У вас вопросы?
У нас ответы:) SamZan.net

Тема 1 Предмет и метод статистики 1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

КМВИ ЮРГТУ (НПИ)

Курс лекций по дисциплине:

СТАТИСТИКА

для специальности 080502 «Экономика и управление на предприятии (по отраслям)

Составил: ст. преподаватель Погорельская Т. А.

г.Георгиевск, 2008 г.

Тема 1. Предмет и метод статистики

1.1. Предмет, метод и основные категории статистики как науки

Слово «статистика» имеет латинское происхождение (от status – состояние). В средние века оно означало политическое состояние государства. В науку этот термин введен в XVIII в. немецким ученым Готфридом Ахенвалем. Собственно как наука статистика возникла только в XVII в., однако статистический учет существовал уже в глубокой древности. Так, известно, что еще за 5 тыс. лет до н.э. проводились переписи населения в Китае, осуществлялось сравнение военного потенциала разных стран, велся учет имущества граждан в Древнем Риме, затем – населения, домашнего имущества, земель в средние века.

У истоков статистической науки стояли две школы – немецкая описательная и английская школа политических арифметиков.

Представители описательной школы считали, что задачей статистики является описание достопримечательностей государства: территории, населения, климата, вероисповедания, ведения хозяйства и т.п. – только в словесной форме, без цифр и вне динамики, т.е. без отражения особенностей развития государств в те или иные периоды, а только лишь на момент наблюдения. Видными представителями описательной школы были Г. Конринг (1606–1661), Г. Ахенваль (1719–1772), А. Бюшинг (1724–1793) и др.

Политические арифметики ставили целью изучать общественные явления с помощью числовых характеристик – меры веса и числа. Это был принципиально новый этап развития статистической науки по сравнению со школой государствоведения, так как от описания явлений и процессов статистика перешла к их измерению и исследованию, к выработке вероятных гипотез будущего развития. Политические арифметики видели основное назначение статистики в изучении массовых общественных явлений, осознавали необходимость учета в статистическом исследовании требований закона больших чисел, поскольку закономерность может проявиться лишь при достаточно большом объеме анализируемой совокупности. Виднейшим представителем и основателем этого направления был В. Петти (1623–1687). История показала, что последнее слово в статистической науке осталось именно за школой политических арифметиков.

Прогрессу статистической методологии способствовали – труды российских статистиков – А.А. Чупрова (1874–1926 гг.), В.С. Немчинова (1894–1964 гг.), С.Г. Струмилина (1877–1974 гг.) и др.

Развитие статистической науки, расширение сферы практической статистической работы привели к изменению содержания самого понятия «статистика». В настоящее время данный термин употребляется в трех значениях:
1) под статистикой понимают отрасль практической деятельности, которая имеет своей целью сбор, обработку, анализ и публикацию массовых данных о самых различных явлениях общественной жизни (в этом смысле «статистика» выступает как синоним словосочетания «статистический учет»);
2) статистикой называют цифровой материал, служащий для характеристики какой-либо области общественных явлений или территориального распределения какого-то показателя;
3) статистикой называется отрасль знания, особая научная дисциплина и соответственно учебный предмет в высших и средних специальных учебных заведениях.

Как и всякая наука, статистика имеет свой предмет изучения статистика изучает количественную сторону массовых общественных явлений в неразрывной связи с их качественной стороной, исследует количественное выражение закономерностей общественного развития в конкретных условиях места и времени.

Свой предмет статистика изучает при помощи определенных категорий, т.е. понятий, которые отражают наиболее общие и существенные свойства, признаки, связи и отношения предметов и явлений объективного мира.

Основные понятия теории статистики:

1. Статистическая совокупность – это множество единиц изучаемого явления, объединенных единой качественной основой, общей связью, но отличающихся друг от друга отдельными признаками. Таковы, например, совокупность домохозяйств, совокупность семей, совокупность предприятий, фирм, объединений и т.п.

Совокупность называется однородной, если один или несколько изучаемых существенных признаков ее объектов являются общими для всех единиц.

Совокупность, в которую входят явления разного типа, считается разнородной. Совокупность может быть однородна в одном отношении и разнородна в другом. В каждом отдельном случае однородность совокупности устанавливается путем проведения качественного анализа, выяснения содержания изучаемого общественного явления.

2. Признак – это качественная особенность единицы совокупности. По характеру отображения свойств единиц изучаемой совокупности признаки делятся на две основные группы:

признаки, имеющие непосредственное количественное выражение, например возраст, стаж работы, средний заработок и т.д. Они могут быть дискретными и непрерывными;

признаки, не имеющие непосредственного количественного выражения. В этом случае отдельные единицы совокупности различаются своим содержанием (например, профессии – характером труда: учитель, столяр, швея-мотористка и т.д.). Такие признаки обычно называют атрибутивными (в философии «атрибут» – неотъемлемое свойство предмета). В случае, когда имеются противоположные по значению варианты признака, говорят об альтернативном признаке (да, нет). Например, продукция может быть годной или бракованной (не годной); для представителей отдельных возрастных групп существует вероятность дожить или не дожить до следующей возрастной группы; каждое лицо может состоять в браке или нет и т.д.

Особенностью статистического исследования является то, что в нем изучаются только варьирующие признаки, т.е. признаки, принимающие различные значения (для атрибутивных, альтернативных признаков) или имеющие различные количественные уровни у отдельных единиц совокупности.

3. Статистический показатель – это количественная оценка свойства изучаемого явления. Статистические показатели можно подразделить на два основных вида: учетно-оценочные показатели (размеры, объемы, уровни изучаемого явления) и аналитические показатели (относительные и средние величины, показатели вариации и т.д.).

Свой предмет статистика изучает при помощи своего, специфического метода. Общей основой разработки и применения статистической методики является диалектический метод познания, согласно которому общественные явления и процессы рассматриваются в развитии, взаимной связи и причинной обусловленности. Метод статистики – это целая совокупность приемов, пользуясь которыми статистика исследует свой предмет. Она включает в себя три группы собственно методов: метод массовых наблюдений, метод группировок, метод обобщающих показателей.

Статистическое наблюдение заключается в сборе первичного статистического материала, в научно организованной регистрации всех существенных фактов, относящихся к рассматриваемому объекту. Это первый этап всякого статистического исследования.

Метод группировок дает возможность все собранные в результате массового статистического наблюдения факты подвергать систематизации и классификации. Это второй этап статистического исследования.

Метод обобщающих показателей позволяет характеризовать изучаемые явления и процессы при помощи статистических величин – абсолютных, относительных и средних. На этом этапе статистического исследования выявляются взаимосвязи и масштабы явлений, определяются закономерности их развития, даются прогнозные оценки.

1.2. Органы государственной статистики Российской Федерации

В соответствии со ст. 71 Конституции РФ руководство статистикой в стране осуществляет Госкомстат как федеральный орган исполнительной власти.

Госкомстат РФ, его органы в республиках, краях, областях, автономных областях и округах, в городах Москве и Санкт-Петербурге, других городах и районах, а также подведомственные им организации, учреждения и учебные заведения составляют единую систему государственной статистики страны.

Формы и методы сбора и обработки статистических данных, методология расчета статистических показателей, установленные Госкомстатом, являются статистическими стандартами РФ.

В соответствии с положением основными задачами Госкомстата России являются:
1) предоставление официальной статистической информации Президенту, правительству, федеральному собранию РФ, федеральным органам исполнительной власти, общественности;
2) разработка научно обоснованной статистической методологии, соответствующей международным стандартам;
3) координация статистической деятельности в государстве;
4) разработка экономико-статистической информации, ее анализ, составление национальных счетов, проведение необходимых балансовых расчетов;

Основные функции Госкомстата России состоят в том, что он:
1) организует проведение государственных статистических наблюдений по разработанным им или согласованным с ним программам, формам и методикам;
2) обеспечивает функционирование ЕГРПО (Единого государственного регистра предприятий и организаций);
3) обеспечивает сбор, обработку, хранение и защиту статистической информации, соблюдение государственной и коммерческой тайны, необходимую конфиденциальность данных (конфиденциальный – секретный, доверительный);
4) сопоставляет основные социально-экономические показатели России с аналогичными показателями других стран, совместно с Центробанком составляет платежный баланс страны;
5) проводит единую техническую политику в области сбора, обработки и передачи статистической информации, в разработке и формировании федеральных программ по вопросам, порученным Госкомстату.

Тема 2. Статистическое наблюдение

2.1. Понятия и требования статистического наблюдения

Количественная характеристика социально-экономических процессов в непосредственной связи с их качественной сущностью невозможна без глубокого статистического исследования. Если при сборе статистических данных допущена ошибка или материал оказался недоброкачественным, это повлияет на правильность и достоверность как теоретических, так и практических выводов. Поэтому статистическое наблюдение от начальной до завершающей стадии должно быть тщательно продуманным и четко организованным.

Статистическое наблюдение – это первая стадия всякого статистического исследования, представляющая собой научно организованный по единой программе учет фактов, характеризующих явления и процессы общественной жизни, и сбор полученных на основе этого учета массовых данных.

К статистическому наблюдению предъявляются следующие требования:
1) полноты и практической ценности статистических данных;
2) достоверности и точности данных;
3) их единообразия и сопоставимости.

2.2. Программно-методологические и организационные вопросы статистического наблюдения

Любое статистическое исследование необходимо начинать с точной формулировки его цели и конкретных задач, а тем самым и тех сведений, которые могут быть получены в процессе наблюдения. После этого определяются объект и единица наблюдения, разрабатывается программа, выбираются вид и способ наблюдения.

Объект наблюдения – совокупность социально-экономических явлений и процессов, которые подлежат исследованию, или точные границы, в пределах которых будут регистрироваться статистические сведения. Например, при переписи населения необходимо установить, какое именно население подлежит регистрации – наличное, т.е. фактически находящееся в данной местности в момент переписи, или постоянное, т.е. живущее в данной местности постоянно.

В ряде случаев для отграничения объекта наблюдения пользуются тем или иным цензом. Ценз есть ограничительный признак, которому должны удовлетворять все единицы изучаемой совокупности.

Единицей наблюдения называется составная часть объекта наблюдения, которая служит основой счета и обладает признаками, подлежащими регистрации при наблюдении.

Так, например, при переписи населения единицей наблюдения является каждый отдельный человек.

Программа наблюдения – это перечень вопросов, по которым собираются сведения, либо перечень признаков и показателей, подлежащих регистрации. Программа наблюдения оформляется в виде бланка (анкеты, формуляра), в который заносятся первичные сведения. Необходимым дополнением к бланку является инструкция (или указания на самих формулярах), разъясняющая смысл вопроса. Состав и содержание вопросов программы наблюдения зависят от задач исследования и от особенностей изучаемого общественного явления.

Организационные вопросы статистического наблюдения включают в себя определение субъекта, места, времени, формы и способа наблюдения.

2.3. Формы, виды и способы наблюдения

В статистической практике используются две организационные формы наблюдения – отчетность и специальное статистическое обследование.

Отчетность – это такая организационная форма, при которой единицы наблюдения представляют сведения о своей деятельности в виде формуляров регламентированного образца.

Особенность отчетности состоит в том, что она обязательна, документально обоснована и юридически подтверждена подписью руководителя.

Примером второй формы наблюдения – специального статистического обследования – является проведение переписей населения.

В зависимости от задач статистического исследования и характера изучаемого явления учет фактов можно производить:
- систематически, постоянно охватывая факты по мере их возникновения – это будет текущее наблюдение (отчетность);
- регулярно, но не постоянно, а через определенные промежутки времени – это будет периодическое наблюдение (переписи населения).

Рис. 2.1. Формы, виды и способы статистического наблюдения

С точки зрения полноты охвата фактов статистическое наблюдение может быть сплошным и несплошным. Сплошное наблюдение представляет собой полный учет всех единиц изучаемой совокупности. Несплошное наблюдение организуют как учет части единиц совокупности, на основе которой можно получить обобщающую характеристику всей совокупности. К видам несплошного наблюдения относятся: способ основного массива, выборочные наблюдения, монографические описания.

При непосредственном учете фактов сведения получают путем личного учета единиц совокупности: пересчета, взвешивания, измерения и т.д.

Документальный способ сбора статистической информации базируется на систематических записях в первичных документах, подтверждающих тот или иной факт.

В ряде случаев для заполнения статистических формуляров прибегают к опросу населения, который может быть произведен экспедиционным, анкетным или корреспондентским способом.

