Формула Бейеса Имеется два одинаковых ящика с шарами
Работа добавлена на сайт samzan.net:
Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
от 25%
Подписываем
договор
Формула полной вероятности. Формула Бейеса
- Имеется два одинаковых ящика с шарами. В первом ящике 4 белых и 6 красных шаров, во втором 5 белых и 10 красных. Наудачу выбирают один ящик и извлекают из него шар. Какова вероятность того, что извлеченный шар окажется белым?
- Предприятие имеет три источника поставки комплектующих фирмы А, В, С. на долю фирмы А приходится 50% общего объема поставок, В 30% и С 20%. Из практики известно, что 10% поставляемых фирмой А деталей бракованные, В 5% и С 6%. Какова вероятность того, что наугад взятая деталь стандартная?
- В студенческой группе 20 человек. из них 4 человека сдали экзамен по высшей математике на «отлично», 11 на «хорошо» и 5 на «удовлетворительно». Вероятность решить предложенную задачу для отличника составляет 0.9, для хорошиста 0.8, для троечника 0.7. Определить вероятность того, что наудачу выбранный студент не решит задачу.
- В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника 0.9, для велосипедиста 0.8 и для бегуна 0.75. Найти вероятность того, что наудачу выбранный спортсмен не выполнит норму.
- В первой урне 3 белых и 7 черных шаров, во второй 6 белых и 4 черных шаров. Из второй урны в первую переложили один шар, а затем из первой урны вынули наугад один шар. Какова вероятность того, что вынутый шар ранее находился во второй урне, если известно, что он белый.
- Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы второго курса 4 студента, из второй группы 6 студентов, из третьей группы 5 студентов. Вероятности того, что студент первой, второй и третьей группы попадет в сборную института, соответственно равны 0.6, 0.9, 0.5. Найти вероятность того, что наудачу выбранный студент не попадет в сборную.
- В первом ящике 20 деталей, из них 15 стандартные. Во втором ящике 25 деталей, из них 20 стандартные. Найти вероятность того, что наудачу извлеченная деталь из наудачу взятого ящика стандартная.
- Сборщик получил 5 коробок деталей изготовленных заводом №1 и 4 коробки деталей, изготовленных заводом №2. Вероятность того, что деталь завода №1 стандартна равна 0.9, а завода №2 0.72. Сборщик наудачу извлек деталь из наудачу взятой коробки. Найти вероятность того, что извлечена стандартная деталь.
- В студенческой группе 25 человек. из них 5 человека сдали экзамен по высшей математике на «отлично», 12 на «хорошо» и 8 на «удовлетворительно». Вероятность решить предложенную задачу для отличника составляет 0.9, для хорошиста 0.8, для троечника 0.7. Определить вероятность того, что наудачу выбранный студент решит задачу.
- На заводе изготовляют комплектующие детали. Первая машина производит 25% всех изделий, вторая 35%, третья 40%. Брак составляет соответственно 5%, 4% и 10%. Какова вероятность того, что случайно выбранная деталь имеет дефект?
- В группе спортсменов 15 лыжников, 9 велосипедистов и 6 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника 0.95, для велосипедиста 0.9 и для бегуна 0.7. Найти вероятность того, что наудачу выбранный спортсмен выполнит норму.
- Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы второго курса 5 студентов, из второй группы 4 студента, из третьей группы 6 студентов. Вероятности того, что студент первой, второй и третьей группы попадет в сборную института, соответственно равны 0.6, 0.9, 0.7. Найти вероятность того, что наудачу выбранный студент попадет в сборную.
- Предприятие имеет три источника поставки комплектующих фирмы А, В, С. на долю фирмы А приходится 45% общего объема поставок, В 25% и С 30%. Из практики известно, что 10% поставляемых фирмой А деталей бракованные, В 8% и С 7%. Какова вероятность того, что взятая наугад и оказавшаяся бракованной деталь получена от фирмы А?
- В первом ящике 30 деталей, из них 20 стандартные. Во втором ящике 20 деталей, из них 15 стандартные. Найти вероятность того, что наудачу извлеченная деталь из наудачу взятого ящика бракованная.
- Имеется два одинаковых ящика с шарами. В первом ящике 10 белых и 5 черных шаров, во втором 3 белых и 7 черных. Наудачу выбирают один ящик и извлекают из него шар. Какова вероятность того, что извлеченный шар окажется белым?
