицы накапливаются между внутренней поверхностью НКТ и наружной поверхностью шламовой трубы.

Характеристика насоса

Рис. 25.  Рабочие характеристики винтового насоса типа ЭВНТ5А-100-1000 при работе на воде и глицерине

На рис. 25 показаны рабочие характеристики серийного насоса ЭВНТ5А-100-1000 при его работе на воде (кривые 1) и глицерине (кривые 2) с вязкостью 1,35 см2/с. Поскольку ПВН является объемной машиной, то его подача гораздо в меньшей степени, чем в ПЦЭН, зависит от напора. Повышение напора увеличивает протечки жидкости через линию контакта гребня винта с внутренней полостью резиновой обоймы, и это несколько снижает подачу. Тем не менее, для ПВН характерна более широкая область рекомендованных режимов при сохранении высоких значений к. п. д. Это позволяет один и тот же ПВН применять для эксплуатации скважин с различными динамическими уровнями. Например, для насосов с напором до H = 1000 м и подачами от 40 до 100 м3/сут зона оптимального к. п. д. находится в пределах напоров от 350 до 1000 м. Продолжительность работы ПВН без подъема в некоторых случаях достигла 16 месяцев (Туймазанефть).

Как видно из описания, ПВН  -  несложная машина с небольшим числом деталей (в противоположность ПЦЭН) и в настоящее время имеет высокую надежность и достаточно большой межремонтный период. На отечественных промыслах уже прошли широкие промышленные испытания несколько серийных конструкций, рассчитанных на номинальную подачу 40, 80 и 100 м3/сут при диаметрах обсадных колонн 146 и 168 мм.

Благодаря двум винтам с правым и левым направлением их спиралей эти насосы во время работы взаимно гидравлически разгружаются, поэтому их опорные подшипники и пяты не подвергаются большим осевым усилиям. Друг от друга насосы отличаются только размерами винтов и резиновых обойм, благодаря чему достигнута и высокая унификация, и взаимозаменяемость всех остальных деталей и узлов. Наиболее слабым местом в винтовых насосах является резиновая обойма, которая при недостатке смазки сразу выходит из строя. Винтовые насосы на вязкой жидкости работают лучше, чем на сильно обводненной продукции скважин. Они не эмульгируют нефть, как центробежные насосы. КПД насоса достигает 0,8.

Применение ПВН весьма эффективно при откачке высоковязких нефтей. Они менее чувствительны к присутствию в нефти газа, а попадание последнего в рабочие органы не вызывает срыва подачи.

Глубина подвески ПВН и параметры его работы определяются так же, как это было изложено раньше при изучении ПЦЭН.

УДЭН (Установка диафрагменного электронасоса)

Состав оборудования. Принцип действия. Схема установки

Состав оборудования УПДЭН аналогичен составу установок ПЦЭН, отличия состоят в применяемом насосном агрегате.

Диафрагменные скважинные насосные установки относятся к объемным плунжерным насосам с электроприводом, у которых отбираемая жидкость, проходя через приемный и нагнетательный клапаны, не соприкасается с другими подвижными  деталями  насоса  и  его  привода.   Она  отделена  от  них  резиновой диафрагмой. Этим определяется специфическая область применения данных насосов. Они предназначаются для отбора агрессивных пластовых жидкостей или жидкости со значительным содержанием в ней механических примесей, в частности песка, поступающего из пласта (до 0,5 г/л). Дебиты скважин до 10 м/сут. Возможность эксплуатации наклонно-направленных скважин. Максимальный напор 1000 м водяного столба. 

Установка скважинного диафрагменного насоса состоит из погружного насосного агрегата (насоса и электропривода), спущенного в скважину на НКТ (рис.28), кабеля, идущего рядом с трубами, спускного клапана, встроенного в колонну НКТ, оборудования устья и станции управления, размещенной на поверхности.

                    Рис. 26. Диафрагменный насос

У погружного агрегата имеются нагнетательный 1 и всасывающий 2 клапаны, диафрагма 3, пружина 4 и поршень 5. Под поршнем находится эксцентрик 6, приводимый во вращение угловой зубчатой передачей 7. Ниже находятся электродвигатель 8 и компенсационная диафрагма 9.