Существуют различные способы формирования выборочной совокупности. Это, во-первых, индивидуальный отбор, включающий такие разновидности, как собственно случайный, механический, стратифицированный, и, во-вторых, серийный, или гнездовой, отбор.

Тема 3. Сводка и группировка данных статистического наблюдения

3.1. Понятия сводки и группировки статистических данных

Собранный в процессе статистического наблюдения материал нуждается в определенной обработке, сведении разрозненных данных воедино. Научно организованная обработка материалов наблюдения (по заранее разработанной программе), включающая в себя кроме обязательного контроля собранных данных систематизацию, группировку материалов, составление таблиц, получение итогов и производных показателей (средних, относительных величин), называется в статистике сводкой.

Сводка представляет собой второй этап статистического исследования. Целью сводки является получение на основе сведенных материалов обобщающих статистических показателей, отражающих сущность социально-экономических явлений и определенные статистические закономерности.

Статистическая сводка осуществляется по программе, которая должна разрабатываться еще до сбора статистических данных, практически одновременно с составлением плана и программы статистического наблюдения. Программа сводки включает определение групп и подгрупп; системы показателей; видов таблиц.

Группировка – это разбиение совокупности на группы, однородные по какому-либо признаку. С точки зрения отдельных единиц совокупности группировка – это объединение отдельных единиц совокупности в группы, однородные по каким-либо признакам.

Устойчивое разграничение объектов выражается классификацией, которая основывается на самых существенных признаках (например, классификация отраслей народного хозяйства, классификация основных фондов и т.д.). Таким образом, классификация – это узаконенная, общепринятая, нормативная группировка.

Метод группировки основывается на следующих категориях – это группировочный признак, интервал группировки и число групп.

Группировочный признак – это признак, по которому происходит объединение отдельных единиц совокупности в однородные группы.

Интервал очерчивает количественные границы групп. Как правило, он представляет собой промежуток между максимальными и минимальными значениями признака в группе. Интервалы бывают:

равные, когда разность между максимальным и минимальным значениями в каждом из интервалов одинакова;

неравные, когда, например, ширина интервала постепенно увеличивается, а верхний интервал часто не закрывается вовсе;

открытые, когда имеется только либо верхняя, либо нижняя граница;

закрытые, когда имеются и нижняя, и верхняя границы.

Определение числа групп. Здесь необходимо учитывать несколько условий:
а) число групп детерминируется уровнем колеблемости группировочного признака. Чем значительнее вариация признака, тем больше при прочих равных условиях должно быть групп;
б) число групп должно отражать реальную структуру изучаемой совокупности;
в) не допускается выделение пустых групп. Если проблема пустых групп все же возникает, при проведении структурных группировок используют неравные интервалы. Для нахождения числа групп служит формула

где N – количество элементов совокупности.

В случае равных интервалов величина интервала может быть определена как

3.2. Виды группировок.

При проведении группировки приходится решать ряд задач:
1) выделение группировочного признака;
2) определение числа групп и величины интервалов;
3) при наличии нескольких группировочных признаков описание того, как они комбинируются между собой;
4) установление показателей, которыми должны характеризоваться группы, т.е. сказуемого группировки.

Статистические группировки и классификации преследуют цели выделения качественно однородных совокупностей, изучения структуры совокупности, исследования существующих зависимостей. Каждой из этих целей соответствует особый вид группировки: типологическая, структурная, аналитическая (факторная).

Типологическая группировка решает задачу выявления и характеристики социально-экономических типов (частных подсовокупностей).

Структурная дает возможность описать составные части совокупности или строение типов, а также проанализировать структурные сдвиги.

Аналитическая (факторная) группировка позволяет оценивать связи между взаимодействующими признаками.

В зависимости от числа положенных в их основание признаков различают простые и многомерные группировки.

Группировка, выполненная по одному признаку, называется простой.

Многомерная группировка производится по двум и более признакам. Частным случаем многомерной группировки является комбинационная группировка, базирующаяся на двух и более признаках, взятых во взаимосвязи, в комбинации.

Структурная группировка применяется для характеристики структуры совокупности и структуры сдвигов.

Структурный называется группировка, в которой происходит разделение выделенных с помощью технологической группировки типов явлений, однородных совокупностей на группы, характеризующие их структуру по какого либо варьирующему признаку. Например, группировка населения по размеру среднедушевого дохода. Анализ структурных группировок взятых за ряд периодов или моментов времени, показывает изменения структуры изучаемых явлений, то есть структурные сдвиги. В изменении структуры общественных явлений отражаются важнейшие закономерности их развития.

Показатель численности групп представлен либо частотой (количеством единиц в каждой группе), либо частотностью (удельным весом каждой группы).

Среди простых группировок особо выделяют ряды распределения.

Ряд распределения – это группировка, в которой для характеристики групп (упорядоченно расположенных по значению признака) применяется один показатель – численность группы. Другими словами, это ряд чисел, показывающий, как распределяются единицы некоторой совокупности по изучаемому признаку.

Ряды, построенные по атрибутивному признаку, называются атрибутивными рядами распределения.

Ряды распределения, построенные по количественному признаку, называются вариационными рядами.

Примером атрибутивных рядов могут служить распределения населения по полу, занятости, национальности, профессии и т.д.

Примером вариационного ряда распределения могут служит распределения населения по возрасту, рабочих – по стажу работы, заработной плате и т.д.

Вариационные ряды распределения состоят их двух элементов вариантов и частот.

Вариантами называются числовые значения колличественного признака в ряду распределения, они могут быть положительными и отрицательными, абсолютными и относительными.

Частоты – это численности отдельных вариантов или каждой группы вариационного ряда. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности.

Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные.

Тема 4. Абсолютные и относительные статистические величины

4.1. Понятие абсолютной и относительной величины в статистике

Изучая массовые общественные явления, статистика в своих выводах опирается на числовые данные, полученные в конкретных условиях места и времени. Результаты статистического наблюдения регистрируются прежде всего в форме первичных абсолютных величин. Так, основная масса народнохозяйственных абсолютных показателей фиксируется в первичных учетных документах. Абсолютная величина отражает уровень развития явления.

В статистике все абсолютные величины являются именованными, измеряются в конкретных единицах и, в отличие от математического понятия абсолютной величины, могут быть как положительными, так и отрицательными (убытки, убыль, потери и т.п.).

Натуральные единицы измерения могут быть простыми (тонны, штуки, метры, литры) и сложными, являющимися комбинацией нескольких разноименных величин (грузооборот железнодорожного транспорта выражается в тонно-километрах, производство электроэнергии – в киловатт-часах). В статистике применяют и абсолютные показатели, выраженные в условно-натуральных единицах измерения (например, различные виды топлива пересчитываются в условное топливо).

Стоимостные единицы измерения используются, например, для выражения объема разнородной продукции в стоимостной (денежной) форме – рублях. При использовании стоимостных измерителей принимают во внимание изменения цен с течением времени. Этот недостаток стоимостных измерителей преодолевают применением "неизменных" или "сопоставимых" цен одного и того же периода.

В трудовых единицах измерения (человеко-днях, человеко-часах) учитываются общие затраты труда на предприятии, трудоемкость отдельных операций.

С точки зрения конкретного исследования совокупность абсолютных величин можно рассматривать как состоящую из показателей индивидуальных, характеризующих размер признака у отдельных единиц совокупности, и суммарных, характеризующих итоговое значение признака по определенной части совокупности.

Поскольку абсолютные показатели – это основа всех форм учета и приемов количественного анализа, то следует разграничивать моментные и интервальные абсолютные величины. Первые показывают фактическое наличие или уровень явления на определенный момент, дату (например, наличие запасов материалов или оборотных средств, величина незавершенного производства, численность проживающих и т.д.). Вторые – итоговый накопленный результат за период в целом (объем произведенной продукции за месяц или год, прирост населения за определенный период, величина валового сбора зерна за год и за пятилетку и т.п.).

Сама по себе абсолютная величина не дает полного представления об изучаемом явлении, не показывает его структуру, соотношение между отдельными частями, развитие во времени. В ней не выявлены соотношения с другими абсолютными показателями. Эти функции выполняют определяемые на основе абсолютных величин относительные показатели.

Относительная величина в статистике – это обобщающий показатель, который дает числовую меру соотношения двух сопоставляемых абсолютных величин. Так как многие абсолютные величины взаимосвязаны, то и относительные величины одного типа в ряде случаев могут определяться через относительные величины другого типа.

Основное условие правильного расчета относительной величины – сопоставимость сравниваемых показателей и наличие реальных связей между изучаемыми явлениями. Таким образом, по способу получения относительные показатели – всегда величины производные, определяемые в форме коэффициентов, процентов, промилле, продецимилле и т.п. Однако нужно помнить, что этим безразмерным по форме показателям может быть, в сущности, приписана конкретная, и иногда довольно сложная, единица измерения. Так, например, относительные показатели естественного движения населения, такие как коэффициенты рождаемости или смертности, исчисляемые в промилле (‰), показывают число родившихся или умерших за год в расчете на 1 000 человек среднегодовой численности; относительная величина эффективности использования рабочего времени – это количество продукции в расчете на один отработанный человеко-час и т.д.

4.2. Виды и взаимосвязи относительных величин

Относительные величины образуют систему взаимосвязанных статистических показателей. По содержанию выражаемых количественных соотношений выделяют следующие типы относительных величин.

1. Относительная величина выполнения задания. Рассчитывается как отношение фактически достигнутого в данном периоде уровня к запланированному. Так, в 1988 г. было произведено стиральных машин 6103 тыс. шт. при плане (госзаказе) 6481 тыс. шт. Относительная величина выполнения плана составила

.

Следовательно, плановое задание было недовыполнено на 5,8 %.

На практике различают две разновидности относительных показателей выполнения плана. В первом случае сравниваются фактические и плановые уровни (таков пример, рассмотренный выше). Во втором случае в плановом задании устанавливается абсолютная величина прироста или снижения показателя и соответственно проверяется степень выполнения плана по этой величине. Так, если планировалось снизить себестоимость единицы продукции на 24,2 руб., а фактическое снижение составило 27,5 руб., то плановое задание по снижению себестоимости выполнено с ростом в 27,5 : 24,2 = 1,136 раза, т.е. план перевыполнен на 13,6 %. Показатель выполнения плана по уровню себестоимости в данном случае будет меньше единицы. Если фактическая себестоимость изделия равнялась 805,8 руб. при плановой 809,1 руб., то величина выполнения плана составила 805,8 : 809,1 = 0,996, или 99,6 %. Фактический уровень затратив одно изделие оказался на 0,4 % ниже планового.

В аналитических расчетах при исследовании взаимосвязей чаще применяется оценка выполнения плана по уровню показателя. Оценка же выполнения плана по изменению уровня обычно приводится для целей иллюстрации, особенно если планируется снижение абсолютного значения затрат, расходов по видам и т.п.

Относительные величины динамики, планового задания и выполнения плана связаны соотношением i=iпл.з.× iвып.пл.

2. Относительная величина динамики. Характеризует изменение уровня развития какого-либо явления во времени. Получается в результате деления уровня признака в определенный период или момент времени на уровень этого же показателя в предшествующий период или момент.

Так, по данным топливно-энергетического баланса СССР, ресурсы 1980 г. оценивались в 2171,1 млн. т у.т.(условного топлива), а 1987 г. – в 2629,1 млн. т у.т. Относительная величина динамики составила .

Таким образом, объем топливно-энергетических ресурсов вырос за 7 лет в 1,211 раза (коэффициент роста, индекс роста, индекс). В процентном выражении это 121,1 % (темп роста).

Иначе говоря, за 7 лет объем ресурсов увеличился на 21,1 % (темп прироста). В среднем каждый год объем ресурсов возрастал по сравнению с предыдущим годом в  , или на 2,77 % (среднегодовой коэффициент или индекс роста и среднегодовой темп прироста).

3. Относительные величины структуры. Характеризуют доли, удельные веса составных элементов в общем итоге. Как правило, их получают в форме процентного содержания:

Для аналитических расчетов предпочтительнее использовать коэффициентное представление, без умножения на 100.

Совокупность относительных величин структуры показывает строение изучаемого явления.

5. Относительные величины координации (ОВК). Характеризуют отношение частей данной совокупности к одной из них, принятой за базу сравнения. ОВК показывают, во сколько раз одна часть совокупности больше другой либо сколько единиц одной части приходится на 1, 10, 100, 1000, ... единиц другой части. Относительные величины координации могут рассчитываться и по абсолютным показателям, и по показателям структуры.

