Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Шпаргалка- Математика (билеты)

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024

Математика (билеты)

(шпаргалка)

Билет№1

)Функция y=F(x) называется периодической, если существует такое число Т, не равное нулю, что для любых значений аргумента из области определения функции выполняются  равенства f(x-T)=f(x)=f(x+T). Число Т называется периодом функции. Например, y=sinx –периодическая функция (синусоиду нарисуешь сам (а)) Периодом функции являются любые числа вида T=2PR, где R –целое, кроме 0. Наименьшим положительным периодом является число T=2P. Для построения графика периодической функции достаточно построить часть графика на одном из промежутков длинной Т, а затем выполнить параллельный перенос этой части графика вдоль оси абсцисс на +-Т, +-2Т, +-3Т,…

)Степенью числа а, большего нуля, с рациональным показателем r=m/n (m-целое число;n-натуральное, больше 1) называется число nSQRa^m, т.е. a^m/n = nSQRa^m. Степень числа 0 определена только для положительных показателей; 0^r=0 для любого r>0. Свойства степеней с рациональным показателем Для любых рациональных чисел r иs и любых положительных a и b справедливы следующие свойства. 1) Произведение степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным сумме показателей множителей: a^r * a^s = a^r+s.

) Частное степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным разности показателей делимого и делителя: a^r : a^s = a^r-s.

) При возведении степени в степень основание оставляют прежним, а показатели перемножают: (a^r)^s = a^rs   4) Степень произведения равна произведению степеней: (ab)^r = a^r * b^r.   5) Степень частного равна частному степеней (a/b)^r = a^r / b^r.   6) Пусть r рациональное число и число a больше нуля, но меньше числа b, 0<a<b, тогда: a^r < b^r , если r- положительное число; r^r > b^r, если r-отрицательное число.7) Для любых рациональных чисел r и s из неравенства r<s следует, что: a^r <a^s при a>1 ; a^r > a^s при 0<a<1.    Докажем свойство 2 Пусть r=m/n и s=p/q, где n и q –натуральные числа, а m и p –целые числа. По определению степени с  рациональным показателем имеем: a^m/n : a^p/q = nSQRa^m : qSQRa^p. Приведём корни к одному показателю. Для этого воспользуемся свойством корней n-й степени: nSQRa = nrSQRa^r, r>0. Имеем: nSQRa^m : qSQRa^p = nqSQRa^mq : nqSQRa^pn = nqSQRa^mq / nqSQRa^pn Используя свойство частного корней, получим: nqSQRa^mq / nqSQRa^pn = nqSQRa^mq / a^pn = nqSQRa^mq-pn. Применим определение степени с рациональным показателем: nqSQRa^mq-pn = a^mq-pn/nq = a^mq/nq-pn/nq = a^m/n-p/q = a^r-s.

 Билет №2

1)Точка Х0 наз-ся точкой максимума функции f, если для всех х из некоторой окрестности точки х0 выполнено неравенство f(x)f(x0)

Окрестностью точки х0 наз-ся любой интервал, сод-щий

эту точку. Например, функция y=-x*x-3 имеет точку максимума х0=0.

Точка х0 наз-ся точкой минимума функции f, если для всех х из некоторой окрестности х0 выполнено неравенство f(x0) f(x)

Например, функция y=x+2 имеет точку минимума х0=0.

)1)Если a1 то уравнение sinx=a корней не имеет, так как sinx1 для любого х.

)Пусть a1 а) На промежутке –пи/2;пи/2 функция y=sinx возрастает, следовательно по теореме о корне, уравнение sinx =a  имеет один корень x=arcsin a.

Б) На промежутке пи/2;3пи/2 функция y=sin x убывает, значит по теореме о корне ур-ие sin x=a имеет одно решение x=пи-arcsin a.

В) учитывая периодичность функции y= sin x (период функции равен 2пи n) решение ур-ия можно записать так: х=arcsin a +2пи n

x=пи- arcsin a +2пи n

решение данного ур-ия можно записать в виде следующей формулы

x=(-1)^n  arcsin a + пи n

при четных n(n=2k) мы получим все решения, записанные первой формулой , а при нечетных n(n=2k+1)- все решения записанные второй формулой.  

 

Билет №3

1)арксинусом числа а называется число, для которого выполнены следующие два условия: 1)-p/2 <= arcsin a <= p/2; 2) sin(arcsin a)=a. Из втоого условия следует, что |a|<=1 Пример1. (рис 26) arcsinSQR3 / 2 = p/3, так как: 1) –p/2 <= p/3 <=p/2; 2)sin p/3= SQR3 / 2 Пример2. Arcsin SQR5/2 не имеет смысла, так как  SQR5 / 2 >1, a arcsin a определён при –<= a <= 1 Определение Арксинусом числа а называется такое число из отрезка [-Пи/2;Пи/2], синус которого равен а.

)Если функция F-первообразная функции f на промежутке I, то функция y=F(x)+C (c-const) также является первообразной функции f на промежутке I. Любая первообразная функции f на промежудке I может быть записана в виде F(x)+C. Доказательство. 1) Воспользуемся определением первообразной: (F(x)+C)’=F’(x)+C’=f(x), следовательно, y=F(x)+C –первообразная функции f на промежутке I. 2) Пусть Ф и F- первообразные функции f на промежутке I.  Покажем, что разность Ф-F равна постоянной. Имеем  (Ф(x) –F(x))’= Ф’(x) –F'(x)=f(x)-f(x)=0, следовательно, по признаку постоянства функции на интервале Ф(x)-F(x)=C. Значит любую первообразную можно записать в виде F(x)+C. Графики любых двух первообразных для функции y=f(x) получаются друг из друга параллельным переносом вдоль оси Ox (рис. 18)

Билет №4

1)Арккосинусом числа а называется такое число, для которого выполнены следующие два условия: 1) 0<=arccosa<=p; 2)cos(arccos a)=a. Из условия 2 следует, что |a|<=1 Пример 1 (рис 28) arccos1/2=p/3, так как: 1)0<= p/3 <= p; 2) cos p/3 = ½. Пример 2. Arccos p не имеет смысла , так как p ~=3,14 > 1; arccos a  определён при |a|Б=1