Полость А над поршнем и полость Б у привода заполнены маслом. Полость А имеет строго определенный объем масла. Утечки масла из этой полости (например, через зазор у поршня 5 и цилиндра, в котором ходит поршень) восполняются через специальный клапан, размещенный в корпусе цилиндра. Так   же   выпускаются   излишки   масла  из   полости  А. Работой   этих   клапанов   управляет   вспомогательный   поршенек,   соединенный толкателем с диафрагмой.

Погружной агрегат работает следующим образом. При вращение вала двигателя (рис. 26) и угловой зубчатой передачи эксцентрик 6 вращается и поршень 5, прижатый к эксцентрику пружиной 4, перемещается вверх и вниз. На схеме показано верхнее положение поршня. Поскольку объем А неизменен, при ходе поршня вниз масло будет заполнять освобождаемое поршнем пространство, а диафрагма 3 опустится (нижнее положение диафрагмы отмечено пунктиром). Создается понижение давления в рабочей полости насоса под клапанами и происходит всасывание жидкости из скважины. Когда при дальнейшем вращении эксцентрика он подвинет поршень вверх, масло надавит на диафрагму и переместит ее в верхнее положение. Произойдет нагнетание жидкости через клапан 1 в НКТ. Таким   образом,   перекачиваемая   жидкость   соприкасается  только   с   клапанами, диафрагмой и стенками рабочей полости. Изменение объема полости Б из-за движения поршня 5 компенсируется диафрагмой 9.

Поскольку угловая зубчатая передача и эксцентриковый привод поршня размещаются в погружном агрегате малых габаритов, мощность привода ограничена 3—6 кВт. Электродвигатель трехфазный, асинхронный, маслозаполненный. Частота вращения вала электродвигателя 1350—1500 мин. Зубчатая передача сокращает частоту вращения примерно в 2 раза. Таким образом, число ходов поршня в минуту около 750 при длине хода около 15мм. При давлении 10 МПа подача насоса составляет около 10 м/сут, КПД погружного агрегата — 0,45. Отечественные насосы имеют большой межремонтный период работы (более 200сут). В агрессивных условиях межремонтный период насосов ЭЦН и штанговых насосов в 2—3 раза меньше.

Установки типа УЭДН предназначены для добычи нефти из малодебитных скважин с внутренним диаметром обсадной колонны не менее 121,7 мм.

Обозначение установки УЭДН5-12,5-800 ВП 00-1,6 расшифровывается следующим образом: У—установка; ЭДН5-12,5-800—типоразмер электронасоса; Э—привод от погружного электродвигателя; Д—диафрагменный; Н—насос; 5—номер группы электронасоса для использования в скважинах с внутренним диаметром колонны обсадных труб не менее 121,7 мм; 12,5—подача, м3/сут, 800—напор, развиваемый электронасосом, м; ВП 00—вариант поставки; 1,6—верхний предел измерения манометра электроконтактного, МПа.

Установки работают от сети переменного тока напряжением 380 В при частоте тока 50Гц. Рабочий диапазон изменения температуры от 5 до 90°С.

Погружной диафрагменный электронасос опускается в скважину на насосно-компрессорных трубах ГОСТ 633—80 условным диаметром 42, 48 или 60 мм. Для увеличения объема кольцевой шламовой камеры у шламовых труб первая труба над электронасосом должна иметь диаметр 60 мм. Между первой и второй трубами устанавливается сливной клапан. Кабельная линия, по которой подводится электроэнергия к электронасосу, крепится к трубам поясами по мере спуска, на поверхности скважины она соединяется с комплектным устройством или с разъединительной коробкой системы электрооборудования, предохраняющей комплектное устройство от попадания в него нефтяного газа по кабелю. На поверхности скважины располагается устьевое оборудование, конструкция которого выбирается потребителем установки в зависимости от условий эксплуатации. Устьевое оборудование соединяется специальным отводом с наземным трубопроводом. Электроконтактный манометр соединяется трубкой манометра с отводом, а сигнальным проводом — с комплектным устройством. Для предупреждения обратного движения откачиваемой жидкости из наземного трубопровода в НКТ отвод снабжается обратным клапаном.

Габаритные размеры установок типа УЭДН5: диаметр — 117 мм, длина — 2700 мм. Масса установок от 2715 (УЭДН5-4-1700) до 1377кг (УЭДН5-16-650).

Установки и электронасосы различных типоразмеров полностью унифицированы и отличаются сечением и длиной круглого кабеля кабельной линии, а также рабочим диаметром сменной плунжерной пары, входящей в состав плунжерного насоса.