Так, приняв за базу сравнения поставки топливных ресурсов на экспорт в 1987 г., увидим, что на каждую условную тонну экспортных поставок приходится в 2,342 раза больше ресурсов, потребляемых внутри страны для производства энергии, и в 2,363 раза больше ресурсов, предназначенных для производственно-технологических целей. Уровень остатков на конец года составляет 57,8 % по сравнению с годовыми поставками на экспорт

(9,20 : 15,91 = 242 : 418,3 = 0,578).

По относительным величинам координации можно восстановить исходные относительные показатели структуры, если вычислить отношение относительной величины координации данной части (ОВК) к сумме всех ОВК (включая и ту, которая принята за базу сравнения):

.

Например, доля экспортных поставок составляет

1 : (2,342 + 2,364 + 1 + 0,578) = 0,1591, или 15,9 %.

6. Относительные величины сравнения (ОВС). Характеризуют сравнительные размеры одноименных абсолютных величин, относящихся к одному и тому же периоду либо моменту времени, но к различным объектам или территориям. Посредством этих показателей сопоставляются мощности различных видов оборудования, производительность труда отдельных рабочих, производство продукции данного вида разными предприятиями, районами, странами. Например, по производству нефти и газа в 1985 г. СССР превосходил США: по нефти – в 1,36 раза, по газу – в 1,24 раза. Уровень производства электроэнергии (млрд. кВт • ч) в СССР составлял от уровня США 1544:2650 = 0,583, или 58,3 %.

При известных коэффициентах роста (индексах динамики) и начальном соотношении уровней можно найти условие равенства уровней в предстоящем периоде t:

.

Отсюда ОВСa / б =Ya / Yб=(ia / iб)t,

т.е. .

Найденное значение t показывает, через какой период времени уровень изучаемого явления на объекте А сравняется с уровнем того же явления на объекте Б.

В частности, при среднегодовых темпах прироста производства электроэнергии в США 4,5 % и в СССР 6,9 % (по данным за 1961–1985 гг.)

.

Сопоставляя показатели динамики разных явлений, получают еще один вид относительных величин сравнения – коэффициенты опережения (отставания) по темпам роста или прироста. Так, если производительность труда на предприятии возросла на 12%, а фонд оплаты труда увеличился на 7,5 %, то коэффициент опережения производительности труда по темпам роста составит 112 : 107,5 = 1,042; коэффициент опережения по темпам прироста равен 12 : 7,5 = 1,60.

7. Относительные величины интенсивности. Характеризуют степень распределения или развития данного явления в той или иной среде. Представляют собой отношение абсолютного уровня одного показателя, свойственного изучаемой среде, к другому абсолютному показателю, также присущему данной среде и, как правило, являющемуся для первого показателя факторным признаком. Так, при изучении демографических процессов рассчитываются показатели рождаемости, смертности, естественного прироста и т.д. как отношение числа родившихся (умерших) или величины прироста населения за год к среднегодовой численности населения данной территории в расчете на 1000 чел. Если получаемые значения очень малы, то делают расчет на 10 000 человек. Так, по состоянию на 1987 г. имеем в целом по стране Крожд. = 19,8 ‰, Кест.прирост = 9,9 ‰. В том числе по г. Новосибирску  Крожд. = 15,2 ‰, Ксм.= 9,1 ‰, Кбрачности = 10,9 ‰, Кразв. = 5,2 ‰ и т.д.

Относительными величинами интенсивности выступают, например, показатели выработки продукции в единицу рабочего времени, затрат на единицу продукции, трудоемкости, эффективности использования производственных фондов и т.д., поскольку их получают сопоставлением разноименных величин, относящихся к одному и тому же явлению и одинаковому периоду или моменту времени. Метод расчета относительных величин интенсивности применяется при определении средних уровней (среднего уровня выработки, средних затрат труда, средней себестоимости изделий, средней цены и т.д.). Поэтому распространено мнение, что относительные величины интенсивности – это один из способов выражения средних величин.

Тема 5. Средние величины. Показатели вариации

5.1. Понятие средней величины

Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

5.2. Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

,

где Xi – варианта (значение) осредняемого признака;
m – показатель степени средней;
n – число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид        

,

где Xi – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
f
i – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m –> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.

Формулы степенных средних приведены в табл. 4.4.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 5.1

Виды степенных средних

Вид степенной
средней

Показатель
степени (m)

Формула расчета

Простая

Взвешенная

Гармоническая

-1

Геометрическая

0

Арифметическая

1

Квадратическая

2

Кубическая

3

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым [1] . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i1, i2, i3,..., in. Очевидно, что объем производства в последнем году определяется начальным его уровнем (q0) и последующим наращиванием по годам:

qn=q0× i1× i2×...×in.

Приняв qn в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

Отсюда

5.3. Структурные средние

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

,

где XMe – нижняя граница медианного интервала;
h
Me – его величина;
(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
S
Me-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
m
Me – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

В нашем примере могут быть получены даже три медианных значения – исходя из признаков количества предприятий, объема продукции и общей суммы затрат на производство:

Таким образом, у половины предприятий уровень себестоимость единицы продукции превышает 125,19 тыс. руб., половина всего объема продукции производится с уровнем затрат на изделие больше 124,79 тыс. руб. и 50 % общей суммы затрат образуется при уровне себестоимости одного изделия выше 125,07 тыс. руб. Заметим также, что наблюдается некоторая тенденция к росту себестоимости, так как Ме2 = 124,79 тыс. руб., а средний уровень равен 123,15 тыс. руб.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

,

где ХMo – нижнее значение модального интервала;
m
Mo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
m
Mo-1 – то же для интервала, предшествующего модальному;
m
Mo+1 – то же для интервала, следующего за модальным;
h – величина интервала изменения признака в группах.

Для нашего примера можно рассчитать три модальных значения исходя из признаков числа предприятий, объема продукции и суммы затрат. Во всех трех случаях модальный интервал один и тот же, так как для одного и того же интервала оказываются наибольшими и число предприятий, и объем продукции, и общая сумма затрат на производство:

Таким образом, чаще всего встречаются предприятия с уровнем себестоимости 126,75 тыс. руб., чаще всего выпускается продукция с уровнем затрат 126,69 тыс. руб., и чаще всего затраты на производство объясняются уровнем себестоимости в 123,73 тыс. руб.

5.4. Показатели вариации

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов.

Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (Xmax ) и минимальным (Xmin) наблюдаемыми значениями признака:

H=Xmax - Xmin.

Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

 (Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.

Дисперсия признака (s2) определяется на основе квадратической степенной средней:

.

Показатель s, равный ,  называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

.

Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле

,

где n – объем выборки; s2 – дисперсия признака, рассчитанная по данным выборки.

Величина  носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

.

 2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

.

3. Коэффициент вариации:

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь  = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

Тема 6. Изучение динамики общественных явлений

6.1. Ряды динамики. Классификация динамических рядов

Ряд динамики, хронологический ряд, динамический ряд, временной ряд – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития изучаемого явления. Всякий ряд динамики включает, следовательно, два обязательных элемента: во-первых, время и, во-вторых, конкретное значение показателя, или уровень ряда. Ряды динамики различаются по следующим признакам.

1. По времени – моментные и интервальные ряды. Интервальный ряд динамики – последовательность, в которой уровень явления относится к результату, накопленному или вновь произведенному за определенный интервал времени. Таковы, например, ряды показателей объема продукции по месяцам года, количества отработанных человеко-дней по отдельным периодам и т.д. Если же уровень ряда показывает фактическое наличие изучаемого явления в конкретный момент времени, то совокупность уровней образует моментный ряд динамики. Примерами моментных рядов могут быть последовательности показателей численности населения на начало года, величины запаса какого-либо материала на начало периода и т.д. Важное аналитическое отличие моментных рядов от интервальных состоит в том, что сумма уровней интервального ряда дает вполне реальный показатель – общий выпуск продукции за год, общие затраты рабочего времени, общий объем продаж акций и т.д., сумма же уровней моментного ряда, хотя иногда и подсчитывается, но реального содержания, как правило, не имеет.

2. По форме представления уровней – ряды абсолютных, относительных и средних величин (табл. 6.1 – 6.3).

3. По расстоянию между датами или интервалам времени выделяют полные и неполные хронологические ряды.

Полные ряды динамики имеют место, когда даты регистрации или окончания периодов следуют друг за другом с равными интервалами. Это равноотстоящие ряды динамики (Неполные – когда принцип равных интервалов не соблюдается

Чтобы о развитии явления можно было получить представление при помощи числовых уровней, при составлении ряда динамики должны приводиться в сопоставительный вид.

Статистические данные должны быть сопоставимы по территории, кругу охватываемых объектов, единицам измерения, времени регистрации, ценам, методологии расчета. Сопоставимость по территории означает, что данные по странам и регионам, границы которых изменились, должны быть пересчитаны в старых пределах. Сопоставимость по кругу охватываемых объектов означает сравнение совокупностей с равным числом элементов. Территориальная и объемная сопоставимость обеспечивается смыканием рядов динамики, при этом либо абсолютные уровни заменяются относительными, либо делается пересчет в условные абсолютные уровни. Не возникает особых сложностей при обеспечении сопоставимости данных по единицам измерения; стоимостная сравнимость достигается системой сопоставимых цен.

Числовые уровни рядов динамики должны быть упорядоченными во времени. Не допускается анализ рядов с пропусками отдельных уровней, если же такие пропуски неизбежны, то их восполняют условными расчетными значениями.

6.2. Показатели анализа рядов динамики

При изучении явления во времени перед исследователем встает проблема описания интенсивности изменения и расчета средних показателей динамики. Решается она путем построения соответствующих показателей. Для характеристики интенсивности изменения во времени такими показателями будут:
1) абсолютный прирост,
2) темпы роста,
3) темпы прироста,
4) абсолютное значение одного процента прироста.

Расчет показателей динамики представлен в следующей таблице.

Показатель

Базисный

Цепной

Абсолютный прирост *

Yi-Y0

Yi-Yi-1

Коэффициент роста (Кр)

Yi : Y0

Yi : Yi-1

Темп роста (Тр)

(Yi : Y0)×100

(Yi : Yi-1)×100

Коэффициент прироста (Кпр )**

Темп прироста (Тпр)

Абсолютное значение одного процента прироста (А)

*   
**
 

В случае, когда сравнение проводится с периодом (моментом) времени, начальным в ряду динамики, получают базисные показатели. Если же сравнение производится с предыдущим периодом или моментом времени, то говорят о цепных показателях.

Рассмотрим пример. Имеются данные об объемах и динамике продаж акций на 15 крупнейших биржах России за пять месяцев 1993 г.

Показатель

Март

Апрель

Май

Июнь

Июль

Август

Объем продаж, млн. руб.
Абсолютный прирост:
 цепной,
 базисный
Коэффицент (индекс) роста цепной
Темп роста, %:
 цепной,
 базисный
Темп прироста
 цепной, %
 базисный, %
Абсолютное значение 1% прироста (цепной)

709,98
  
-


 
-
100
 
-
-
-

1602,61
 
892,63
892,63
2,257
 
225,7
225,7
 
125,7
125,7
7,10

651,83
 
-950,78
-58,15  
0,407
 
40,7
91,8
  
-59,3
-8,2
16,03

220,80
 
-431,03
-489,18
0,339
 
33,9
31,1
 
-66,1
-68,9
6,52

327,68 
 
106,88
-382,3 
1,484
 
148,4
46,2
 
48,4
-53,8
2,21

277,12 
 
-50,56
-432,86 
0,846
 
84,6
39,0
 
-15,4
61,0
3,28

Система средних показателей динамики включает:
средний уровень ряда,
средний абсолютный прирост,
средний темп роста,
средний темп прироста.

Средний уровень ряда – это показатель, обобщающий итоги развития явления за единичный интервал или момент из имеющейся временной последовательности. Расчет среднего уровня ряда динамики определяется видом этого ряда и величиной интервала, соответствующего каждому уровню.

Для интервальных рядов с равными периодами времени средний уровень Y рассчитывается следующим образом:

где n или (n +1) – общая длина временного ряда или общее число равных временных отрезков, каждому из которых соответствует свой уровень Yi (1 = 1, 2, ..., n или 1 = 0, 1, 2, ..., n).

Средний абсолютный прирост рассчитывается по формулам в зависимости от способа нумерации интервалов (моментов).

.

Средний темп роста:

где – средний коэффициент роста, рассчитанный как . Здесь Кцеп – цепные коэффициенты роста;

Средний темп прироста (%) определяется по единственной методологии:

6.3. Изучение тенденции развития

Всякий ряд динамики теоретически может быть представлен в виде составляющих:
1) тренд – основная тенденция развития динамического ряда (к увеличению либо снижению его уровней);
2) циклические (периодические) колебания, в том числе сезонные;
3) случайные колебания.