2)Показательной функцией называется функция вида y=a^x, где а- заданное число, а >0, a не равно 1. Свойства показательной функции 1) Областью определения показательной функции являются все действительные числа. Это следует из того, что для любого x принадлежащего R определено значение степени a^x (при a>0). 2) Множеством значений показательной функции являются все положительные действительные числа: E(y)=(0;+бескон.) 3) а) Показательная функция y+a^x возрастает на всей области определения, если a>1.  б) Показательная функция Y=a^x убывает на всей области определения, если 0<a<1.  Докажем, что если a>1, то большему значению аргумента (x2>x1) соответствует большее значение функции (a^x2 > a^x1). Из свойств степени известно, если r>s и a>1, то a^r >a^s. Пусть х2 > x1 и a > 1, тогда a^x2 >a^x1 (по свойству степени). А это означает, что функция  y=a^x1 при a>1 возрастает на всей области определения. Докажем, что если 0 < a<1, то большему значению аргумента (x2>x1) соответствует меньшее значение функции (a^x2 < a^x1). Из свойств степени известно, если r>s и 0<a<1, то a^r<a^s. Пусть x2>x1 и 0<a<1, тогда a^x2 < a^x1 (по свойству степени). А это означает, что функция y=a^x при 0<a<1 убывает на всей области определения.   4) Нет таких значений аргумента, при которых значения показательной функции равны нулю, т.е. у показательной функции нет нулей. 5)Показательная функция непрерывна на всей области определения.  6) Показательная функция дифференцируема в каждой точки области определения, производная вычисляется по формуле (a^x)’= a^x ln a. (график на рисунке 29)

 Билет№ 5

1)На интервале (-Пи/2;Пи/2) функция тангенс возрастает и принимает все значения из R. Поэтому для любого числа а на интервале (-Пи/2;Пи/2) существует единственный корень b уравнения tgx=a. Это число b называют арктангенсом числа а и обозначают arctga.      Определение Арктангенсом числа а называется такое число из интервала (-Пи/2;Пи/2) тангенс которого равен а.  Пример arctg1=Пи/4, так как tgПи/4=1 и Пи/4(-Пи/2;Пи/2);    arctg(-SQR3)=-Пи/3, так как tg(-Пи/4)=-SQR3 и –Пи/3(-Пи/2;Пи/2).

2)Логарифмической функцией называется функция вида y = loga x, где а -заданное число, a>0, a не рано 1. Свойства логарифмической функции 1) Областью определения логарифмической функции являются все положительные действительные числа. Это следует из определения логарифма числа b по основанию a; loga b имеет смысл, если b>0 2) Множеством значений логарифмической функции являются все действительные числа. Пусть y0 –произвольное действительное число. Покажем, что найдётся такое положительное значение аргумента x0, что выполняется равенство y0 = logax0. По определению логарифма числа имеем: x0 = a^y0, a^y0 > 0. Мы показали, что нашлось значение x0 > 0, при котором значение логарифмической функции равно у0 (у0 –произвольное действительное число). 3)  Логарифмическая функция обращается в нуль при х=1. Решим уравнение logax=0. По определению логарифма получаем: a^0 = x, т.е. x = 1. 4) а) логарифмическая функция y=loga x возрастает на всей области определения, если a>1.Докажем, что большему значению аргумента (х2 > х1) соответствует большее значение функции  (loga x2 > loga x1), если a>1. Пусть x2 > x1 > 0; тогда используя основное логарифмическое тождество, запишем это неравенство в виде a^logax2 > a^logax1 . (1) В неравенстве (1) сравниваются два значения показательной функции. Поскольку при a>1 показательная функция возрастает, большее значение функции может быть только при большем значении аргумента, т.е. logax2 > logax1. б)Логарифмическая функция y=logax убывает на всей области определения, если 0<a<1. 5) Логарифмическая функция y=logax: а) при a>1 принимает положительные значения, если x>1; отрицательные значения, если 0<x<1 б) при  0<a<1 принимает положительные значения, если 0<x<1, и отрицательные значения, если x>1.  Пусть a>1, тогда функция y=logax возрастает на всей области определения (рис. 31); причём loga1=0. Из этого следует, что: для x>1  logax > loga1, т.е. logax>0; для 0<x<1  logax < loga1, т.е. logax <0. Пусть 0<a<1; тогда функция y=logax убывает на всей области определения (рис.32); причём loga1=0. Из этого следует, что: для x>1  logax < loga1, т.е. logax < 0; для 0<x<1  logax > loga1, т.е. logax > 0. 6) Логарифмическая функция непрерывна на всей области определения.

 Билет №6

)Пусть на некотором промежутке задана функция y=f(x); x0 –точка этого промежутка; xприращения аргумента x; x0 + X  также принадлежит этому промежутку; y –приращение функции. Предел отношения (если он существует) приращения функции к приращению аргумента при стремлении приращения аргумента к нулю называется производной функции в точке. Пусть материальная точка движется по координатной прямой по закону x=x(t), т.е. координата этой точки x- известная функция времени t. Механический смысл производной состоит в том, что производная от координаты по времени есть скорость: v(t) = x’(t).

)1) Если |a|>1, то уравнение cos x = a решений не имеет, так как |cos x|<=1 для любого x. 2) Рассмотрим случай |a|<=1(рис 35) а) На примежудке [0;Пи] функция y=cosx убывает, значит, уравнение cosx=a имеет один корень x=arccos a. Учитывается, что функция y=cos x –периодическая с периодом 2Пиn, запишем все решения уравнения cosx=a на промежутке [2Пиn; Пи+2Пиn], n принадлежит Z, в виде x = arccos a+ 2Пиn, где n принадлежит Z. Б)  На промежутке [-Пи; 0] функция y =cosx возрастает, следовательно, уравнение cosx=a имеет один корень, а именно,x=-arccos a. Учитывая периодичность функции y= cos. Делаем вывод, что решением уравнения cos x = a на промежудке [-Пи+2Пи; 2Пиn], где n принадлежит Z, являются числа вида x=-arccos a + 2 Пиn, где n принадлежит Z. Таким образом, все ершения уравнения могут быть записаны так: x=+-arccos a + 2Пиn, где n принадлежит Z.