Погружной диафрагменный электронасос типа ЭДН5 выполнен в виде вертикального моноблока, включающего четырехполюсный асинхронный электродвигатель, конический редуктор и плунжерный насос с эксцентриковым приводом   и   возвратной   пружиной.   Эти   узлы   расположены   в   общей   камере, заполненной маслом и герметично изолированной от перекачиваемой среды резиновыми диафрагмой (в верхней части) и компенсатором (в нижней части).

В контакт с перекачиваемой жидкостью вступают только всасывающий и нагнетательный клапаны, расположенные в головке над диафрагмой. Головка соединяется резьбой с корпусом. Насосная часть присоединяется к электродвигателю при помощи цилиндрического стакана, который монтируется после завершения сборки электронасоса. В головке установлены три токовода, соединяемые дополнительным штекерным разъемом с выводными концами обмотки статора электродвигателя. Сетка предохраняет газосепаратор и всасывающий клапан от попадания крупных частиц. Патрубок и муфта служат для монтажа электронасоса на устье скважины и соединения его с НКТ. Трубка защищает нагнетательный клапан от осаждения песка.

Характеристика

Основные показатели установок типа УЭДН5 в номинальном режиме при перекачивании электронасосом воды плотностью 1000 кг/м3, температурой 45 °С при напряжении сети 350 В и частоте тока 50 Гц приведены в таблице 2. Погружной диафрагменный электронасос опускается в скважину на насосно-компрессорных трубах (ГОСТ 633-80) условным диаметром 42, 48 или 60 мм.

Технические характеристики насосов типа УЭДН5

Таблица 2.

Обозначение установки (типоразмер)

Значения по параметрам

Технич. и энергет. эффектив.

Ток, А, средний

Рекомендуемой рабочей части характеристики по

Подача, м3/сут, не менее

Давле-ние МПа (кгс/см2)

Мощ-ность, кВТ, не менее

КПД, %,

не менее

Подпор, м,

не более

давлению МПа (кгс/см2)

подача, м3/сут, соответственно

УЭДН5-4-1700

4

17 (170)

2.20

35

10

9

3 ¸ 17 (30¸170)

6 ¸ 4

УЭДН5- 6,3-1300

6.3

13 (130)

2.45

38

10

9

3 ¸ 13 (30¸130)

8 ¸ 6.5

УЭДН5-8-1100

8

11 (110)

2.60

38

10

9,2

3 ¸ 11 (30¸130)

10 ¸ 8

УЭДН5-10-1000

10

10 (100)

2.80

40

10

9,5

3 ¸ 10 (30¸100)

11 ¸ 10

УЭДН5-12,5-800

12.5

8 (80)

2.85

40

15

9,6

3 ¸ 8 (30¸80)

14 ¸ 12

УЭДН5-16-650

16

6.5 (65)

2.85

40

20

9,6

3 ¸ 6.5 (30¸65)

17 ¸ 16

Примечания:

1.Значения показателей указаны при перекачивании воды плотностью 1000 кг/м3 температурой 45 оС при напряжении сети 380 В и частоте тока в сети 50 Гц.

2.Эксплуатация при давлении на выходе насоса, превышающем номинальное значение, не допускается.

Изготовитель: Машиностроительный завод им. Сардарова, г. Баку.

Электронасос (рисунок 8 насос и электродвигатель в одном корпусе) содержит асинхронный четырехполюсный электродвигатель, конический редуктор и плунжерный насос с эксцентриковым приводом и пружиной для возврата плунжера. Муфта кабеля соединяется с токовводом.

Установки обеспечивают подачу от 4 до 16 м3, давление 6.5 ÷ 17 МПа, КПД 35 40 %, мощность электродвигателя 2.2 ÷ 2.85 кВт; частота вращения электродвигателя - 1500 мин-1, масса от 1377 до 2715 кг.

ГИДРОПОРШНЕВЫЕ НАСОСЫ

Принцип действия гидропоршневого насоса

Гидропоршневые насосы (ГПН) состоят из двух основных частей: гидравлического поршневого двигателя объемного типа D (рис. 27) и соединенного с двигателем общим штоком поршневого насоса двухстороннего действия Н. Важным элементом ГПН, управляющим его работой, является золотниковое устройство 3. По принципу действия оно аналогично действию четырехходового крана. Внутренняя часть золотника с каналами может поворачиваться на 90° и занимать два положения (рис. 27, сплошные и пунктирные линии). Такие переключения (повороты) осуществляются автоматически от штока двигателя.