Изучение тренда включает два основных этапа:
1) ряд динамики проверяется на наличие тренда;
2) производится выравнивание временного ряда и непосредственное выделение тренда с экстраполяцией полученных результатов.

Непосредственное выделение тренда может быть произведено тремя методами.

1. Укрупнение интервалов. Ряд динамики разделяют на некоторое достаточно большое число равных интервалов. Если средние уровни по интервалам не позволяют увидеть тенденцию развития явления, переходят к расчету уровней за большие промежутки времени, увеличивая длину каждого интервала (одновременно уменьшается количество интервалов).

2. Скользящая средняя. В этом методе исходные уровни ряда заменяются средними величинами, которые получают из данного уровня и нескольких симметрично его окружающих. Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Интервал может быть нечетным (3, 5, 7 и т.д. точек) или четным (2, 4, 6 и т.д. точек).

При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала, при четном этого делать нельзя. Поэтому при обработке ряда четными интервалами их искусственно делают нечетными, для чего образуют ближайший больший нечетный интервал, но из крайних его уровней берут только 50 %.

Недостаток методики сглаживания скользящими средними состоит в условности определения сглаженных уровней для точек в начале и конце ряда. Получают их специальными приемами – расчетом средней арифметической взвешенной.

3. Аналитическое выравнивание. Под этим понимают определение основной проявляющейся во времени тенденции развития изучаемого явления. Развитие предстает перед исследователем как бы в зависимости только от течения времени. В итоге выравнивания временного ряда получают наиболее общий, суммарный, проявляющийся во времени результат действия всех причинных факторов. Отклонение конкретных уровней ряда от уровней, соответствующих общей тенденции, объясняют действием факторов, проявляющихся случайно или циклически. В результате приходят к трендовой модели

где f(t) – уровень, определяемый тенденцией развития;

et – случайное и циклическое отклонение от тенденции.

Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t). На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t), а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса.

Чаще всего при выравнивании используются следующие зависимости:

Линейная зависимость выбирается в тех случаях, когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные цепные приросты, не проявляющие тенденции ни к увеличению, ни к снижению.

Параболическая зависимость используется, если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития, но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют.

Экспоненциальные зависимости применяются, если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста, темпов прироста, коэффициентов роста), либо, при отсутствии такого постоянства, – устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста, цепных коэффициентов роста цепных же коэффициентов или темпов роста и т.п.).

Оценка параметров (a0, a1, a2, ...) осуществляется следующими методами:
1) методом избранных точек,
2) методом наименьших расстояний,
3) методом наименьших квадратов (МНК).

В большинстве расчетов используют метод наименьших квадратов, который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных:

Для линейной зависимости (f(t)=a0+a1t) параметр а0 обычно интерпретации не имеет, но иногда его рассматривают как обобщенный начальный уровень ряда; а1 – сила связи, т.е. параметр, показывающий, насколько изменится результат при изменении времени на единицу. Таким образом, а можно представить как постоянный теоретический абсолютный прирост. Построив уравнение регрессии, проводят оценку его надежности. Это делается посредством критерия Фишера (F). Фактический уровень (Fфакт) сравнивается с теоретическим (табличным) значением:

где k – число параметров функции, описывающей тенденцию;
n – число уровней ряда;

Fфакт сравнивается с Fтеор при v1 = (k-1), v2 = (n-k) степенях свободы и уровне значимости a (обычно a = 0,05). Если Fфакт > Fтеор, уравнение регрессии значимо, т.е. построенная модель адекватна фактической временной тенденции.

Выравнивание проведено по линейной трендовой модели. Оценка параметров уравнения выполнена методом наименьших квадратов.

Таким образом, f(t) = уt = 10,128-0,073t для t= -13, -11, -9, ..., +13, или f(t) = уt = 11,077-0,1461 для t = 0, 1, ..., 13.

Параметры последнего уравнения регрессии можно интерпретировать следующим образом: a0 = 11,077 – это исходный уровень брачности по России за период до 1977 г.; а1 = -0,146 – показатель силы связи, т.е. в России за период с 1977 по 1990 г. происходило снижение уровня брачности на 0,146 ‰ ежегодно.

В качестве примера рассмотрим число зарегистрированных браков на 1000 жителей России за период с 1977 по 1990 г.:


Год

Число зарегистри-
рованных браков, %

t

у×t

t2

f(t)

1977

11,2

-13

-145,6

169

11,077

1978

10,9

-11

-119,9

121

10,931

1979

10,7

-9

-96,3

81

10,785

1980

10,6

-7

-74,2

49

10,639

1981

10,6

-5

-53,2

25

10,493

1982

10,4

-3

-31,2

9

10,347

1983

10,4

-1

-10,4

1

10,202

1984

9,6

1

9,6

1

10,056

1985

9,7

3

29,1

9

9,910

1986

9,8

5

49,0

25

9,764

1987

9,9

7

69,3

49

9,618

1988

9,5

9

85,5

81

9,472

1989

9,4

11

103,4

121

9,326

1990

9,1

13

118,3

169

9,180

Итого

141,8

0

-66,4

910

141,800

Следующий шаг аналитического выравнивания – оценка надежности уравнения регрессии:

Таким образом, Fтеор = 4,747; a = 0,05; v1 (k-1) = 1; v2 = (n-k) = 12 и Fтеор = 9,330 при a = 0,01, v1 = 1, v2 = 12.

Fфакт > Fтеор, и уравнение прямой адекватно отражает сложившуюся в исследуемом ряду динамики тенденцию.

Тема 7. Индексы

7.1. Индивидуальные индексы и их применение в экономическом анализе

Индекс – это относительная величина, показывающая, во сколько раз уровень изучаемого явления в данных условиях отличается от уровня того же явления в других условиях. Различие условий может проявляться во времени (тогда говорят об индексах динамики), в пространстве (территориальные индексы), в выборе в качестве базы сравнения какого-либо условного уровня, например планового показателя, уровня договорных обязательств и т.п. Соответственно вводят индекс выполнения обязательств или, если плановый уровень сравнивается с уровнем предыдущего периода, – индекс планового задания.

В экономическом анализе индексы используются не только для сопоставления уровней изучаемого явления, но главным образом для определения экономической значимости причин, объясняющих абсолютное различие сравниваемых уровней.

Относительная величина, получаемая при сравнении уровней, называется индивидуальным индексом, если исследователь не интересуется структурой изучаемого явления и количественную оценку уровня в данных условиях сравнивает с такой же конкретной величиной уровня этого явления в других условиях.

Так, уровень товарооборота в виде суммы выручки от продажи товара в условиях отчетного года Q1 сравнивается с аналогичной суммой выручки базисного года Q0. В итоге получаем индивидуальный индекс товарооборота

iQ=Q1 / Q0.

Аналогичные индивидуальные индексы можно рассчитать и для любого интересующего нас показателя. В частности, поскольку сумма выручки определяется ценой товара (р) и количеством продаж в натуральном измерении (q), можно определить индивидуальные индексы цены ip и количества проданных товаров – iq :

С аналитической точки зрения iq показывает, во сколько раз увеличилась (или уменьшилась) общая сумма выручки под влиянием изменения объема продажи в натуральных единицах.

Аналогично ip показывает, во сколько раз изменилась общая сумма выручки под влиянием изменения цены товара. Очевидно, что

Вторая формула представляет двухфакторную индексную мультипликативную модель итогового показателя, в данном случае – объема товарооборота. Посредством такой модели находят прирост итога под влиянием каждого фактора в отдельности.

Так, если выручка от продажи некоторого товара возросла с 8 млн. руб. в предыдущем периоде до 12,180 млн. руб. в последующем и известно, что это объясняется увеличением количества проданного товара на 5 % при цене на 45 % большей, чем в предыдущем периоде, то можно записать следующее соотношение:

12,180 = 8 × 1,05 × 1,45 (млн. руб.).

Очевидно, что общий прирост выручки в сумме 12,180-8 = 4,180 млн. руб. объясняется изменением объема продажи и цены. Прирост выручки за счет изменения объема продажи (в натуральном выражении) составит

или в нашем примере

Тогда за счет изменения цены данного товара сумма выручки изменилась на

или

Очевидно, что общий прирост товарооборота складывается из приростов, объясняемых каждым фактором в отдельности, т.е.

или

Можно заметить, что существует и другой способ распределения общего прироста по факторам в двухфакторной индексной мультипликативной модели, а именно:

В нашем примере общий прирост выручки (4,18 млн. руб.) объясняется теперь:

изменением цены

изменением объема продажи

Выбор конкретной формы разложения общего прироста итога должен определяться конкретными условиями развития изучаемого показателя, в данном случае – конъюнктурой спроса-предложения. В экономической практике и большинстве научных рекомендаций в настоящее время преобладает первое направление, когда сначала выясняют вклад в общий прирост количественного фактора при базисном уровне качественного признака (цен), а затем – вклад качественного фактора (цены) в расчете на отчетный уровень количественного показателя (объема – q).

7.2. Общие индексы и их применение в анализе

Если известно, что изучаемое явление неоднородно и сравнение уровней можно провести только после приведения их к общей мере, экономический анализ выполняют посредством так называемых общих индексов. Индекс становится общим, когда в расчетной формуле показывается неоднородность изучаемой совокупности. Примером неоднородной совокупности является общая масса проданных товаров всех или нескольких видов. Тогда сумму выручки можно записать в виде агрегата (суммы произведений взвешивающего показателя на объемный), например:

Отношение агрегатов, построенных для разных условий, дает общий индекс показателя в агрегатной форме. Так, например, получают индекс общего объема товарооборота в агрегатной форме:

При анализе прироста общего объема товарооборота этот прирост также объясняется изменением уровня цен и количества проданных товаров.

Влияние на прирост товарооборота общего изменения цен выражается агрегатным индексом цен Ip, который в предположении первичности изменения количественного показателя (q) и вторичности – качественного (р) имеет вид

Влияние на прирост товарооборота изменения количества проданных товаров отражается агрегатным индексом физического объема Iq , который строится также в предположении первичности изменения количественных показателей (q) и вторичности влияния качественных (р):

В форме мультипликативной индексной модели динамика товарооборота будет выражаться соотношениями

где

Если принимается предположение об очередности влияния факторов – сначала q, а затем р, то общий прирост товарооборота будет распределяться по факторам следующим образом:

Если же принимается предположение об обратной последовательности влияния факторов – сначала р, затем q, то меняются и формулы разложения прироста и формулы расчета индексов Iq и Ip . Тогда

где

Примером мультипликативной индексной модели с большим числом факторов является изменение общей суммы материальных затрат на производство продукции. Сумма затрат зависит от количества выпущенной продукции (индекс Iq), удельных расходов (норм) материала на единицу продукции (индекс In) и цены на материалы (индекс Ip). Прирост общей суммы затрат распределяется следующим образом:

где а величины индексов таковы:

индекс увеличения суммы затрат в связи с изменением объемов производства продукции (индекс физического объема)

индекс изменения суммы затрат за счет изменения удельных расходов материала (индекс удельных расходов)

индекс изменения общей суммы затрат, объясняемого изменением цен на материалы (индекс цен на материалы)

Приведем формулы расчета некоторых наиболее употребительных агрегатных индексов.

Индекс изменения общей суммы затрат на производство продукции в зависимости от объема производства (q) и затрат на единицу (z):

Индекс изменения общего фонда оплаты труда в связи с изменением общей численности работающих (Т) и заработной платы (f):

Индекс изменения объема продукции в связи с изменением численности работающих (Т) и уровня их выработки (w):

Индекс изменения объема продукции в связи с изменением объема основных производственных фондов (Ф) и показателя эффективности их использования фондоотдачи (Н):

Аналогичным образом находят общие агрегатные индексы и по многим другим экономическим показателям. Нетрудно заметить, что используемые в приведенных формулах индексы Iq, IТ, Iф получаются по методу индекса физического объема, а индексы Iz, If, IW, IH – по методу индекса цен. Таким образом, рассмотренная выше методика распределения общего прироста товарооборота полностью приложима к анализу прироста продукции, изменения общих затрат на производство, изменения общего фонда оплаты труда и т.д.