Билет № 7

1)Пусть на некотором промежутке задана функция y=f(x); x0-точка этого промежутка; x-приращение аргумента х; точка х0+x принадлежит этому промежутку; y-приращение функции.  Предел отношения (если он существует) приращения функции к приращению аргумента при стремлении приращения аргумента к нулю называется производной функции в точке.  Пусть задана дифференцируемая функция y=f(x) (рис.36). Геометрический смысл производной состоит в том, что значение производной функции в точке x0 равно угловому коэффициенту касательной, проведённой к графику функции в точке с абсциссой x0: f’(x0)=R, где R-угловой коэффициент касательной.

2)1) На промежутке (-Пи.2 ; Пи.2) функция y=tgx возрастает, значит, на этом промежутке, по теореме о корне, уравнение tgx=a имеет один корень, а именно, x=arctg a (рис 37).  2) Учитывая, что период тангенса равен Пиn, все решения определяются формулой x=arctg a + Пиn, nпринадлежит Z.

 Билет №8

1) Пусть ф-ция f(x) задана на некотором промежутке, а –точка этого промежутка. Если для ф-ции выполняется приближенное равенство f(x)f(a)

с любой , наперед заданной точностью, для всех х , близки х к а , то говорят , что ф-ция непрерывна в точке а. Иными словами ф-ция f непрерывна в точке а , если f(x)f(a) при ха.

Ф-ция непрерывная в каждой точке промежутка наз-ся непрерывной на промежутке.

Гр. непрерывной на промежутке ф-ции представляет собой непрерывную линию. Иными словами гр. можно нарисовать не отрывая карандаша от бумаги.

Например ф-ция f(x)=3^x непрерывна в точке х0=2.Действаительно 3^x 3^2, при хФ-ция f(x)=3^x непрерывна на множестве всех действительных чисел , а ее график можно нарисовать не отрывая карандаша от бумаги.

) Арифметическим корнем n-ой степени из числа а наз-ся неотрицательное число n-ая степень к-рого равна а.

Св-ва корней: Для любых натуральных n, целого k и любых неотрицательных чисел a и b выполняются следующие св-ва:

N sqr ab= n sqr a * n sqr b

n sqr (a/b)= (n sqr a)/( n sqr b) b 0

n sqr (k sqr a)= kn sqr (a), k> 0

n sqr (a) = kn sqr (a^k) ,k>0

n sqr (a^k)=( n sqr a)^k (ели kто а

Для любых неотрицательных чисел а и b таких,  что а < b выполняется неравенство:

n sqr a< n sqr b, если 0a<b

Док-во св-ва №5: По опр-нию корня n-ой степени (n sqr a^k)^n=a^k; (n sqr a)^k0, так как n sqr a0. Найдем n-ю степень выражения (n sqr a)^k. По св-ву возведения степени в степень ((n sqr a)^k)^n=(n sqr a)^nk=(( n sqr a)^n)^k;по определению корня n-ой степени ((n sqr a)^n)^k=a^k.

Следовательно n sqr a^k=( n sqr a)^k.

 Билет №9

1. Все рациональные и дробно-рациональные ф-ции непрерывны на всей области определения. Этот факт следует из того что рациональные и дробно-рациональные ф-ции дефференцируемы  во всех точках своих областей опр-ия.

Например: ф-ция f(x)=x^3-7X^2+24x непрерывна на множестве действительных чисел; а ф-ция g(x)=(x^3+8)/(x-2) непрерывна на промежутке (-:2) и на промежутке (2;+ )

. Логарифмом числа b наз-ся показатель степени в к-рую нужно возвести основание а чтобы получить число b.

Из опр-ия имеем:  a^ logab =b (осн-ое лог-ое тождесто)

Св-ва  логарифмов: При  любом а>0(а1), и любых пол-ных х и у выполняются следующие св-ва:

loga1=0

logaа=1

loga(ху)= logaХ+ logaУ

Док-во: Воспользуемся осн-ным лог-им тождеством

  a ^ logab =b и св-ом показат-ной ф-ции

а^ х+у =а^x * а^y         имеем

а^ loga(xy)=xy= a^ logax *a^ logay =a ^logax +logay

loga(Х/У)= logaХ- logaУ

logaХ^Р= рlogaХ

Формула перехода:

logaХ= logbX/ logbA

Билет №10.

1. Ф-ция F наз-ся первообразной ф-ции f на промежутке I, если для всех значений аргумента из этого промежутка F(x)=f(x). Например ф-ция F(x)=4x^2+3x-1 явл-ся первообразной ф-ции f(x)=12x^3 на множестве всех действительных чисел. Действительно F(x)=12X^2+3 , т.е. F(x)=f(x).

. Если каждому действительному числу поставлен в соответствие его тангенс , то говорят , что задана ф-ция тангенс. Обозначается это так: y=tg x.

Св-ва:1) Областью опр-ния ф-ции явл-ся все действительные числа, кроме чисел  вида

X=пи/2 +пи k, kZ.

Это следует из опред-ия тангенса (tg x=sin x/cos x). Нужно искл-ть числа, при к-рых знаменатель cos x=0 т.е. х= пи/2+пи k, kZ.

) Множеством значений ф-ции явл-ся все действительные числа:Е(у)=(-;+).

3) Ф-ция явл-ся нечетной ф-цией, т.е. для любого хD(y) выполняется нер-во tg(-x)=-tg x . покажем это,  tg (-x)=sin (-x)/cos (-x)= -sin x/cos x= -tg x

) Ф-ция явл-ся периодической с периодом пи k ,где k-целое кроме 0.Наименьшим положительным периодом тангенса явл-ся число пи.

) Ф-ция тангенс принимает значения 0 при х=пи k, kZ. Решением ур-ия tg x=0 явл-ся числа х=пи k, kZ

6) Ф-ция tg принимает положительные значения при пи k<x<пи/2+ пи k, kZ.

Ф-ция tg принимает отрицательные значения при

-пи/2+пи k<x<пи k, kZ . Промежутки знакопостоянства следуют из опр-ия tg x=sin x/cos x.