Рабочая жидкость нагнетается с поверхности силовым насосом по трубопроводу 1 (НКТ) и при положении золотника, показанном на рисунке, попадает в верхнюю полость цилиндра двигателя D. Одновременно нижняя полость цилиндра двигателя D с помощью золотника сообщается с выкидной линией 2 (кольцевое пространство).

Под действием давления рабочей жидкости поршень 3 двигателя совершает ход вниз. Жидкость из-под поршня выходит через золотник в выкидной трубопровод 2 (кольцевое пространство). В конце хода вниз четырехходовой кран (золотник) автоматически поворачивается на 90°, а его каналы занимают положение, показанное на рис. 27 пунктиром. Рабочая жидкость из трубопровода 1 (НКТ) благодаря новому положению золотника получает доступ в нижнюю полость цилиндра двигателя D, а отработанная жидкость из верхней полости цилиндра попадает в выкидную линию 2. Под действием давления рабочей жидкости, поступающей в нижнюю полость, поршень 3 совершает ход вверх. В конце хода вверх золотник, связанный со штоком двигателя, снова поворачивается на 90° в обратную сторону, а его каналы снова занимают первоначальное положение. Это обеспечивает поступление рабочей жидкости в верхнюю полость двигателя и ход вниз. Скорость перемещения поршня двигателя и число его ходов, очевидно, будет зависеть от скорости закачки рабочей жидкости. При малой скорости закачки число ходов поршня двигателя будет малым и наоборот. Однако число ходов не может увеличиваться беспредельно. Инерция поршневой группы агрегата, золотника и жидкости в каналах будет лимитировать число 1 ходов, которое обычно не превышает 100.

Рис. 27. Принципиальная схема гидропоршневого насоса двойного действия

с золотником, схематично показанного в виде двухходового крана

Жестко со штоком двигателя связан поршень (плунжер) 4 скважинного насоса Н, который также совершает возвратно-поступательное движение. Цилиндр насоса имеет с обеих сторон по одному нагнетательному 5 и всасывающему 6 клапану. При ходе поршня 4 вниз пластовая жидкость под действием давления на глубине погружения насоса будет поступать в верхнюю полость цилиндра насоса, проходя по обводному каналу 7 и через верхний всасывающий клапан 6. Пластовая жидкость из нижней полости цилиндра при ходе поршня 4 вниз будет вытесняться через нижний нагнетательный клапан 5 в выкидной трубопровод 2 (кольцевое пространство), смешиваясь там с отработанной рабочей жидкостью. При ходе поршня 4 вверх в полости под поршнем будет происходить всасывание пластовой жидкости через нижний всасывающий клапан 6, а в полости над поршнем нагнетание пластовой жидкости через верхний нагнетательный клапан 5 в выкидной трубопровод 2, т. е. в кольцевое пространство.

Конструктивно золотник выполнен в виде фасонной втулки, сидящей на штоке двигателя, которая может перемещаться в своем цилиндре с подводящими и отводящими каналами. В верхней и нижней частях штока двигателя имеются короткие пазы - каналы, через которые рабочая жидкость попадает в цилиндр золотника и смещает фасонную втулку для сообщения полостей цилиндра двигателя с трубопроводами 1 и 2. Благодаря двойному действию подача насоса почти в 2 раза больше подачи обычного плунжерного насоса одинарного действия при прочих равных условиях (диаметр, ход, габарит).

Существуют ГПН одинарного действия или так называемого дифференциального типа, в которых подача насосом пластовой жидкости происходит только при ходе вверх (рис. 28). Рабочая жидкость подается по каналу 6 в пространство под поршень двигателя и далее через специальный канал 7 в поршне, перекрываемый управляющим клапаном 5, попадает в полость над поршнем 4 (рис. 28, а).

Рис. 28. Принципиальная схема ГПН дифференциального типа

(одинарного действия): а - ход вниз, б - ход вверх

Поскольку верхняя площадь поршня 4 больше нижней на величину площади штока, то сила, действующая сверху, будет больше, чем снизу, поэтому поршень 4 двигателя переместится вниз. Вместе с ним получит перемещение вниз плунжер 1 в насосном цилиндре. Нагнетательный клапан 2 в плунжере откроется. При крайнем нижнем положении поршня двигателя управляющий клапан 5 перекроется, и канал 7 закроется (рис. 28,б).