7.3. Индексы при анализе структурных изменений

Индексы, которые рассчитываются по типу индексов физического объема, применимы при изучении совокупностей, состоящих как из разных объектов, так и из объектов одного и того же типа. Если совокупность неоднородна (например, совокупность товаров различного вида), то индекс физического объема – единственный способ показать динамику такой массы различных предметов, выражая ее через взвешивающий множитель (цену, себестоимость, трудоемкость). Если же совокупность состоит из объектов одного типа, то динамику этой массы можно показать непосредственно, сравнивая общее количество таких предметов в отчетном периоде с аналогичной величиной в базисном.

Таким образом, для однородных совокупностей (допускающих суммирование по количественному признаку) индекс физического объема есть произведение индекса суммарной численности совокупности на индекс изменения структуры. Формула индекса структурных изменений может быть такова:

где d0 – удельные веса, например доли предприятий в общей численности работающих в базисном периоде, a d1 – удельные веса или доли каждого предприятия в общей численности работающих в отчетном периоде:

Знаменатель в формуле индекса структурных изменений есть не что иное. как средний уровень (выработки по группе предприятий) в базисном периоде, так как

Экономическая сущность индекса структурных изменений состоит в том, что он показывает, во сколько раз изменился общий средний уровень только за счет изменения удельного веса каждого объекта в общем объеме количественного признака. В той же мере индекс структурных изменений показывает влияние процессов перераспределения на общий прирост итогового показателя.

В итоге в форме мультипликативной индексной модели можно записать:

Общий прирост продукции состоит, следовательно, из трех частей:

1) прирост за счет изменения общей численности работающих

2) прирост за счет перераспределения работающих

3) прирост за счет изменения уровня производительности труда на предприятиях

Вклад разных факторов в общий прирост можно распределить по отдельным объектам, для каждого из которых применяют мультипликативную индексную модель

где q0, q1, – объемы итогового признака (продукции) по данному объекту (предприятию);
I
sum T – общий для всей совокупности индекс количественного признака (индекс числа работающих);
i
W – индивидуальный для данного объекта индекс изменения уровня качественного признака (индивидуальный индекс производительности труда для данного предприятия);
i
d – индивидуальный индекс доли данного объекта в общем объеме количественного признака (индивидуальный индекс доли данного предприятия в общей численности работающих).

Индивидуальный индекс доли можно определить и по первичным данным, сопоставляя удельные веса за отчетный и базисный периоды, и более простым способом. Действительно,

В условиях численного примера окончательное распределение общего прироста продукции по факторам и предприятиям может выглядеть следующим образом:

Предприятие

Общий
прирост
продукции,
тыс. руб.

В том числе за счет

изменения
числа
работающих

изменения
удельного веса в
общей численности

изменения
производительности
труда

1
2

445,0
-10,8

78,08
91,77

64,92
-270,57

302,0
168,0

Итого

434,2

169,85

-205,65

470,0

Тема 8. Статистическое изучение взаимосвязей

8.1. Основные понятия корреляционного и регрессионного анализа

Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Достаточно часто функциональная связь проявляется в физике, химии. В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно.

По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать соответственно  положительными и отрицательными.

Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно.

Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные – множественной.

Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.

По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.

В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.

Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

8.2. Парная корреляция и парная линейная регрессия

Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы:

   \    Y
     \
X    \

Y1

Y2

  ...  

Yz

Итого

Yi

X1

f11

12

...

f1z

X1

f21

22

...

f2z

...

...

...

...

...

...

...

Xr

fk1

k2

...

fkz

Итого

...

n

...

-

В основу группировки положены два изучаемых во взаимосвязи признака – Х и У. Частоты fij показывают количество соответствующих сочетаний Х и У. Если fij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания fij допустимо утверждать о связи между Х и У. При этом, если fij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь.

Наглядным изображением корреляционной таблице служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладывают значения Х, по оси ординат – У, а точками показывается сочетание Х и У. По расположению точек, их концентрации в определенном направлении можно судить о наличии связи.

В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по У. Рассчитаем для каждого Хi среднее значение У, т.е. , как

Последовательность точек (Xi, ) дает график, который иллюстрирует зависимость среднего значения результативного признака У от факторного X, – эмпирическую линию регрессии, наглядно показывающую, как изменяется У по мере изменения X.

По существу, и корреляционная таблица, и корреляционное поле, и эмпирическая линия регрессии предварительно уже характеризуют взаимосвязь, когда выбраны факторный и результативный признаки и требуется сформулировать предположения о форме и направленности связи. В то же время количественная оценка тесноты связи требует дополнительных расчетов.

Практически для количественной оценки тесноты связи широко используют линейный коэффициент корреляции. Иногда его называют просто коэффициентом корреляции. Если заданы значения переменных Х и У, то он вычисляется по формуле

Можно использовать и другие формулы, но результат должен быть одинаковым для всех вариантов расчета.

Коэффициент корреляции принимает значения в интервале от -1 до + 1. Принято считать, что если  |r| < 0,30, то связь слабая; при  |r| = (0,3÷0,7) – средняя; при  |r| > 0,70 – сильная, или тесная. Когда  |r| = 1 – связь функциональная. Если же r принимает значение около 0, то это дает основание говорить об отсутствии линейной связи между У и X. Однако в этом случае возможно нелинейное взаимодействие. что требует дополнительной проверки и других измерителей, рассматриваемых ниже.

Для характеристики влияния изменений Х на вариацию У служат методы регрессионного анализа. В случае парной линейной зависимости строится регрессионная модель

где n число наблюдений;
а
0, а1 – неизвестные параметры уравнения;
e
i – ошибка случайной переменной У.

Уравнение регрессии записывается как

где Уiтеор – рассчитанное выравненное значение результативного признака после подстановки в уравнение X.

Параметры а0 и а1 оцениваются с помощью процедур, наибольшее распространение из которых получил метод наименьших квадратов. Его суть заключается в том, что наилучшие оценки ag и а, получают, когда

т.е. сумма квадратов отклонений эмпирических значений зависимой переменной от вычисленных по уравнению регрессии должна быть минимальной. Сумма квадратов отклонений является функцией параметров а0 и а1. Ее минимизация осуществляется решением системы уравнений

Можно воспользоваться и другими формулами, вытекающими из метода наименьших квадратов, например:

Аппарат линейной регрессии достаточно хорошо разработан и, как правило, имеется в наборе стандартных программ оценки взаимосвязи для ЭВМ. Важен смысл параметров: а1 – это коэффициент регрессии, характеризующий влияние, которое оказывает изменение Х на У. Он показывает, на сколько единиц в среднем изменится У при изменении Х на одну единицу. Если а, больше 0. то наблюдается положительная связь. Если а имеет отрицательное значение, то увеличение Х на единицу влечет за собой уменьшение У в среднем на а1. Параметр а1 обладает размерностью отношения У к X.

Параметр a0 – это постоянная величина в уравнении регрессии. На наш взгляд, экономического смысла он не имеет, но в ряде случаев его интерпретируют как начальное значение У.

Например, по данным о стоимости оборудования Х и производительности труда У методом наименьших квадратов получено уравнение

У = -12,14 + 2,08Х.

Коэффициент а, означает, что увеличение стоимости оборудования на 1 млн руб. ведет в среднем к росту производительности труда на 2.08 тыс. руб.

Значение функции У = a0 + а1Х называется расчетным значением и на графике образует теоретическую линию регрессии.

Смысл теоретической регрессии в том, что это оценка среднего значения переменной У для заданного значения X.

Парная корреляция или парная регрессия могут рассматриваться как частный случай отражения связи некоторой зависимой переменной, с одной стороны, и одной из множества независимых переменных – с другой. Когда же требуется охарактеризовать связь всего указанного множества независимых переменных с результативным признаком, говорят о множественной корреляции или множественной регрессии.

8.3. Оценка значимости параметров взаимосвязи

Получив оценки корреляции и регрессии, необходимо проверить их на соответствие истинным параметрам взаимосвязи.

Существующие программы для ЭВМ включают, как правило, несколько наиболее распространенных критериев. Для оценки значимости коэффициента парной корреляции рассчитывают стандартную ошибку коэффициента корреляции:

В первом приближении нужно, чтобы . Значимость rxy проверяется его сопоставлением с , при этом получают

где tрасч – так называемое расчетное значение t-критерия.

Если tрасч больше теоретического (табличного) значения критерия Стьюдента (tтабл) для заданного уровня вероятности и (n-2) степеней свободы, то можно утверждать, что rxy значимо.

Подобным же образом на основе соответствующих формул рассчитывают стандартные ошибки параметров уравнения регрессии, а затем и t-критерии для каждого параметра. Важно опять-таки проверить, чтобы соблюдалось условие tрасч > tтабл. В противном случае доверять полученной оценке параметра нет оснований.

Вывод о правильности выбора вида взаимосвязи и характеристику значимости всего уравнения регрессии получают с помощью F-критерия, вычисляя его расчетное значение:

где n – число наблюдений;
m – число параметров уравнения регрессии.

Fрасч также должно быть больше Fтеор при v1 = (m-1) и v2 = (n-m) степенях свободы. В противном случае следует пересмотреть форму уравнения, перечень переменных и т.д.

8.4. Непараметрические методы оценки связи

Методы корреляционного и дисперсионного анализа не универсальны: их можно применять, если все изучаемые признаки являются количественными. При использовании этих методов нельзя обойтись без вычисления основных параметров распределения (средних величин, дисперсий), поэтому они получили название параметрических методов.

Между тем в статистической практике приходится сталкиваться с задачами измерения связи между качественными признаками, к которым параметрические методы анализа в их обычном виде неприменимы. Статистической наукой разработаны методы, с помощью которых можно измерить связь между явлениями, не используя при этом количественные значения признака, а значит, и параметры распределения. Такие методы получили название непараметрических.

Если изучается взаимосвязь двух качественных признаков, то используют комбинационное распределение единиц совокупности в форме так называемых таблиц взаимной сопряженности.

Рассмотрим методику анализа таблиц взаимной сопряженности на конкретном примере социальной мобильности как процесса преодоления замкнутости отдельных социальных и профессиональных групп населения. Ниже приведены данные о распределении выпускников средних школ по сферам занятости с выделением аналогичных общественных групп их родителей.

Занятия родителей

Число детей, занятых в

Всего 

Промышлен-
ности и стро-
ительстве

сельском
хозяйстве

сфере
обслужи-
вания

сфере интел-
лектуального
труда

1. Промышленность и строительство
2. Сельское хозяйство
3. Сфера обслуживания
4. Сфера интеллектульного труда

40
34
16
24

5
29
6
5

7
13
15
9

39
12
19
72

91
88
56
110

Всего

114

45

44

142

345

Распределение частот по строкам и столбцам таблицы взаимной сопряженности позволяет выявить основные закономерности социальной мобильности: 42,9 % детей родителей группы 1 («Промышленность и строительство») заняты в сфере интеллектуального труда (39 из 91); 38,9 % детей. родители которых трудятся в сельском хозяйстве, работают в промышленности (34 из 88) и т.д.

Можно заметить и явную наследственность в передаче профессий. Так, из пришедших в сельское хозяйство 29 человек, или 64,4 %, являются детьми работников сельского хозяйства; более чем у 50 % в сфере интеллектуального труда родители относятся к той же социальной группе и т.д.

Однако важно получить обобщающий показатель, характеризующий тесноту связи между признаками и позволяющий сравнить проявление связи в разных совокупностях. Для этой цели исчисляют, например, коэффициенты взаимной сопряженности Пирсона (С) и Чупрова (К):

где f2 – показатель средней квадратической сопряженности, определяемый путем вычитания единицы из суммы отношений квадратов частот каждой клетки корреляционной таблицы к произведению частот соответствующего столбца и строки:

К1 и К2 – число групп по каждому из признаков. Величина коэффициента взаимной сопряженности, отражающая тесноту связи между качественными признаками, колеблется в обычных для этих показателей пределах от 0 до 1.

В социально-экономических исследованиях нередко встречаются ситуации, когда признак не выражается количественно, однако единицы совокупности можно упорядочить. Такое упорядочение единиц совокупности по значению признака называется ранжированием. Примерами могут быть ранжирование студентов (учеников) по способностям, любой совокупности людей по уровню образования, профессии, по способности к творчеству и т.д.

При ранжировании каждой единице совокупности присваивается ранг, т.е. порядковый номер. При совпадении значения признака у различных единиц им присваивается объединенный средний порядковый номер. Например, если у 5-й и 6-й единиц совокупности значения признаков одинаковы, обе получат ранг, равный (5 + 6) / 2 = 5,5.