) Ф-ция tg возрастает на всей области опр-ия т.е. на промежутках (-пи/2+пи k; пи/2 +пи k) kZ 

 Билет №13

1) Для того чтобы найти наибольшее(наименьшее) значение ф-ции y=f(x) имеющее на отрезке a;b конечное число критических точек, нужно:1. Найти критические точки, принадлежащие отрезкуa;b; 2.найти значения ф-ции в критических точках принадлежащих отрезку a;b;3. Найти значение ф-ции на концах отрезка;4. Из полученных чисел (значения ф-ции в критических точках и на концах промежутка ) выбрать наиболее наибольшее (наименьшее) .Пример: Найти наибольшее и наименьшее значение ф-ции y=x^3 –x на отрезке    -1,5;3. 1)D(y)=R; 2) найдем критические точки

y’=3x^2 –; А)y’= 0 если 3x^2 -3=0; 3(x^2 –)=0; x=0 или x=1. Б) точек в к-рых производная не существует нет. 3) y(-1)=-1+3=2; y(1)=1-3=2; y-(-1.5)=(1.5)^3-3*  (-1.5)=(-1.5)^3+2*1.5^2=1.5^2(-1.5+2)=2.25*.5=1.125

y(3)=27-9=18;     -2<1.125<2<18

y(1)<y(-1.5)<y(-1)<y(3).

Min  -1,5;3       y(x)=y(1)=-2

Max -1,5;3        y(x)=y(3)=18

)   1.sin a+ sin b = 2 sin (a+b)/2 *cos(a-b)/2,

      2. sin a- sin b=2 sin(a-b)/2 *cos(a+b)/2,

      3. cos a+ cos b=2 cos (a+b)/2*cos (a-b)/2

. cos a- cos b=-2 sin (a+b)/2*sin (a-b)/2

1)Пусть a=x+y и b=x-y из этих равенств находим:

x=(a+b)/2 и y=(a-b)/2

2) выведем ф-лы для суммы и разности синусов.

 Докажем формулу 1: Воспользовавшись формулами синуса суммы и синуса разности имеем sin a+sin b = =sin(x+y)+ sin(x-y)= sin x cos y+ sin y cos x+ sin x*     cos y-sin y*cos x= 2sin x*cos y= 2 sin(a+b)/2*cos(a-b)/2. Таким образом sin a+ sin b=2sin(a+b)/2*cos(a-b)/2

 Докажем формулу 2:

Sin a-sin b= sin (x+y)- sin(x-y)=sin x cos y+ sin y*cos x –sin x*cos y+sin y*cos x= 2 sin y*cos x=2 sin(a-b)/ 2 * cos(a+b)/2.  Таким образом sin a- sin b=2 sin(a-b)/2 *cos(a+b)/2,

3) выведем ф-лы для суммы и разности косинусов.

 Докажем формулу 4:

Cos a- cos b=cos(x+y)-cos(x-y)=cos x* cos y-sin x*    sin y-cos x*cos y-sin x*sin y=-2sin x*sin y=-2sin(a+b)/2*sin(a-b)/2 Таким образом

                cos a- cos b=-2 sin (a+b)/2*sin (a-b)/2

 Билет №14

1) Пусть задана ф-ция y=f(x) ее график изображен на рис 49. Точка х1 является точкой максимума , х2 является точкой минимума, т.е. точки х1 и х2- точки экстремума. Значения ф-ции в точках экстремума наз-ся экстремумами ф-ции. Например, значения ф-ции y=cos x в точках x= 2 пи k,где kZ, явл-ся экстремумами (максимумами)ф-ции,т.е. Ymax=1

2)            1.Cos (a-b)=cos a*cos b +sin a*sin b;

.cos (a+b)=cos a*cos b- sin a*sin b;

. sin(a-b)=sin a*sin b- sin b*cos a

. sin (a+b)=sin a*cos b+sin b*cos a

Докажем ф-лу (1):     1) проведем радиуо ОА, равный R, вокруг точки О на угол a и b (рис50). Получим радиус ОВ и радиус ОС.    2)Пусть В(х1;у1) С(х2;у2).     3) Введем векторы ОВ(х1;у1) , ОС(х2;у2)

)По опр-ию скалярного произведения ОВ*ОС=х1*х2+у1*у2 (*)        5) по опр-ию синуса и косинуса  х1=R*cos a, y1=R*sin a, x2=R* cos b, y2=R*sin b         6) заменяя в равенстве(*) х1,х2,у1,у2, получим ОВ*ОС=R^2*cos a*cos b+R^2*sin a*sin b (**).       7) По теореме о скалярном произведении векторов ОВ*ОС=|OB|*|OC|*cosBOC=R^2 cosBOC,

BOC= a-b(см. рис. 50) или BOC= 2 пи-(a-b) (см. рис. 51)      cos(2 пи-(a-b))=cos(a-b) следовательно ОВ*ОС=R^2*cos (a-b)  (***)          8) Из неравенств (**) и (***) получим: R^2*cos(a-b)=R^2* cos a*cos b+R^2*sin a*sin b. Разделив левую и правую части на R^20 получим формулу (1) косинуса разности Cos (a-b)=cos a*cos b +sin a*sin b;

С помощью этой формулы легко вывести формулу (2) косинуса суммы и (4) синуса суммы:

Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sin a*sin (-b)=  cos a*cos b-sin a*sin b значит cos(a+b)=cos a*cos b- sin a*sin b. Докажем формулу (4): sin (a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cos a*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a

Докажем формулу (3) Применяя последнюю формулу имеем sin(a-b)=sin(a+(-b))=sin a*cos (-b)+sin(-b)*cos a=sin a*cos b-sin b*cos a. Значит sin(a-b)=sin a*cos b-sin b*cos a. При док-ве формул (1)-(4) были использованы следующие факты:1) формулы приведения 2)ф-ция y=sin x-нечетная, ф-ция y=cos x-четная. Из формул сложения пологая b=пи n/2, где nN, можно вывести формулы привидения для преобразований выражений вида cos(пи*n/2 a), sin(пи*n/2 a). Например cos(пи*n/2 a)= cos пи/2*cos a+sin пи/2*sin a=0+sin a=sin a. Аналогично выводятся следующие формулы:

Sin (пи-а)=sin a

Sin (пи+а)=-sin a

Sin (3 пи/2-а)=-cos a и т.п. Из формул сложения следуют формулы двойного аргумента:

Sin 2a=2sin a*cos a

Cos 2a=cos^2 a-sin^2 a

Билет №11

1)Пусть на отрезке [a;b] задана непрерывная и неотрицательная функция y=f(x); S-площадь соответствующей криволинейной трапеции (рис42). Для вычисления площади S разобьём отрезок [a;b] на n равных отрезков, длинна каждого отрезка [Xj;Xj+1] равна b-a / n; на каждом из отрезков построим прямоугольник, высота которого равна значению функции f(Xj); площадь такого прямоугольника равна f(Xj)*X=f(Xj) * b-a / n. При увеличении числа промежутков, на которые  разбивается отрезок [a;b], ступенчатая фигура, состоящяя из прямоугольников, будет «мало отличатся» от криволинейной трапеции, и если Sn-сумма площадей всех прямоугольников, то Sn~=S.  В курсе математического анализа показывается, что для любой непрерывной на отрезке [a;b] функции y=f(x) существует число, к которому стремится сумма площадей прямоугольников при неограниченном увеличении n(n). Это число называют интегралом, т.е. Sn integral (a;b) f(x) dx при n

2)Если каждому действительному числу поставлен в соответствие его синус, то говорят, что задана функция синус (обозначение y=sin x). Свойства функции синус  1) Область определения функции синус является множество всех действительных чисел, т.е. D(y)=R. Каждому действительному числу х соответствует единственная точка единичной окружности Px, получаемая поворотом точки P0(1;0) на угол, равный х радиан. Точка Рх имеет ординату, равную sinx. Следовательно, для любого х определено значение функции синус.  2) Множеством значений функции синус является промежуток  [-1;1], т.е. E(y)=[-1;1]. Это следует из определения синуса: ордината любой точки единичной окружности удовлетворяет условию –<= Ypx<=1, т.е. –<=sin x<=1  3)Функция синус является нечётной, т.е. для любого х принадлежащего R выполняется равенство sin(-x)=-sinx. Пусть точка Рх получена при повороте точки Р0 на х радиан, а точка Р-х получена при повороте точки Р0 на –х радиан (рис 43). Треугольник  ОрхР-х является равнобедренным; ON-биссектриса угла РхОР-х, значит, ON является медианой и высотой, проведённой к стороне РхР-х. Следовательно, PxN = P-xN, т.е. ординаты точек Рх и Р-х одинаковы по модулю и противоположны по знаку. Это означает, что sin(-x)=-sinx.  4) Функция синус является периодической с периодом 2ПиR, где R- целое. Кроме 0. Наименьшим положительным периодом синуса является число 2Пи.  Каждому действительному числу вида x+2ПиR, где R принадлежит Z, соответствует единственная точка единичной окружности Рх + 2ПиR, получаемая поворотом точки Р0(1;0) на угол x+2ПиR имеет ординату, равную sinx или sin(x+2ПиR). Таким образом, sin(x+2ПиR)=sinx. Этим показано, что числа вида 2ПиR, где R- целое, кроме 0, являются периодом функции. При R=1 имеем sin(x+2Пи)=sinx, следовательно, число 2Пи также является периодом функции синус. Покажем, что 2Пи-наименьшее положительное число, являющееся периодом функции синус. Пусть Т –положительный период функции синус; тогда sin(x+T)=sinx при любом х. Это равенство верно и при x= Пи.2, т.е. sin(пи/2 + T)=sin Пи/2 = 1. Но sinx=1,если x= Пи/2 + 2Пиn, где n принадлежит Z. Наименьшее положительное число вида 2Пиn есть 2Пи.  5) Функция синус принимает значение нуль при x=ПиR, где R принадлежит Z. Решением уравнения sinx=0 являются числа x=ПиR, где R принадлежит Z.  6) Функция синус принимает положительные значения при 2ПиR<x<Пи+2ПиR, где R принадлежит Z.  Функция синус принимает отрицательные значения при Пи+2ПиR<x<2Пи+2ПиR, где R принадлежит Z.   Промежутки знакопостоянства (рис44) следует из определения синуса.  7) Функция синус возрастает на промежутках [-Пи/2 + 2ПиR; Пи/2 + 2ПиR], где R принадлежит Z, и убывает на промежутках [Пи/2 + 2ПиR; 3Пи/2 + ПиR], где R принадлежит Z  Докажем, что функция синус возрастает на промежутке [-Пи/2; Пи/2]. Пусть х1принадлежит  [-Пи /2; Пи /2] и х2>x1. Сравним два значения функции: sinx2 –sinx1 = 2cos x1+x2/2 * sin x2-x1/2; 0< x2-x1/2 <= Пи/2, -Пи/2 < x1+x2/2< Пи/2, поэтому, учитывая промежутки знакопостоянства синуса и косинуса, имеем sin x2-x1/2 > 0, cos x1+x2/2>0. Таким образом, sinx2-sinx1>0, значит, большему значению аргумента соответствует большее значение функции, т.е. функция синус возрастает на промежутке [-Пи/2; Пи/2]. В силу периодичности синуса можно утверждать, что синус возрастает на промежутках [-Пи/2 + 2ПиR; Пи/2 + 2ПиR], где R принадлежит Z.  8) Функция синус имеет максимумы , равные 1, в точках Пи/2 + 2ПиR, где где R принадлежит Z.  Функция Синус имеет минимумы, равные –, в точках 3Пи/2 + 2ПиR, где R принадлежит Z.  Покажем, что точка х0=Пи/2 является точкой максимума. Функция синус возрастает на промежутке [-Пи/2; Пи/2], т.е. sinx<sinПи/2 для любого х принадлежащего [-Пи/2 ; пи/2]. Функция синус убывает на промежутке [Пи/2; 3Пи/2], т.е. sin x < sin Пи/2 для любого х принадлежащего [Пи/2; 3Пи/2]. Ледовательно, х0+Пи/2 является точкой максимума (по определению), а значение sinx=1 является максимумом. В силу периодичности функции синус можно утверждать, что в точках Пи/2 + 2ПиR, где R принадлежит Z, функция имеет максимум, равный 1. 9) Функции арксинус дифференцируема в каждой точке области определения; производная вычисляется по формуле (sin x)’=cosx. (рис 45)

 Билет №12

1)Пусть функция y=f(x) непрерывна на отрезке [a;b]; F-первообразная функции. В этом случае интеграл (a;b) f(x)dx = F(b) –F(a).   Пример Вычислить : Интеграл (0;Пи)cos(2xПи/4) dx = ½sin(2xПи/4)|(0;Пи)= ½sin(2Пи - Пи/4) –½sin(-Пи/4)=½sin(-Пи/4) + ½sin(Пи/4)=-SQR2/4 + SQR2/4 = 0.