- Сборщик получил 4 коробки деталей изготовленных заводом №1 и 6 коробок деталей, изготовленных заводом №2. Вероятность того, что деталь завода №1 стандартна равна 0.7, а завода №2 0.8. Сборщик наудачу извлек деталь из наудачу взятой коробки. Извлечена стандартная деталь. Определить вероятность того, что она изготовлена заводом №2.
- На заводе изготовляют комплектующие детали. Первая машина производит 30% всех изделий, вторая 50%, третья 20%. Брак составляет соответственно 7%, 6% и 10%. Какова вероятность того, что случайно выбранная деталь стандартная?
- Предприятие имеет три источника поставки комплектующих фирмы А, В, С. на долю фирмы А приходится 40% общего объема поставок, В 25% и С 35%. Из практики известно, что 10% поставляемых фирмой А деталей бракованные, В 4% и С 6%. Какова вероятность того, что наугад взятая деталь бракованная?
- В первой урне 5 белых и 15 черных шаров, во второй 13 белых и 7 черных шаров. Из второй урны в первую переложили один шар, а затем из первой урны вынули наугад один шар. Определить вероятность того, что вынутый шар белый.
- В студенческой группе 20 человек. из них 4 человека сдали экзамен по высшей математике на «отлично», 11 на «хорошо» и 5 на «удовлетворительно». Вероятность решить предложенную задачу для отличника составляет 0.9, для хорошиста 0.8, для троечника 0.7. Наудачу выбранный студент решил задачу. Определить вероятность того, что это отличник.
- Имеется два одинаковых ящика с шарами. В первом ящике 14 белых и 6 красных шаров, во втором 15 белых и 10 красных. Наудачу выбирают один ящик и извлекают из него шар. Какова вероятность того, что извлеченный шар окажется красным?
- В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника 0.9, для велосипедиста 0.8 и для бегуна 0.75. Наудачу выбранный спортсмен выполнил норму. Определить вероятность того, что это велосипедист.
- На заводе изготовляют комплектующие детали. Первая машина производит 25% всех изделий, вторая 35%, третья 40%. Брак составляет соответственно 6%, 4% и 9%. Случайно выбранная деталь оказалась бракованной. Какова вероятность того, что она была произведена первой машиной?
- Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы второго курса 4 студента, из второй группы 6 студентов, из третьей группы 5 студентов. Вероятность того, что студент первой, второй и третьей группы попадет в сборную института, соответственно равна 0.6, 0.8, 0.5. Наудачу выбранный студент попал в сборную. Определить вероятность того, что это студент из первой группы.
- Сборщик получил 6 коробок деталей изготовленных заводом №1 и 4 коробки деталей, изготовленных заводом №2. Вероятность того, что деталь завода №1 стандартна равна 0.8, а завода №2 0.75. Сборщик наудачу извлек деталь из наудачу взятой коробки. Найти вероятность того, что извлечена бракованная деталь.
- На заводе изготовляют комплектующие детали. Первая машина производит 40% всех изделий, вторая 35%, третья 25%. Брак составляет соответственно 5%, 4% и 9%. Случайно выбранная деталь оказалась стандартной. Какова вероятность того, что она была произведена третьей машиной?
- Имеется два одинаковых ящика с шарами. В первом ящике 10 белых и 15 черных шаров, во втором 13 белых и 17 черных. Наудачу выбирают один ящик и извлекают из него шар. Какова вероятность того, что извлеченный шар окажется черным?
- Предприятие имеет три источника поставки комплектующих фирмы А, В, С. на долю фирмы А приходится 35% общего объема поставок, В 25% и С 40%. Из практики известно, что 10% поставляемых фирмой А деталей бракованные, В 5% и С 7%. Какова вероятность того, что взятая наугад и оказавшаяся стандартной деталь получена от фирмы В?
- В первой урне 15 белых и 5 черных шаров, во второй 14 белых и 6 черных шаров. Из второй урны в первую переложили один шар, а затем из первой урны вынули наугад один шар. Определить вероятность того, что вынутый шар черный.
- Сборщик получил 14 коробок деталей изготовленных заводом №1 и 16 коробок деталей, изготовленных заводом №2. Вероятность того, что деталь завода №1 стандартна равна 0.75, а завода №2 0.8. Сборщик наудачу извлек деталь из наудачу взятой коробки. Извлечена нестандартная деталь. Определить вероятность того, что она изготовлена заводом №1.