Измерение связи между ранжированными признаками производится с помощью ранговых коэффициентов корреляции Спирмена (r) и Кендэлла (t). Эти методы применимы не только для качественных, но и для количественных показателей, особенно при малом объеме совокупности, так как непараметрические методы ранговой корреляции не связаны ни с какими ограничениями

Тема 9 Показатели статистики основных производственных фондов

9.1. Показатели наличия и структуры основных производственных фондов. Виды их оценки

Наличие как основных фондов в целом, так и отдельных их видов может характеризоваться моментными и средними показателями. В статистической отчетности приводятся данные о наличии основных фондов по состоянию на начало и конец отчетного года и о средней годовой стоимости основных фондов. Наличие основных фондов на конец каждого месяца устанавливается по данным бухгалтерского баланса, а средняя годовая стоимость определяется как средняя хронологическая из месячных данных об их наличии.

Допустим, что на предприятии имелось основных фондов (млн руб.): 
На начало отчетного года (1 января)... 800
1 февраля ............................................... 820 
1 марта.................................................... 880 
1 апреля ................................................. 880
1 мая ...................................................... 870 
1 июня.................................................... 900 
1 июля.................................................... 960 
1 августа ................................................ 950 
1 сентября.............................................. 960
1 октября................................................ 960 
1 ноября................................................. 950 
1 декабря ............................................... 950 
На конец отчетного года ..................... 1000

Исходя из этих данных, средняя годовая стоимость основных фондов составит

Среднюю годовую стоимость основных фондов можно исчислить и по следующей формуле:

где Фн – стоимость основных фондов на начало года;
Ф
в – стоимость основных фондов, введенных в течение года;
Ф
л – стоимость основных фондов, выбывших в течение года;
Т
в – время (мес) функционирования основных фондов, введенных в течение года;
Т
л – время (мес), прошедшее после выбытия основных фондов в течение года.

В нашем примере введено основных фондов (млн руб.): в январе – 20, феврале – 60, мае – 30, июне – 60, августе – 10, декабре – 50. Выбыло: в апреле – 10, июле – 10, октябре – 10.

Как видим, в результатах наблюдается некоторое расхождение из-за различий в расчете средней. Это различие обусловлено тем, что при определении средней хронологической ввод и выбытие фондов приурочиваются к середине месяца, а во второй формуле – к концу периода. Этот способ расчета позволяет учесть время функционирования основных фондов в производстве.

Состав основных фондов народного хозяйства весьма разнообразен. Поэтому помимо вышеуказанного деления основных фондов на производственные и непроизводственные применяются и другие группировки.

9.2. Показатели состояния и динамики основных производственных фондов

Наиболее полное представление о наличии и динамике (поступлении и выбытии) основных фондов дает баланс основных фондов. Такой баланс наряду с данными о наличии основных фондов на начало и конец отчетного периода содержит данные об их поступлении из различных источников и об их выбытии по разным причинам. Он может быть составлен как по всем основным фондам, так и по отдельным их видам, либо по полной первоначальной стоимости, либо по остаточной.

Коэффициент поступления общий показывает долю всех поступивших (П) в отчетном периоде основных фондов в их общем объеме на конец этого периода (Фк):

Коэффициент выбытия основных фондов, равный отношению стоимости всех выбывших за данный период основных фондов (или только выбывших из-за ветхости и износа – В) к стоимости основных фондов на начало данного периода (Фн):

Используя сведения о наличии основных фондов по полной и остаточной стоимости, находят обобщающие характеристики состояния основных фондов – коэффициенты износа и годности.

Коэффициент износа исчисляется на определенную дату (на начало или конец года) как выраженное в процентах отношение суммы износа основных фондов (И) к их полной стоимости (Ф):

Сумму износа основных фондов на конец года можно получить как разность между их полной и остаточной стоимостью на эту дату.

Разность между 100 % и коэффициентом износа дает величину коэффициента годности основных фондов, отражающего долю неизношенной части основных фондов.

9.3. Показатели использования основных производственных фондов и фондовооруженности труда

Обобщающим показателем использования основных производственных фондов служит фондоотдача – отношение объема произведенной в данном периоде продукции (О) к средней за этот период стоимости основных производственных фондов (Ф):

Фондоотдача показывает, сколько продукции (в стоимостном выражении) произведено в данном периоде на 1 руб. стоимости основных фондов. Чем лучше используются основные фонды, тем выше показатель фондоотдачи.

Наряду с фондоотдачей в статистической практике вычисляют и обратную величину, которую называют фондоемкостью. Она характеризует стоимость основных производственных фондов, приходящуюся на 1 руб. произведенной продукции:

Снижение фондоемкости означает экономию труда, овеществленного в основных фондах, участвующих в производстве.

Каждый из этих показателей отражает различные экономические процессы и применяется в разных случаях. Так, величина фондоотдачи показывает, сколько продукции получено с каждого рубля, вложенного в основные фонды, и служит для определения экономической эффективности использования действующих основных производственных фондов. Величина фондоемкости показывает, сколько средств нужно затратить на основные фонды, чтобы получить необходимый объем продукции, иначе говоря, какова потребность в основных фондах.

Большое влияние на величины фондоотдачи и фондоемкости оказывает показатель фондовооруженности трудав), который рассчитывается по формуле

где Т – среднесписочная численность работающих.

Этот показатель применяется для характеристики степени оснащенности труда работающих. Фондовооруженность и фондоотдача связаны между собой через показатель производительности труда, определяемый по формуле

Преобразуем формулу фондоотдачи:

Таким образом, фондоотдача может быть рассчитана и выражена через фондовооруженность и производительность труда. Взятый сам по себе, уровень фондовооруженности не характеризует экономическую эффективность использования основных фондов. Чтобы показать не только то, чем располагает предприятие, но и как оно использует имеющиеся средства, надо величину изменения фондовооруженности приводить вместе с уровнем производительности труда или фондоотдачи.

Тема 10. Статистические показатели продукции, трудовых ресурсов и эффективности производства

10.1. Показатели использования рабочего времени. Фонды рабочего времени

Рабочее время есть часть календарного времени, затрачиваемого на производство продукции или выполнение определенного вида работ. Для характеристики его использования применяют специальные показатели. Исходным служит показатель календарного фонда времени – число календарных дней месяца, квартала, года, приходящихся на одного рабочего или на коллектив рабочих. Например, календарный годовой фонд времени одного рабочего равен 365 (366) дням, а коллектива из 1000 рабочих – 365 000 (366 000) чел.-дней. Структура календарного фонда времени как исходного показателя для определения фонда рабочего времени представлена на рис. 10.1.

Рис. 10.1. Структура календарного фонда рабочего времени.

Показатель календарного фонда времени отражает рабочее и внерабочее время, т.е. число человеко-дней явок и неявок на работу.

Человеко-дни явок на работу – это фактически отработанные человеко-дни и человеко-дни целодневных простоев. В число фактически отработанных человеко-дней включаются человеко-дни рабочих, фактически работавших на предприятии, включая работавших неполный рабочий день или неполную рабочую неделю, человеко-дни рабочих, работавших по нарядам своего предприятия на другом предприятии, и т.д. В число человеко-дней целодневных простоев включаются соответственно человеко-дни простоев рабочих, которые весь рабочий день не работали по причине простоя (например, из-за отсутствия энергии или сырья) и не были использованы на других работах в основной деятельности предприятия. К целодневным простоям следует относить также человеко-дни невыходов на работу, разрешенных администрацией в связи с простоем на предприятии.

Человеко-дни неявок на работу – это дни невыхода на работу по уважительным и неуважительным причинам. Человеко-дни неявок на работу по уважительным причинам включают дни ежегодных отпусков, праздничные и выходные дни, неявки по болезни и в связи с выполнением общественных, общегосударственных обязанностей, а также другие неявки, разрешенные законом (для народных депутатов, народных заседателей, если эти работники учитываются в среднесписочной численности работников предприятия), человеко-дни неявок на работу в связи с уходом за больными, оформленных справками лечебных учреждений, и т.д.

Человеко-дни неявок на работу по неуважительным причинам – это дни невыходов с разрешения администрации и прогулы.

В число человеко-дней неявок с разрешения администрации включаются неявки на работу по уважительным личным причинам: дни кратковременного отпуска без сохранения заработной платы, предоставляемые работникам при вступлении в брак, рождении ребенка и по другим семейным обстоятельствам.

В число человеко-дней прогулов включаются человеко-дни работников, не явившихся на работу без уважительной причины либо отсутствовавших на работе без уважительной причины более трех часов (непрерывно или суммарно) в течение рабочего дня.

Основными единицами отработанного и не отработанного рабочими времени служат человеко-дни и человеко-часы.

Отработанным человеко-днем считается день, когда рабочий явился на работу и приступил к ней, независимо от ее продолжительности (если в этот день не отмечен прогул); отработанным считается также день, проведенный в служебной командировке по заданию предприятия. Отработанным человеко-часом считается час фактической работы.

По данным учета рабочего времени в человеко-днях определяют фонды рабочего времени.

Покажем методику расчета фондов рабочего времени в человеко-днях на примере следующих сведений по промышленному предприятию:

Среднесписочное число рабочих

500

Отработано рабочими человеко-дней

110790

Число человеко-дней целодневных простоев

10

Число человеко-дней неявок на работу, всего

71700

В том числе:

 

  ежегодные отпуска

9000

  учебные отпуска

120

  отпуска в связи с родами

480

  неявки по болезни

5000

  прочие неявки, разрешенные законом
  (выполнение государственных обязанностей и т.д.)   

250

  неявки с разрешения администрации

300

  прогулы

50

Число человеко-дней праздничных и выходных

56500

Число отработанных человеко-часов, всего

875241

В том числе сверхурочно

11079

По этим данным можно определить прежде всего величины календарного, табельного и максимально возможного фондов рабочего времени.

Календарный фонд рабочего времени рассчитывается как сумма числа человеко-дней явок и неявок на работу или отработанных и неотработанных человеко-дней: 110790+10+71700 = 182500 чел.-дней, и равен произведению среднесписочной численности рабочих на количество календарных дней в году, т.е.

500 чел. × 365 дней = 182500 чел.-дней.

Табельный фонд рабочего времени определяется вычитанием из календарного фонда времени человеко-дней праздничных и выходных:

182500 - 56500 = 126000 чел.-дней.

Максимально возможный фонд рабочего времени представляет собой максимальное количество времени, которое может быть отработано в соответствии с трудовым законодательством. Величина его равна календарному фонду за исключением числа человеко-дней ежегодных отпусков и человеко-дней праздничных и выходных:

182500 - 56500 - 9000 = 117000 чел.-дней.

На основании абсолютных показателей рабочего времени в человеко-днях исчисляются относительные показатели, характеризующие степень использования того или иного фонда времени. Для этого определяется удельный вес отработанного времени в соответствующем фонде рабочего времени.

Основываясь на приведенных выше данных, рассчитаем относительные показатели неиспользованного рабочего времени.

Удельный вес времени, не использованного по уважительным причинам, в максимально возможном фонде рабочего времени представляет собой отношение числа человеко-дней неявок на работу по уважительным причинам к максимально возможному фонду рабочего времени в человеко-днях:

Удельный вес потерь рабочего времени в максимально возможном его фонде равен отношению суммы числа человеко-дней целодневных простоев и неявок по неуважительным причинам к максимально возможному фонду рабочего времени:

Таким образом, максимально возможный фонд рабочего времени в рассматриваемом примере распределяется следующим образом, (%):

Отработаное время

94,69

Время не использованное

по уважительным причинам

5,00

Потери рабочего времени

0,31

Максимально вазможный фонд рабочего времени

100,00

Можно определить также средние показатели. Средняя продолжительность рабочего периода (в нашем примере – года) показывает среднее число дней, отработанных одним рабочим за тот или иной период. Рассчитывается этот показатель как отношение числа отработанных человеко-дней в течение изучаемого периода к среднесписочной численности рабочих за данный период. В нашем примере средняя фактическая продолжительность рабочего года составляет

.

Число дней неявок по всем причинам в среднем на одного рабочего определяется делением общего числа человеко-дней неявок, включая праздничные и выходные дни, на среднесписочную численность рабочих. В среднем на одного рабочего в нашем примере в течение года приходится неявок на работу

Число целодневных простоев в среднем на одного рабочего находится делением числа человеко-дней целодневных простоев на среднесписочную численность рабочих. В нашем примере в среднем на одного рабочего приходится целодневных простоев 10 : 500 = 0,02 дня.

Итак, сумма всех средних показателей за год в расчете на одного рабочего составляет 221,58+143,40+0,02=365 дней, или соответственно 60,71+39,29+0,001=100%.