2)Если каждому действительному числу поставить в соответствие его косинус, то говорят, что задана функция косинус.  Свойства функции косинус  1)D(y)=R  Каждому действительному числу х соответствует единственная точка единичной окружности Рх, получаемая поворотом точки Р0 (1;0) на угол х радиан. Точка Рх имеет абсциссу, равную cos x. Следовательно, для любого х определено значение функции y=cosx.  2)Множеством значений функции косинус является промежуток [-1;1], т.е. E(y)=[-1;1]. Это следует из определения косинуса: абцисса любой точки единичной окружности удовлетворяет условию –<=Xpx <=1, т.е. –<= cosx<=1. 3)Функция косинус является чётной, т.е. для любого x R выполняется равенство cos(-x)=cosx. Пусть точка Рх получина при повороте точки Ро на х радиан, а точка Р-хполучина при повороте точки Р0 на –х радиан(рис46). Треугольник ОрхР-х является равнобедренным; ON –биссектриса угла РхР-х, значит, является и высокой, проведённой к стороне РхР-х. Из этого следует, что точки Рх и Р-х имеют одну и ту же абсциссу ON, т.е. cos(-x)=cosx. 4)Функция косинус является периодической с периодом 2ПиR, где R-целое, кроме 0. Наименьшим положительным периодом косинуса являеися число 2Пи. Каждому действительному числу вида x+2ПиR, где RZ,соответствует единственная точка единичной окружности Рх+2ПиR, получаемая поворотом точки Р0 (1;0) на угол (x+2ПиR) радиан. Точка Рх+2ПиR имеет абсциссу, равную cosx или cos(x+2ПиR), где RZ. Таким образом, cosx=cos(x+2ПиR). При R=1 имеем cosx=cos(x+2Пи), следовательно, число 2Пи является периодом функции косинус. Покажем, что 2Пи –наименьший положительный период. Пусть Т-положительный период косинуса; тогда cos(x+T) = cosx при любом значении х. Это равенство должно быть верно и при х=0, т.е. cosT = cos0=0, следовательно, cosT=0. Но cosT=0, если T=2ПиR, где RZ. Наименьшее положительное число вида 2ПиR есть 2Пи.  5)Функция косинус принимает значение нуль при х=Пи/2 + ПиR, где RZ. Решением уравнения cosx=0 являются числа х+Пи/2+ПиR, где RZ. 6)Функция косинус принимает положительные значения при –Пи/2 + 2ПиR<x<Пи/2 + 2ПиR, где RZ. Функция косинус принимает отрицательные значения при Пи/2 +  2ПиR<x<3Пи/2 + 2ПиR, где RZ. Промежутки знакопостоянства (рис47) следуют из определения косинуса. 7)Функция косинус возрастает на промежутках [-Пи + 2ПиR; 2ПиR], где RZ, и убывает на промежутках [2ПиR; Пи+2ПиR], где RZ. Чтобы доказать утверждение о промежутках возрастания функции косинус, заметим, что cosx=sin(Пи/2+х). Функция y+sin(Пи/2 + х) возрастает, если –Пи/2 + 2ПиR<=Пи/2 + x<=Пи/2 + 2ПиR, где RZ; т.е. если –Пи + 2ПиR, где RZ; т.е. если –Пи+2ПиR<=x<=2ПиR, где RZ. Поскольку sin(Пи/2 + х)=cosx, функция y=cosx возрастает, если –Пи+2ПиRR<=x<=2ПиR, где RZ. Аналогично обосновывается утверждение о промежутках убывания функции. 8)Функция косинус имеет максимумы, равные  1, в точках 2ПиR, где RZ. Функция косинус имеет минимумы, равные –, в точках Пи+2ПиR, где RZ. Покажем, что функция y=cosx имеет максимумы в точках 2ПиR, где RZ. Замечая, что cosx=sin(Пи/2 + х), найдём точки максимума функции y=sin(Пи/2+x). Её точки максимума Пи/2 + х=Пи/2+2ПиR, где RZ, т.е. x=2ПиR, где RZ. Максимум функции косинус равен 1.  Аналогично проводятся рассуждения о точках минимума. 9)Функция косинус непрерывна на всей области определения.10) Функция косинус дифференцируема в каждой точке области определения; производная функции косинус вычисляется по формуле  (cosx)’=-sinx.

 Билет №15

.Если производная функции равна 0 на некотором промежутке, то эта функция постоянна на этом промежутке.

Если g(x)=0 на некотором промежутке то касательная к графику функции y=g(x), например g(x)=6 в каждой точке данного промежутка параллельна оси ОХ.

2.Если f- непрерывная и неотрицательная функция на отрезкеа;b, то площадь соответствующей криволинейной  трапеции можно выч-ть по формуле

S=F(b)-F(a)

Док-во:

Пусть y=S(x) –площадь криволинейной трапеции, имеющей основание a;x где xа;b, заметим что S(a)= 0 S(b)=S

Покажем что y=S(x)-первообразная ф-ция y=f(x)

т.е. S(x)=f(x) что бы найти производную ф-ции y=S(x),

воспользуемся опр-ем производной:

а) зададим преращение x (пусть x 0)

б) найдем приращение ф-ции

∆S=S(x+∆x)-S(x)

в) составим соотношение

S/∆x=S(x+∆x)-S(x)/ ∆x

г) выясним чему равен предел отношения при x0Разность S(x+∆x)-S(x) равна площади криволинейной трапеции с основанием x; x+∆x

Если x0 то эта площадь приблизительно равна площади прямоугольника f(x)* ∆x   т.е.