Верхняя полость двигателя через канал 8 и внутреннее сверление в теле штока получит сообщение с пространством над плунжером насоса и по обводному каналу с насосными трубами 9. Давление под поршнем двигателя будет нарастать, пока поршень не сделает ход вверх. При ходе вверх всасывающий клапан 3 откроется и цилиндр насоса будет заполняться пластовой жидкостью. В крайнем верхнем положении управляющий клапан механического действия снова откроет канал 7 и закроет канал 8. Произойдет ход вниз.

Работа ГПН одинарного действия сопровождается сильной пульсацией давления рабочей жидкости на поверхности. Замеряя давление рабочей жидкости с помощью самопишущего манометра, можно получить динамограмму работы ГПН. Насос подобного типа американской фирмы «Коуб» носит название «Гидролифта». Он имеет номинальный размер от 50 до 137 мм, ход 1,53 м и производительность, как сообщается в печати, от 24 до 2400 м3/сут.

Нагнетательным каналом для подачи рабочей жидкости к ГПН служит обычно колонна НКТ, на конце которых размещается агрегат ГПН. Каналом для возвращения на поверхность отработанной рабочей жидкости, а также для подачи на поверхность пластовой жидкости, откачиваемой насосом, служит кольцевое пространство между первым и вторым рядом НКТ. Таким образом, для обеспечения работы ГПН необходимо два канала, а следовательно, два ряда труб. Однако существуют схемы и с одним рядом труб. В этих схемах вторым каналом для возврата жидкостей на поверхность является кольцевое пространство между НКТ и обсадной колонной. При работе по такой схеме на глубине подвески насоса устанавливается пакер, герметизирующий кольцевое пространство, и весь пластовый газ вынужден проходить вместе с жидкостью через насос.

Применение различных сепарационных устройств в виде газовых якорей становится бесполезным. Это приводит к уменьшению коэффициента наполнения насоса.

Существуют трехканальные системы, при которых рабочая жидкость подается по внутреннему малому диаметру НКТ, а возвращается на поверхность по кольцевому промежутку между первым и вторым рядом НКТ без смешивания ее с пластовой жидкостью. Пластовая жидкость поступает на поверхность по третьему каналу, между вторым и третьим рядами НКТ. Как видно, при работе по такой схеме нужны три ряда НКТ. В крайнем случае третьим каналом для подачи пластовой жидкости на поверхность может служить кольцевое пространство между вторым  -  наружным рядом НКТ и обсадной колонной.

Трехканальная схема имеет преимущество перед двухканалъной, так как отпадает необходимость отделения рабочей жидкости от пластовой, ее подготовка и регенерация для повторного использования. При трехканальной схеме сепарационные устройства и подготовка рабочей жидкости на поверхности сильно упрощаются.

Большим недостатком трехканальных или, как их называют, закрытых систем является большая металлоемкость установки, а следовательно, высокая стоимость оборудования скважины.

Спуск и установка ГПН в скважине может осуществляться двумя путями: спуск и подвеска ГПН на НКТ и спуск ГПН и посадка его на рабочее место проталкиванием нагнетаемой жидкостью через НКТ (так называемые свободные ГПН).

На рис. 29, а и б показаны возможные схемы установки ГПН в скважине. На НКТ малого диаметра (второй ряд труб) 1 подвешивается ГПН 4, который нижней своей частью, имеющей уплотнительный элемент 7, садится в посадочный конус 5, привинченный к низу первого ряда НКТ 2 большего диаметра (рис. 29, а).

Рис. 29. Схема оборудования скважины гидропоршневым насосом:

а - при двухрядном подъемнике, б - при однорядном подъемнике

Сначала спускается НКТ большего диаметра (первый ряд труб), а затем на НКТ меньшего диаметра спускается ГПН. Рабочая жидкость нагнетается по НКТ малого диаметра. Отработанная жидкость вместе с пластовой поднимается по кольцевому пространству. На рис. 29, б показана однотрубная система. В скважину предварительно спускается и закрепляется на шлипсах пакер 6 с посадочным конусом для ГПН, для герметизации кольцевого пространства. После установки пакера НКТ извлекаются и на них спускается ГПН с посадкой на пакер. Рабочая жидкость нагнетается по НКТ. Отработанная и пластовая жидкости возвращаются по кольцевому пространству. Для ремонта ГПН при его спуске на НКТ необходимо извлекать всю колонну труб из скважины. Эти операции трудоемки и связаны с работой на скважине бригады подземного ремонта. В связи с этим были разработаны и в настоящее время наиболее распространены свободные ГПН (рис.14). На устье скважины устанавливается четырехходовой кран - переключатель высокого давления, позволяющий нагнетание жидкости в НКТ и выход жидкости из кольцевого пространства и нагнетание жидкости в кольцевое пространство и выход из НКТ.

