Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Вопросы к зачету по дисциплине «Эконометрическое моделирование», 2013
4. Выделяют 3 основных класса эконометрических моделей:
1) модель временных рядов;
2) модели регрессии с одним уравнением;
3) системы одновременных уравнений.
Моделью временных рядов называется зависимость результативной переменной от переменной времени или переменных, относящихся к другим моментам времени.
К моделям временных рядов, характеризующих зависимость результативной переменной от времени, относятся:
а) модель зависимости результативной переменной от трендовой компоненты или модель тренда;
б) модель зависимости результативной переменной от сезонной компоненты или модель сезонности;
в) модель зависимости результативной переменной от трендовой и сезонной компонент или модель тренда и сезонности.
К моделям временных рядов, характеризующих зависимость результативной переменной от переменных, датированных другими моментами времени, относятся:
а) модели с распределённым лагом, объясняющие вариацию результативной переменной в зависимости от предыдущих значений факторных переменных;
б) модели авторегрессии, объясняющие вариацию результативной переменной в зависимости от предыдущих значений результативных переменных;
в) модели ожидания, объясняющие вариацию результативной переменной в зависимости от будущих значений факторных или результативных переменных.
Кроме рассмотренной классификации, модели временных рядов делятся на модели, построенные по стационарным и нестационарным временным рядам.
Стационарным временным рядом называется временной ряд, который характеризуется постоянными во времени средней, дисперсией и автокорреляцией, т. е. данный временной ряд не содержит трендовой и сезонной компонент.
Нестационарным временным рядом называется временной ряд, который содержит трендовую и сезонную компоненты.
Моделью регрессии с одним уравнением называется зависимость результативной переменной, обозначаемой как у, от факторных (независимых) переменных, обозначаемых как х1,х2,…,хn. Данную зависимость можно представить в виде функции регрессии или модели регрессии: y=f(x), где параметры модели регрессии.
Можно выделить 2 основных классификации моделей регрессии:
а) классификация моделей регрессии на парные и множественные регрессии в зависимости от числа факторных переменных;
б) классификация моделей регрессии на линейные и нелинейные регрессии в зависимости от вида функции f(x,
Системой одновременных уравнений называется модель, которая описывается системами взаимозависимых регрессионных уравнений.
Системы одновременных уравнений могут включать в себя тождества и регрессионные уравнения, в каждое из которых могут входить не только факторные переменные, но и результативные переменные из других уравнений системы.
Регрессионные уравнения, входящие в систему одновременных уравнений, называются поведенческими уравнениями. В поведенческих уравнениях значения параметров являются неизвестными и подлежат оцениванию.
23. Метод Бокса-Дженкинса
Методология прогнозирования Бокса-Дженкинса отличается от большинства методов, поскольку в ней не предполагается какой-либо особенной структуры в данных временных рядов, для которых делается прогноз. В ней используется итеративный подход к определению допустимой модели среди общего класса моделей. Потом выбранная модель сопоставляется с историческими данными, чтобы проверить, точно ли она описывает ряды. Модель считается приемлемой, если остатки, в основном, малы, распределены случайно и, в общем, не содержат полезной информации. Если заданная модель не удовлетворительна, процесс повторяется, но уже с использованием новой, улучшенной модели. Подобная итеративная процедура повторяется до тех пор, пока не будет найдена удовлетворительная модель. С этого момента найденная модель может использоваться для целей прогнозирования.
Выбор исходной модели ARIMA основывается на изучении графиков временных рядов (с целью выяснить основной характер их поведения) и исследовании коэффициентов автокорреляции для нескольких интервалов запаздывания во времени. В частности, сопоставляются между собой структура выборочных коэффициентов автокорреляции, рассчитанных для временных рядов, и известная автокорреляционная структура, связанная с конкретной моделью ARIMA. Такое сопоставление делается как для коэффициентов автокорреляции, так и для коэффициентов частной автокорреляции.
Методология Бокса-Дженкинса основывается на наборе процедур определения, коррекции и проверки моделей ARIMA для данных временных рядов. Прогноз следует непосредственно из формы скорректированной модели.
При выборе модели следует помнить, что автокорреляции, вычисленные из данных, не будут в точности совпадать ни с каким набором теоретических функций автокорреляции, связанных с моделью ARIMA. Автокорреляции, вычисленные из данных, подвержены вариациям выборки. Поэтому следует стремиться адекватно сопоставить с моделью ARIMA большую часть данных временных рядов. Если исходный выбор был не вполне правильным, неадекватность проявится при анализе остатков (проверка модели) и исходная модель потребует модификации. С приобретением опыта задача итеративного выбора модели станет проще.