S(x+∆x)-S(x) f(x) * ∆x

Имеем 

S(x+∆x)-S(x)/ ∆x f(x)

При x0. Этим показано что S(x)=f(x)

)Равенство S(x) =f(x) означает что S- первообразная функцииf на заданном промежутке.

)По основному св-ву первообразной имеем F(x)=S(x)+C, где F- какая-либо первообразная для f.

При x=a получим ,что

F(a)=S(a)+C т.е. C=F(a).

При x=b имеем

F(b)=S(b)+F(a)

Следовательно

S=S(b)=F(b)-F(a)

 Билет №16

1)Пусть задана функция y=f(x), дифференцируемая в каждой точке промежутка I, точки a и b принадлежат этому промежутку. На интервале (a;b) найдётся такая точка с, для которой выполняется равенство f’(x)= f(b)-f(a)/b-a. Геометрически этот факт можно истолковать следующим образом. Пусть функция y=f(x) дифференцируема на некотором промежутке. Точки a и b принадлежат этому промежутку; через точки A(a;f(a)) и B(b;f(b)) проведена секущая. Тогда на интервале (a;b) найдётся такая точка с, что угловой коэффициент касательной, проведённой через точку (с; f(c)), будет равен угловому коэффициенту секущей АВ (рис 55).

)Функция заданная формулой f(x)=x^a, называется степенной. Свойства степенной функции при а>1  1)D(f)=[0;+], если а не является натуральным числом. Это следует из определения степени с рациональным показателем. Если а натуральное число, то D(f)=(-;+) по определению степени с натуральным показателем. 2)E(f)=[0;+) для всех а>1, кроме а= 2R+1. Где RN. Это следует из определения степени с рациональным показателем. E(f)=(-;+) для нечётных а,т.е. а=2R+1, где RN. 3)Если а-чётное натуральное число, то данная функция является чётной. Т.к. f(-x)=(-x)^2R = ((-x)^2)^R= (x^2)^R = x^2R = f(x). Если а-нечётное натуральное число. то данная функция является нечётной, так как f(-x)=(-x)^2R+1 + (-x)^2R (-x)= x^2R * (-x)=-x^2R * x+ -x^2R+1 + -f(x). 4)При х=0 функция f(x)=0, так как 0^a = 0 при а>0. 5)При x>0 функция f(x)>0.  Это следует из определения степени с рациональным показателем. При нечётных а(а=2R+1, RN), если х<0, функция принимает отрицательные значения. Так как x^2R+1+x^2R, x^2R>0, но x<0, следовательно, произведение x^2R x<0, т.е. f(x)<0 при x<0. 6) Функция является возрастающей на промежутке [0;+) для любого a>1. Из свойства степени с рациональным показателем (r-рациональное число и 0<a<b, тогда a^r<b^r при r>0) следует, что x1^a<x2^a. Таким образом, меньшему значению аргумента соответствует меньшее значение функции, т.е. функция y=f(x) возрастает на промежутке [0;). Докажем, что если ф- нечётное число, то функция возрастает и на промежутке (-;0] (рис56б). Пусть x1<x2<0, тогда x1^a< x2^a по определению степени с целым отрицательным показателем. Т.е. данная функция возрастает по определению возрастающей на промежутке функции. Аналогично можно доказать, что функция y=f(x) на промежутке (-;0] убывает, если а –чётное целое (рис56а).  

 Билет №17

Пусть задана сложная ф-ция g(x)=f(kx+b).

Если ф-ция f имеет производную в точке kx0+b, то производную ф-ции g можно найти по формуле g(x0)=kf(kx0+b).

Например найдем производную ф-ции g(x)=(7x-9)^19

g(x)=7*19(7x-9)^18=133(7x-9)^18

2. Правило 1. Если F- первообразная ф-ции f, а  G- первообразная ф-ции g, то F+G является первообразная ф-ции f+g.

Док-во: Воспользуемся опр-ием первообразной , т.е. найдем производную ф-ции F+G.

(F+G)=F+G=f+g

Правило 2. Если F- первообразная ф-ции

f, а kпостоянная , то kF- первообразная ф-ции kf.

Док-во: Воспользуемся опр-ием первообразной , т.е. найдем производную ф-ции  kF.

(kF)=kF=kf

Правило 3. Если y=F(x)- первообразная ф-ции

y=f(x),а k и b- постоянные, причем k0 то ф-ция y=1/k*f(kx+b) явл-ся первообразной ф-ции y=f(kx+b)

Док-во: Воспользуемся опр-ием первообразной , т.е. найдем производную ф-ции y=1/k*F(kx+b)

(1/k*F(kx+b))=1/k*F(kx+b)*k=F(kx+b)=f(kx+b)

 

Билет № 18.

1.Пусть материальная точка движения по координатной прямой по закону x=x(t), т.е. координата точки –известная ф-ия времени. За промежуток времени t перемещение точки равно x, а средняя скорость vср=x/t. Если движение таково, что при t0 значение средней скорости стремится к некоторому определённому числу, то это число называют мгновенной скоростью (x/y  vмгн, при t0). Но по определению производной x/y  xпри t0. Мгновенная скорость определена для любой дифференцируемой ф-ии, описывающей перемещение точки по прямой. Чтобы найти скорость движения v, нужно определить производную от координаты по времени, т.е. v(t)=x’(t). Пример. Координата точки, движущейся по прямой, задана формулой  x(t)=2t^2-3t+1 (x(t) –перемещение в метрах, t- время в секундах). Найти скорость точки в момент времени t=2c. Имеем: v(t)=x’(t)=4t-3; v(2)=4*2-3=5 (м/с).

2. Таблица первообразных элементарных ф-ий.

Билет № 18.