При оборудовании скважины свободным ГПН в нижней части НКТ обязательно устанавливается обратный клапан. После заполнения НКТ нефтью, удерживаемой обратным клапаном, сбрасывается ГПН, который потоком жидкости, нагнетаемой в НКТ, проталкивается вниз. При этом четырехходовой кран устанавливается в положение «спуск - работа». В нижней части второго ряда НКТ имеется специальный стакан с необходимыми  каналами  и уплотнительными  кольцами  для  посадки в него ГПН.

На корпусе ГПН имеются уплотнительпые резиновые кольца и отверстия для перетоков жидкости, а в верхней части ГПН  -  эластичный резиновый поршень-манжет диаметром, равным внутреннему диаметру НКТ. Кроме того, имеется коническая ловительная головка. Давлением рабочей жидкости, нагнетаемой в НКТ, ГПН садится в стакан. Приемная часть ГПН внизу корпуса проходит через уплотнитель в стакан с

Рис. 30. Схема подъема из скважины свободного ГПН: а - подъем насоса, б - захват устьевым ловителем.

Жидкость под действием: I - рабочего давления, II  - забойного давления, III - избыточного гидростатического давления

обратным клапаном. После посадки ГПН на место давление рабочей жидкости возрастает, и насос начинает работать. Для подъема насоса из скважины четырехходовой кран устанавливается в положение «подъем». Рабочая жидкость от силового агрегата начинает поступать в кольцевое пространство между НКТ и создает давление под уплотнительными кольцами насоса. При определенном давлении ГПН выходит из посадочного стакана, проталкивается вверх по НКТ (рис. 30, а). При захвате насоса ловителем (рис. 30, б) одновременно выключается привод силового насоса, после чего устье скважины может быть открыто и насос извлечен на мостки. Скорость спуска и подъема свободного ГПН определяется расходом рабочей жидкости, состоянием уплотнительной манжеты и вообще спуск происходит при малых давлениях. Выпрессовка насоса из его посадочного стакана осуществляется при значительных давлениях. Спуск и подъем свободного ГПН с глубины примерно 2000 м могут быть осуществлены одним человеком за 2 - 2,5 ч. Поднятый насос извлекается из скважины вместе с ловителем с помощью ручной лебедки и небольших талей. Это является большим преимуществом свободных ГПН. Однако наружный диаметр корпуса свободного ГПН должен быть всегда меньше внутреннего диаметра НКТ, поэтому свободные ГПН имеют всегда меньшую подачу, чем насосы, спускаемые на трубах, при прочих равных условиях.

На поверхности у устья скважины устанавливается силовой насос, нагнетающий рабочую жидкость в НКТ для привода ГПН. Причем имеются индивидуальные системы, когда на каждой скважине установлен силовой насос и групповые, когда один, более мощный силовой насос предназначен для нескольких скважин, оборудованных ГПН. Обычно в качестве силовых используются трехплунжерные вертикальные и горизонтальные насосы высокого давления различной мощности с приводом от электродвигателя или газового двигателя внутреннего сгорания. Плунжерные насосы снабжаются гильзами и плунжерами разного диаметра. Это позволяет в достаточно широком диапазоне ступенчато регулировать подачу рабочей жидкости и ее давление в пределах установленной мощности.

К числу поверхностных сооружений относятся сепарационные устройства и установка по очистке от песка и воды рабочей жидкости, так как для работы такого сложного агрегата с обилием точно пригнанных поверхностей и узких каналов требуется очень чистая рабочая жидкость. Это сильно удорожает и осложняет технику и практику эксплуатации скважин с помощью ГПН.

Гидропоршневые насосы  -  сложные установки. Они требуют размещения на поверхности у скважины силовых насосов трансформатора, станций управления и защиты. Кроме того, сложны сепарационные и очистные сооружения для подготовки рабочей жидкости. Это является одной из причин, сдерживающих их широкое распространение. Однако с помощью ГПН легко осуществляется эксплуатация наклонных скважин, в которых работа штанговых насосов иногда оказывается совершенно невозможной. В настоящее время на отечественных промыслах эксплуатируется несколько установок ГПН в порядке накопления опыта работы с ними и выяснения возможности их эксплуатации на промыслах Сибири и Севера.