Степень использования рабочего периода отражает коэффициент использования рабочего периода (Ки.р.п). Он исчисляется следующим образом:

Фактическая продолжительность рабочего года, как было рассчитано, составляет 221,58 дня, а максимально возможная продолжительность рабочего года определяется как отношение максимально возможного фонда рабочего времени к среднесписочной численности рабочих:

Следовательно,

По величине этот показатель совпадает с коэффициентом использования максимально возможного фонда рабочего времени, так как оба коэффициента имеют один и тот же экономический смысл:

Средняя установленная продолжительность рабочего дня для каждого предприятия зависит от удельного веса рабочих, имеющих различную установленную продолжительность рабочего дня (рабочие вредных производств имеют сокращенный рабочий день), в их общей численности. В этом случае средняя установленная продолжительность рабочего дня ( ) вычисляется как средняя арифметическая из установленной продолжительности рабочего дня отдельных категорий рабочих (X), взвешенная по числу рабочих с данной продолжительностью рабочего дня (f):

Допустим, в нашем примере из 500 рабочих 470 имеют установленную продолжительность рабочего дня 8,0 часов, а 30 (рабочие горячих цехов) – 7,0 часов. Тогда средняя установленная продолжительность рабочего дня составит

Средняя фактическая продолжительность рабочего дня определяется как отношение отработанных человеко-часов, включая человеко-часы внутрисменного простоя и человеко-часы, отработанные сверхурочно, к сумме фактически отработанных человеко-дней:

Таким образом, коэффициент использования рабочего дня (Ки.р.д) можно вычислить по формуле

Наряду с рассмотренными рассчитывается и интегральный показатель (коэффициент), характеризующий одновременное использование продолжительности и рабочего дня, и рабочего года. Он может быть найден следующим образом:

а) путем деления фактического числа отработанных одним списочным рабочим за рабочий период человеко-часов на число установленных человеко-часов, которые должен отработать один списочный рабочий за этот период:

б) путем деления числа фактически отработанных человеко-часов на максимально возможный фонд рабочего времени в человеко-часах. Последний можно получить, перемножив величину этого фонда в человеко-днях на среднюю установленную продолжительность рабочего дня:

Следовательно, интегральный коэффициент составит

в) путем перемножения коэффициента использования продолжительности рабочего дня на коэффициент использования продолжительности рабочего года:

Таким образом, интегральный коэффициент характеризует степень использования рабочего времени как в течение рабочего дня, так и в продолжение рабочего года, т.е. с учетом внутрисменных и целодневных потерь рабочего времени и частичной компенсации их сверхурочными работами.

11.2 Производительность труда. Основные показатели и методы расчета

Под производительностью труда понимается результативность конкретного живого труда, эффективность целесообразной производительной деятельности по созданию продукта в течение определенного промежутка времени. Перед статистикой производительности труда стоят задачи:
1) совершенствования методики расчета производительности труда;
2) выявления факторов роста производительности труда;
3) определения влияния производительности труда на изменение объема продукции.

В экономической практике уровень производительности труда характеризуется через показатели выработки и трудоемкости. Выработка (W) продукции в единицу времени измеряется соотношением объема произведенной продукции (q) и затратами (Т) рабочего времени: W = q / Т. Это прямой показатель производительности труда. Обратным показателем является трудоемкость: t = Т/ q, откуда W=1/q.

Система статистических показателей производительности труда определяется единицей измерения объема произведенной продукции. Эти единицы могут быть натуральными, условно-натуральными, трудовыми и стоимостными. Соответственно применяют натуральный, условно-натуральный, трудовой и стоимостный методы измерения уровня и динамики производительности труда.

В зависимости от того, чем измеряются затраты труда, различают следующие уровни его производительности.

Она показывает среднюю выработку рабочего за один час фактической работы (исключая время внутрисменных простоев и перерывов, но с учетом сверхурочной работы).

Она характеризует степень производственного использования рабочего дня.

В этом случае в знаменателе отражаются не затраты, а резервы труда.

Средняя квартальная выработка рассчитывается аналогично среднемесячной. В настоящее время среднесписочная выработка характеризуется через соотношение товарной продукции (объема продукции, работ, услуг) и среднесписочной численности промышленно-производственного персонала.

Между вышеперечисленными средними показателями существует взаимосвязь:

где W1ППП – выработка на одного работника;
W
ч – среднечасовая выработка;
П
р.д – продолжительность рабочего дня;
П
р.п – продолжительность рабочего периода;
d
рабочих в ППП – доля рабочих в общей численности промышленно-производственного персонала.

Динамика производительности труда в зависимости от метода измерения ее уровня анализируется при помощи статистических индексов: натуральных (1), трудовых (2, 3) и стоимостных (4):

          3) индекс акад. С.Г. Струмилина

Для анализа изменения средней выработки под влиянием ряда факторов используется система индексов средних величин или система агрегатных индексов, в которых в качестве индексируемой величины выступает уровень производительности труда отдельных единиц совокупности, а в качестве весов – количество (в абсолютном выражении) таких единиц с разным уровнем производительности труда или их удельный вес в общей численности (dт):

Влияние производительности труда как интенсивного фактора и затрат рабочего времени как экстенсивного фактора на изменение объема продукции наглядно отображают диаграммы (знаки Варзара). В упрощенном виде анализ производится по следующей методике.

Общее изменение объема продукции

Изменение объема продукции под влиянием изменения производительности труда

Изменение объема продукции под влиянием изменения численности работников или отработанного ими времени

В итоге

Тема 12 . Себестоимость продукции и структура затрат на производство

12.1. Показатели себестоимости продукции

Себестоимость продукции (работ, услуг) представляет собой стоимостную оценку используемых в процессе производства продукции (работ, услуг) природных ресурсов, сырья, материалов, топлива, энергии, основных фондов, трудовых ресурсов и других затрат на ее производство и реализацию.

Необходимо различать общую себестоимость всей произведенной продукции – общую сумму затрат, приходящихся на изготовление продукции определенного объема и состава, и индивидуальную себестоимость – затраты на производство только  одного изделия (например, на изготовление уникального агрегата при условии, что в данном производственном звене никаких других видов продукции одновременно не производится) – и среднюю себестоимость, определяемую делением общей суммы затрат на количество произведенной продукции.

В практике статистики различают два основных вида себестоимости по степени учета затрат: производственную и полную.

Производственная себестоимость охватывает только затраты, связанные с процессом производства продукции – начиная с момента запуска сырья в производство и кончая освидетельствованием готовых изделий и сдачей их на склад готовой продукции.

Полная себестоимость – это сумма расходов, связанных с производством продукции (производственная себестоимость), и расходов по ее реализации (коммерческие расходы). Коммерческие расходы включают в себя затраты на упаковку, хранение, погрузку, транспортировку и рекламу.

Статистика себестоимости продукции опирается на данные бухгалтерского учета, задачами которого являются определение общей суммы затрат, группировка их по видам и калькулирование себестоимости единицы продукции.

Анализируя данные бухгалтерского учета и отчетности, статистика решает следующие задачи: изучает структуру себестоимости по видам затрат и выявляет влияние изменения структуры на динамику себестоимости:

дает обобщающую характеристику динамики себестоимости продукции;

исследует факторы, определяющие уровень и динамику себестоимости, и выявляет возможности ее снижения.

Для изучения себестоимости продукции применяются основные статистические методы: группировок, средних и относительных величин, графический, индексный, а также метод сопоставления.

Метод группировок используется при исследовании структуры себестоимости продукции по элементам и статьям калькуляции. Важнейшей является группировка затрат по элементам. Она дает возможность судить об объеме расхода сырья, материалов, топлива, энергии и т.д. Группировка затрат по элементам нужна также для исчисления величины чистой продукции.

Группировка по статьям калькуляции позволяет произвести распределение всех расходов предприятия по тому или иному конкретному назначению. Эта группировка имеет большое значение, так как дает возможность выявить затраты на отдельных участках производства и тем самым вклад каждого участка в себестоимость продукции.

Метод средних и относительных величин применяют при вычислении средних уровней себестоимости для однородной продукции, при изучении структуры и динамики себестоимости.

Индексный метод необходим для сводной характеристики динамики себестоимости сравнимой и всей товарной продукции, для изучения динамики и выявления влияния на нее отдельных факторов.

Группировка затрат по экономическим элементам. Чтобы выяснить, под влиянием каких факторов сформировался данный уровень себестоимости, в какой мере и в каком направлении эти факторы влияли на общую себестоимость, необходимо разделить различные расходы на группы, или элементы затрат.

В основу этой группировки кладется признак экономического содержания того или иного расхода. Затраты на сырье, топливо, на оплату труда и другие расходы в этом случае рассматриваются не просто как слагаемые себестоимости, а как возмещение затрат овеществленного и живого труда – возмещение потребленных предметов и средств труда и самого труда.

Рис. 12.1 Группировка затрат на производство продукции.

Среди затрат на производство выделяются следующие элементы:
материальные затраты (за вычетом стоимости возвратных отходов);
затраты на оплату труда;
отчисления на социальные нужды;
амортизация основных фондов;
прочие затраты.

На практике применяется следующая типовая группировка затрат по статьям калькуляции.
1. Сырье и материалы (за вычетом стоимости возвратных отходов), покупные изделия, полуфабрикаты и услуги производственного характера, топливо и энергия на технологические цели.
2. Расходы на оплату труда производственных рабочих.
3. Отчисления на социальные нужды.
4. Расходы по содержанию и эксплуатации машин и оборудования.
5. Общепроизводственные расходы.
6. Потери от брака.
7. Общехозяйственные расходы. (Итого – производственная себестоимость.)
8. Коммерческие расходы. (Итого – полная себестоимость.) 

Имея данные о себестоимости единицы изделия за предыдущий период (Z0), по плановым расчетам (Zпл) и за отчетный период (Z1), можно дать общую характеристику степени выполнения планового задания по снижению себестоимости и ее динамики, а также определить абсолютную сумму экономии или перерасхода в результате изменения себестоимости.

Определяем индивидуальные индексы себестоимости.

Индекс планового задания:

т.е. планируется снижение на 4 %.

Индекс выполнения планового задания:

т.е. сверхплановый рост на 7,5 %.

Индекс динамики:

т.е. фактический рост на 3,2 %.

Перечисленные индексы взаимосвязаны:

Общая сумма перерасхода (экономии) от изменения себестоимости изделия определяется по формуле

Вычтя из фактической экономии плановую, получим сверхплановую экономию (перерасход):

При изучении динамики себестоимости по группе предприятий, изготавливающих продукцию одного и того же вида, используется индекс переменного состава, индекс фиксированного состава и индекс влияния структурных сдвигов.

Покажем расчет этих индексов на примере следующих данных по условному шахтоуправлению:

Индекс переменного состава:

Индекс фиксированного состава:

Шахта

Предыдущий год

Отчетный год

Индекс
себесто-
имсти

Добыча
угля,
тыс. т

Общие
затраты,
тыс.руб

Доля
каждой
шахты
в общей
добыче

Себесто-
имость
угля,
тыс. руб.

Добыча
угля,
тыс. т

Общие
затраты,
тыс.руб

Доля
каждой
шахты
в общей
добыче

Себесто-
имость
угля,
тыс. руб

q0

q0Z0

d0

Z0

q1

q1Z1

d1

Z1

iZ

1
2
Итого

2 500
3 000
5 500

26 250
30 000
56 250

0,4545
0,5454
1,000

10,5
10,0
10,227

2 560
3 700
6 260

27 648
36 260
63 908

0,4089
0,5911
1,000

10,8
9,8
10,209

1,029
0,98
0,998

Индекс влияния структурных сдвигов:

Взаимосвязь индексов:

Iпер.сост = Iфикс.сост × Iстр. сдв,

На тех предприятиях, на которых изготавливаются разные виды продукции и в общем выпуске преобладает сравнимая продукция, вычисляются показатели снижения себестоимости сравнимой товарной продукции.

К сравнимой относят продукцию, которая производилась в отчетном и предыдущем периодах. Основным критерием сравнимости является сохранение продуктом потребительских свойств. Если в текущем году частично изменяются технология производства, потребляемое сырье или конструкция изделия, но при этом не утрачиваются его потребительские свойства, не изменяется утвержденный стандарт, то такое изделие остается сравнимым.

К несравнимой относится продукция, впервые выпускаемая в отчетном году и, следовательно, не имеющая базисной себестоимости, а также продукция, которая в предыдущем году выпускалась в опытном порядке или только осваивалась, что обычно бывает связано с относительно высокими затратами.