1.Пусть материальная точка движения по координатной прямой по закону x=x(t), т.е. координата точки –известная ф-ия времени. За промежуток времени t перемещение точки равно x, а средняя скорость vср=x/t. Если движение таково, что при t0 значение средней скорости стремится к некоторому определённому числу, то это число называют мгновенной скоростью (x/y  vмгн, при t0). Но по определению производной x/y  xпри t0. Мгновенная скорость определена для любой дифференцируемой ф-ии, описывающей перемещение точки по прямой. Чтобы найти скорость движения v, нужно определить производную от координаты по времени, т.е. v(t)=x’(t). Пример. Координата точки, движущейся по прямой, задана формулой  x(t)=2t^2-3t+1 (x(t) –перемещение в метрах, t- время в секундах). Найти скорость точки в момент времени t=2c. Имеем: v(t)=x’(t)=4t-3; v(2)=4*2-3=5 (м/с).

2. Таблица первообразных элементарных ф-ий.

 Билет №19

1.Функция y=F(x) называется периодической, если существует такое число Т, не равное нулю, что для любых значений аргумента из области определения функции выполняются  равенства f(x-T)=f(x)=f(x+T). Число Т называется периодом функции. Например, y=sinx –периодическая функция (синусоиду нарисуешь сам (а)) Периодом функции являются любые числа вида T=2PR, где R –целое, кроме 0. Наименьшим положительным периодом является число T=2P. Для построения графика периодической функции достаточно построить часть графика на одном из промежутков длинной Т, а затем выполнить параллельный перенос этой части графика вдоль оси абсцисс на +-Т, +-2Т, +-3Т,…

2. Если ф-ия u и v дифференцируемы в некоторой точке, то их сумма дифференцируема в этой же точке и производная суммы равна сумме производных: (u+v)’=u’+v’. Доказательство. Найдём производную суммы по определению производной.

Пусть задана точка x0, x-приращение аргумента.

2) Вычислим приращение ф-ии:

(u+v)=u(x0+x)+(x0+x)–(u(x0)+v(x0))=u(x0+x)-u(x0)+v(x0+x )-                                                                   v(x0)=u+v.

)Найдём отношение приращения ф-ии к приращению аргумента:

(u+v)/x=(u+v)/x =u /x +v/x.

) Выясним, к чему стремится разносное отношение при x0

u/x+vx u’+vпри x0

 Билет №20

1)Изобразим  в прямоугольной системе координат графики следующих показательных ф-ий:y=(3/2), y=2, y=(5/2), y=3

Все графики проходят через точку M(0;1).

Проведём касательные к графикам в этой точке. Измерим углы наклона касательных к оси абсцисс. У касательных к графикам ф-ии y=(3/2), y=2, y(5/2) углы с положительным направлением оси Ох меньше 45. У касательной к графику ф-ии y=3 этот угол больше 45. Наличие у показательной ф-ии y=e (e=2.71828…) касательной, проведёной в точке M(0;1) и образующей с положительным направлением оси абсцисс угол в 45, означает, что производная в точке х0 =0 равно 1.

Натуральным логарифмом называется логарифм по основанию е. Натуральный логарифм обозначается знаком ln, т.е. log x=ln x.

. Если производная ф-ии положительна в каждой точке интервала, то ф-ия возрастает на этом интервале.

Доказательство: Ф-ия y= f(x) называется возрастает, если большему значению аргумента соответствует большее значение ф-ии.

Известно, что значения дифференцируемой на интеграле ф-ии, значения производной связываются формулой Лагранжа: если ф-ия  y=f(x) дифференцируема на некотором промежутке, точки x1 и x2 принадлежат промежутку  (x1< x2), то на интеграле (х1;х2) найдется такая точка с, для которой выполняется равенство f’(c)=(f(x2)-f(x1))/(x2-x1).

Пусть производная ф-ии принимает положительные значения на интеграле I, т.е. f’(x)>0.Возьмем два знацения аргумента x1 и x2,принадлежащие этому интегралу, причём х1<х2. Сравним значения этой ф-ии в точках х1 и х2. По формуле Лагранжда найдётся такое значения с  (х1:х2), для которой выполняется равенство

F’(c)=(f(x2)-f(x1))/(x2-x1).

Из этого условия следует, что f(x2)-f(x1)=f’(c)*(x2-x1).

Заметим, что f(c)>0 (по условию), значит, f’(c)*(x2-x1)>0, т.е. разность значению аргумента соответствует большее значение ф-ии, т.е. ф-ия

y=f(x) является возрастающей. Аналогично показывается достаточное условия ф-ии.  

Ф-ия                               y=x^n, n1 y=sin x y=cos x

Общий вид первообразных (x^(n+1))/(n+1)+C -cos x+C Sin x+C

Ф-ия                               y=e^x y=a^x  Y= 1/x

Общий вид первообразных e^x+C (a)/ln a+C ln x +C

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.shpori4all. narod.ru/




1. тема 7 инновационный менеджмент История возникновения инновационной деятельности на предп
2. Еволюція взаємин людини і природи Найперші глобальні екологічні кризи
3. тема органів державної влади та їх повноваження в сфері регулювання економіки Функції та по
4. реферат дисертації на здобуття наукового ступеня кандидата історичних наук Луганськ
5. а. le jct est. Жребий брошен
6. Лекции по химии
7. Организация рабочего места руководителя
8. Национальная модель социально-экономического развития РБ и актуальные проблемы теории и практики социальной работы
9. оліготрофні не багаті на корм ~ глибоководні озера з низькою температурою в нижніх шарах водяної товщі;.html
10. Формы собственности
11. статьях 13 и 14 Федерального конституционного закона
12. пособие по выполнению курсовой работы для студентов очной и заочной форм обучения специальностей 311300 311500 3119.
13. Родничок присмотра и оздоровления МДОУ Детский сад 36 Родничок присмотра и оздоровления расположен
14. Лекции - Терапия лечение заболеваний кишечника
15. Сфера 2000 Астральные тела и двойники
16. тематики Модуль 2 Семестр- VІ Кількість годин- 2 ЛЕКЦІЯ 10 6970
17. Тема- Дослідження апаратних засобів діагностування
18. на тему- ldquo;Административные и экономические реформы Петра Irdquo; Выполни
19.  Укажите молекулы галогенов 1 F2 2 Cl2 3 Br2 4 I2 в которых наибольшие
20. Линейное программирование как метод оптимизации