Наземное оборудование.

В состав наземного оборудования установок входят силовой насос с приводом, оборудование устья скважины и блок очистки рабочей жидкости.

Наиболее ответственной частью наземного оборудования является силовой насосный агрегат, от его параметров в прямой зависимости находятся параметры ГПНА. Как правило, применяются трех- и пятиплунжерные горизонтальные или вертикальные насосы, мощность привода которых в большинстве случаев составляет от 14 до 300 кВт.

Для подбора агрегата, соответствующего требуемому режиму эксплуатации скважины, выпускаются насосы многих типоразмеров, причем каждый из них имеет наборы плунжеров  с уплотнениями различных диаметров (от 30 до 95 мм), позволяющими ступенчато изменять подачу насосов (от 130 до 1700 л/мин) и обеспечивать максимальное давление до  35,0 МПа. Число ходов плунжеров, составляет 300—450 в минуту. Для уменьшения числа оборотов вала насоса применяются понижающие редукторы.

Наземный насосный агрегат может применяться как для привода одного ГПНА, так и для нескольких, расположенных в различных скважинах. Для распределения жидкости между  ними используются распределительные гребенки со стабилизаторами расхода рабочей жидкости.

Блок подготовки рабочей жидкости имеет параметры, обусловленные, прежде всего, типам гидравлической схемы установки: закрытой или открытой. В первом случае его производительность составляет 1—3 % от подачи силового насоса, во втором — до 50 %.

Как правило, в качестве рабочей жидкости используется сырая нефть, после того как из нее удалены свободный и растворенный газ, вода, абразив. Если подготовка рабочей жидкости в малых количествах при использовании закрытых схем не вызывает трудностей, то очистка ее для установок с открытой схемой достаточно сложна.

Высокие требования к качеству рабочей жидкости предопределяются в конечном счете долговечностью, которой должны обладать и силовой насос и ГПНА. Невыполнение этого требования, например, в отношении содержания абразива будет приводить к интенсивному изнашиванию пар трения: плунжер - уплотнение в насосе, поршень—цилиндр, детали золотника и клапанов в ГПНА, увеличение содержания коррозионноактивных компонентов — к коррозии внутренних полостей, в том числе и рабочих поверхностей, гидросистемы.

Схема простейшей установки для подготовки рабочей жидкости включает трехфазный сепаратор, отделяющий свободный газ и воду от нефти, и буферную емкость для хранения и отстаивания нефти. Иногда в эту схему включается устройство для дотирования и подачи в рабочую жидкость химических реагентов, например, для внутрискважинного деэмульгирования пластовой жидкости.

СТРУЙНЫЕ НАСОСЫ

Принцип действия

Струйные насосы относятся к динамическим насосам. Динамические насосы характеризуются тем, что рабочий орган разгоняет жидкость и передает кинетическую энегрию. Далее жидкость замедляется,а затем кинетическая энергия переходит в потенциальную. Струйные  насосы из числа насосных аппаратов имеют наиболее широкую область применения и наибольшее разнообразие  конструкций . Одним из них является водоструйный  насос.Особенностью насоса этого вида является его устройство, которое не имеет ни одной движущейся детали,что значительно увличивает надежность его в работе по сравнению с обычными насосами. Работа струйного насоса основана на принципе передачи энергии от одной жидкости или газообразной среды(рабочей) к другой( подсасываемой) в процессе их смешения.

Рис.  31. Принципиальная схема струйного насоса

К приемному патрубку струйного насоса подводится поток жидкости под напором,который,заставляя вытекать жидкость через узкое отверстие сопла, преобразовывается в скоростную энергию. Вытекающая струя сначала направляется в конус,переходящий плавно в расширяющийся Диффузор, где кинетическая энергия потока за счет уменьшения скорости вновь преобразуется в напор,затем сместительную камеруи,наконец,в нагнетательный трубопровод. По всасывающему трубопроводу жидкость поднимается на высоту,равную перепаду напора.

Потери в струйных напорах ( в сопле, сместительной камере, горловине и трубном расширителе) составляют значительную часть общей энергии, вследствие чего величина КПД их невелика и находится в пределах 15-25% , а в отдельных случаях при больших подачах достигает 30% и несколько больше.

Достоинствами струйных насосов являются простота их конструкции и эксплуатации, а также возможность перемещать жидкости с содержанием в них механических примесей без засорения и износа дорогостоящих частей, применяемых в насосах других конструкций.