Для оценки выполнения плановых заданий и динамики себестоимости сравнимой товарной продукции используют следующие три индекса.

1. Индекс планового задания:

Данный индекс характеризует изменение плановой себестоимости единицы изделия по сравнению со средней годовой себестоимостью предыдущего года в расчете на плановый объем и ассортимент продукции. Разность между числителем и знаменателем дает плановую сумму общей экономии (перерасхода) от изменения себестоимости сравнимой товарной продукции:

2. Индекс выполнения планового задания:

Рассчитывается этот индекс только в аналитических целях и характеризует соотношение уровней фактической и плановой себестоимости в расчете на фактический объем и состав продукции, что устраняет влияние ассортиментных сдвигов. Разность между числителем и знаменателем дает размер сверхплановой суммы экономии (перерасхода), полученной вследствие снижения (повышения) себестоимости продукции:

3. Индекс фактического изменения себестоимости сравнимой товарной продукции:

Последний показатель характеризует динамику себестоимости продукции. Поскольку в знаменателе индекса фигурирует фактическая себестоимость единицы продукции предыдущего года, то он охватывает только продукцию, сравнимую с предыдущим годом. Разность между числителем и знаменателем дает сумму фактической экономии (перерасхода), полученную вследствие снижения (повышения) себестоимости продукции:

Рассмотрим пример (табл. 11.4).

По плану предусматривалось снизить себестоимость сравнимой товарной продукции на 0,8 %:

Абсолютная сумма фактической экономии составила 1600-1592=8 млн руб. Плановое задание по снижению себестоимости товарной продукции не выполнено:

Тема 13. Статистика прибыли и рентабельности

Показатели прибыли характеризуют абсолютную эффективность хозяйственной деятельности предприятия. Наряду с этой абсолютной оценкой рассчитывают также и относительные показатели эффективности хозяйствования – показатели рентабельности (R).

В зависимости от того, какие показатели используются в расчетах, различают несколько показателей рентабельности. В числителе их стоит обычно одна из трех величин: прибыль от реализации (ПР), балансовая прибыль (ПБ) или чистая прибыль (ЧП). В знаменателе – один из следующих показателей: затраты на производство реализованной продукции, производственные фонды, валовой доход, собственный капитал и др.

Конкретно таким образом рассчитывают следующие показатели.

Рентабельность производства – это отношение балансовой прибыли к средней стоимости производственных фондов:

где – средняя стоимость производственных фондов (основных и оборотных средств).

Показатель характеризует размер прибыли на один рубль стоимости производственных фондов.

Рентабельность основной деятельности – отношение прибыли от реализации к затратам на производство реализованной продукции (работ, услуг):

Данный показатель позволяет судить, какую прибыль дает каждый рубль производственных затрат.

Рентабельность продукции – отношение прибыли от реализации продукции к выручке от реализации в целом (РП):

Величина Rпр показывает, сколько прибыли дает каждый рубль стоимости реализованной продукции.

Рентабельность отдельных изделий – отношение прибыли от реализации продукции конкретного вида к выручке от ее реализации:

В странах с рыночной экономикой для характеристики рентабельности вложений в деятельность того или иного вида рассчитывают рентабельность собственного капитала (Rс.к.) и рентабельность основного (авансированного) капитала (Rо.к.):

где – среднегодовая стоимость вложений в активы (определяется по данным годового баланса предприятия);

– среднегодовая стоимость собственного капитала (определяется также по данным годового баланса предприятия).

Поскольку в структуре балансовой прибыли наибольший удельный вес имеет прибыль от реализации товарной продукции (работ, услуг), основное внимание в процессе анализа должно быть уделено исследованию факторов изменения именно этого показателя. К таковым относятся:
1) рост или снижение отпускных цен на реализованную продукцию, тарифов на услуги и работы;
2) динамика себестоимости реализованной продукции (работ, услуг);
3) увеличение или уменьшение объема реализованной продукции (работ, услуг);
4) изменение структуры (состава) реализованной продукции (работ, услуг).

Для выявления степени влияния этих факторов необходимо произвести пересчет выручки от реализации продукции (работ, услуг) отчетного периода по ценам базисного периода и себестоимости фактически реализованной продукции (работ, услуг) в отчетном периоде по себестоимости также базисного периода. Пример такого пересчета приведен в табл. 11.5.

Таблица 11.5

Факторы, влияющие на прибыль от реализации продукции (работ, услуг)

Показатель

За
предыдущий
период

Фактически по
ценам и себестоимости
предыдущего периода

Фактически
за отчетный
период

Выручка от реализации продукции (работ, услуг)
   в оптовых ценах предприятия, тыс. руб.
Полная себестоимость продукции, тыс. руб.
Прибыль, тыс. руб

 
6 604
5 080
1 524

 
7 534
4 364
3 170

 
13 606
9 910
3 596

Из данных табл. 11.5 видно, что прибыль от реализации продукции (работ, услуг) по сравнению с предыдущим периодом увеличилась на 2 072 тыс. руб. Это изменение находим следующим образом:

Здесь DП – изменение прибыли от реализации продукции (работ, услуг);
П
1 – прибыль отчетного периода;
П
0 – прибыль базисного периода.

Задача статистики состоит в оценке влияния на этот результат каждого из четырех вышеназванных факторов.

1. Влияние изменения цен (тарифов) (DП(Р)):

Сопоставим выручку от фактической реализации продукции (работ, услуг) в текущих ценах с выручкой от фактической реализации продукции (работ, услуг) в ценах предыдущего периода:

Следовательно, в результате повышения цен (тарифов) на реализованную продукцию предприятие получило дополнительно 5 972 тыс. руб. прибыли.

2. Влияние изменения себестоимости реализованной продукции (работ, услуг) (DП(Z)) определим, сопоставляя фактические затраты на реализованную продукцию (работы, услуги) с условными затратами на ту же продукцию по себестоимости предыдущего периода:

Увеличение себестоимости на 5 546 тыс. руб. привело к снижению прибыли по предприятию в том же размере.

3. Влияние изменение объема реализации продукции (работ, услуг) (DП(q)).

Для определения влияния этого фактора вычислим индекс физического объема реализации (Iq):

Объем реализованной продукции (работ, услуг) вырос на 14,09%. Следовательно, и прибыль за счет этого фактора увеличилась в той же пропорции. Расчет произведем следующим образом:

4. Влияние изменения структуры реализованной продукции (работ, услуг).

Определяя влияние на изменение прибыли этого фактора, будем рассуждать следующим образом. При сохранении ассортимента реализованной продукции (работ, услуг) на уровне предыдущего периода в каждой тысяче рублей реализации должно содержаться

прибыли; при фактическом ассортименте это соотношение составило

т.е. на 0,18999 тыс. руб. больше. Исходя из фактического объема реализации в ценах предыдущего периода, получаем следующее влияние изменения ассортимента на сумму прибыли:

Влияние всех рассмотренных факторов на изменение общей суммы прибыли от реализации продукции (работ, услуг) отражено в табл. 11.6.

Таблица 11.6

Влияние факторов, обусловливающих изменение прибыли от реализации продукции (работ, услуг) в отчетном периоде

Фактор

Влияние фактора,
тыс. руб.

Изменение оптовых цен

+5 972

Изменение себестоимости продукции

-5 546

Изменение ассортимента продукции

+1 431

Изменение объема продукции

+215

Данные табл. 11.6 показывают, что сумма прибыли увеличилась главным образом вследствие изменения объема и ассортимента реализованной продукции. Общее изменение прибыли составило +2 072 тыс. руб.

Поэтому при анализе рентабельности используют показатели, характеризующие размер прибыли на один рубль использованных ресурсов или произведенных затрат. Чаще всего анализ рентабельности проводится по показателям:

рентабельности производства, рассчитанной как отношение балансовой прибыли к среднегодовой стоимости основных производственных фондов и материальных оборотных средств (запасов и затрат);

рентабельности реализованной продукции, исчисленной как отношение прибыли от реализации продукции к стоимости реализованной продукции в оптовых ценах предприятия.

В число факторов, влияющих на рентабельность производства, входят рентабельность реализованной продукции, фондоемкость продукции (фондоотдача), коэффициент закрепления оборотных средств (оборачиваемость оборотных средств). Для выявления влияния указанных факторов преобразуем формулу расчета рентабельности производства:

Разделим и числитель, и знаменатель на сумму выручки от реализации продукции:

Получаем R – рентабельность реализованной продукции, или долю прибыли на 1 руб. реализованной продукции; Fe – фондоемкость, которую можно получить и как 1/Н; Н – уровень фондоотдачи; Кз – коэффициент закрепления, который может быть найден и как 1/К; К – коэффициент оборачиваемости.

Изучение факторов, влияющих на показатель рентабельности производства, производится в динамике (в сравнении с данными за предыдущие годы). Оценивая влияние названных факторов, следует выполнить следующие расчеты. Общее изменение рентабельности производства (DRпр):

В том числе:

1) вследствие изменения рентабельности продукции –

2) вследствие изменения фондоемкости продукции (фондоотдачи):

3) вследствие изменения коэффициента закрепления (оборачиваемости) оборотных средств:

Суммарная величина влияния трех факторов даст общее изменение рентабельности производства:

Для определения влияния каждого фактора произведем следующие расчеты.

 

где DR(Р) – изменение рентабельности изделия в результате изменения цены;

– условная рентабельность изделия при базисной себестоимости и цене отчетного года;

2.

Увеличение себестоимости изделия снизило его рентабельность на 8,6%.

Общее изменение рентабельности по обоим факторам составило (%): 10,6+(-8,6) = 2, что соответствует данным табл. 11.8. (Заметим, что альтернативный вариант анализа дает )

Рентабельность продукции необходимо анализировать в динамике за ряд лет, выявляя влияние соответствующих факторов.

Список литературы

1. Громыко Г.Л. Статистика. – М.: Изд-во МГУ им. Ломоносова, 2005.
2. Гусарев В.М. Теория статистики. – М.: ЮНИТИ, 2008.
3. Елисеева И.И., Юзбашев. Общая теория статистики: учеб. для вузов. – М.: Финансы и статистика, 2008.
4. Ефимов М.Р., Петров Е.В., Румянцев В.Н. Общая теория статистики: Учебник для вузов. – М.: Инфра-М, 2006.
5. Национальное счетоводство: учебник для вузов / Под ред. Г.Д.Кулагиной. – М.: Финансы и статистика, 1997.
6. Общая теория статистики: Статистическая методология в коммерческой деятельности: учебник для вузов / Под ред. А.С. Спирина и О.Е.Башиной. – М.: Финансы и статистика, 2004.
7. Социальная статистика: учебник для вузов / Под ред. И.И.Елисеевой. – М.: Финансы и статистика, 20077.
8. Статистика: Курс лекций для вузов / Под ред. В.Г.Ионина. – М.: ИНФРА-М, 2006.
9. Экономическая статистика: Учебник / Под ред. Ю.Н.Иванова. – М.: ИНФРА-М, 2006.




1. Тема- Використання керуючих конструкцій
2. 28 декабря 2013 г г
3. Реферат- Покадровый анализ
4. Les moyens linguo-stylistiques de letude du texte
5. Курсовой проект по дисциплине Объектноориентированное программирование Пояснительная записка
6. Саратовская государственная академия права
7. Философская мысль Древней Индии Философия впервые зародилась в Древней Индии и Древнем Китае в I тысячел
8. Реферат- Основания возникновения административно-правовых отношений
9. российский государственный аграрный университет ~ МСха имени К
10. Об ~ увеличение источника ника С2 ~ наличие источника средств Схема активного расчётного счё
11. Конструктивный расчет ванн
12. Разнообразие смешанных форм в инвестиционных фондах
13. ТЕМА РАБОТЫ- РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ОБРАБОТКИ ДЕТАЛИ ВАЛ ПОЯСНИТЕЛЬНАЯ ЗАПИСК
14. УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ УНИВЕРСИТЕТ КАФЕДРА ХУДОЖЕСТВЕННОГО ПРОЕКТИРОВАНИЯ И ТЕОРИИ ТВОР
15. Энергетическая
16. I. В 1981 году был оперирован по поводу посттравматического разрыва головки двенадцатиперстной кишки
17. 1 Относительной степенью передаточной функции называется 1
18. 16000-110У1 Расчет показателей надежности трансформатора.
19. Был он ужасно озорной и упрямый не то что ты верно Хотя на первый взгляд казался милым и послушным мальчико
20. Кавказский вектор внешней политики в период правления Павла I