Разновидностью струйного насоса является эжектор,в котором в качестве рабочей среды используется пар. Так, на нефтеперерабатывающих заводах стрйные двухступенчатые паровые эжекторы применяются на многих вакуумных установках для отсасывания газов и создания вакуума к колоннах. Применением этого насоса как раз служит Агрегат насосный  струйный  АНС1-146 (AHCI-168) предназначен для добычи продукции из искривленных и вертикальных нефтяных скважин условным диаметром 146 и 168 мм.  Конструкция   насоса  позволяет производить гидродинамические исследования скважины и менять быстроизнашивающиеся детали  насоса  (струйного  аппарата) без подъема насосно-компрессорных труб (НКТ).

Насос  состоит из:

- корпуса;

- обратного клапана;

- свободно сбрасываемого (вымываемого)  струйного  аппарата.

Принцип действия  насоса  основан на использовании гидравлической энергии жидкости, закачиваемой под высоким давлением по НКТ в скважинный  струйный  аппарат, который, подсасывая продукцию скважины, передает ей энергию, используемую для подъема продукции на поверхность и транспорта в систему нефтесбора. В качестве РЖ может быть использована вода или нефть под высоким давлением.  Струйный   насос  приводится в действие от наземного источника гидравлической энергии.

Рис. 32. Схема погружного струйного насоса

Управление работой скважины, оборудованной  струйным   насосом , осуществляется с поверхности. В комплект поставки могут входить специальные инструменты и принадлежности, обеспечивающие монтаж и работу  насоса  в скважине:

- ерш-скребок;

- ловитель  насоса ;

- ловитель обратного клапана;

- пробка для опрессовки НКТ;

- пробка для опрессовки.

Одной из разновидностей насосных аппаратов явился водоструйный  насос , который как лабораторный прибор был предложен английским учёным Д. Томпсоном в 1852 и служил для отсасывания воды и воздуха. Первый промышленный образец  струйного  аппарата применил инженер Нагель в 1866 (предположительно в Германии) для удаления воды из шахт. Позднее созданы различные  струйные  насосы в виде водо-водяных эжекторов, паро-водяных инжекторов и многие др.

Список литературы

1. «Нефтегазопромысловое оборудование», В. Н. Ивановский.

2. «Машины и оборудование для добычи нефти и газа», Г. В. Молчанов, А. Г. Молчанов.

3. «Погружные бесштанговые насосы для добычи нефти» А. С. Казак, М., 1973.

4. «Погружные центробежные электронасосы для добычи нефти», А. А. Богданов, М, 1968.

PAGE   \* MERGEFORMAT 1




1. На тему- Аудит расчетов по оплате труда на примере ООО Стандарт
2. анализ пропагандистский анализ и анализ слухов
3. ~ стратегияны~ негізгі ма~саттарын ашып к~рсеті~із Логистикалы~ оперативтік жоспа
4. You re going to mke her present of clssic blck purse while your friend insists on choosing something brighter nd more fshionble
5. Инфекционные болезни специфика их течения в условиях Забайкалья (экологический и социальные аспект) на примере полиомиелита
6. Документом удостоверяющим временную нетрудоспособность граждан и подтверждающим их временное освобожден
7. Реферат- Космические процессы и минералообразование
8. реферат дисертації на здобуття наукового ступеня кандидата технічних наук Одес
9. тема и правовое положение органов управления юстицией
10. Эпидемиология.html
11. .Основні етапи розвитку економічної теорії Люди завжди прагнули усвідомити економічні умови свого існуван
12. Т~уелсіздік д~уір поэзиясында~ы Желто~сан та~ырыбы Фариза О~~арсынова поэзиясында~ы б~гінгі ~мір
13. Стаття 77 Порядок проведення документальних планових перевірок 77
14. Тема 11. Массовая культура и попдизайн
15. Воспрепятствование законной предпринимательской деятельности
16. Литературное наследие И Куратова
17. Антисоветское движение в Чечне в 19201930-е годы
18.  ДИАГНОСТИРОВАНИЕ ЭЛЕКТРООБОРУДОВАНИЯ Цель работы- приобретение практических навыков по диагностирован
19. Кинетическая энергия тела движущегося произвольным образом равна сумме кинетических энергий всех n матери
20. Zdchk.ru Таблица для заполнения ответов на задания 1 тура IV Всероссийской дистанционной олимпиады