Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
34. Статистическая гипотеза. Виды гипотез. Ошибки 1-го и 2-го рода. Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия.
Статистической называют гипотезу о виде неизвестного распределения или о параметрах известных распределений. Выдвигается основная (нулевая) гипотеза и проверяется, не противоречит ли она имеющимся эмпирическим данным. Конкурирующей (альтернативной) называют гипотезу , которая противоречит нулевой.
В результате статистической проверки гипотезы могут быть допущены ошибки двух родов. Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза; вероятность совершить такую ошибку обозначают и называют ее уровнем значимости. Ошибка второго рода состоит в том, что будет принята неправильная гипотеза, вероятность которой обозначают , а мощностью критерия является вероятность .
Статистическим критерием называется случайная величина К с известным законом распределения, служащая для проверки нулевой гипотезы. Критической областью называют область значений критерия, при которых нулевую гипотезу отвергают, областью принятия гипотезы область значений критерия, при которых гипотезу принимают.
процесс проверки гипотезы состоит из следующих этапов:
1) выбирается статистический критерий К;
2) вычисляется его наблюдаемое значение Кнабл по имеющейся выборке;
3) поскольку закон распределения К известен, определяется (по известному уровню значимости α) критическое значение kкр, разделяющее критическую область и область принятия гипотезы (например, если р(К > kкр) = α, то справа от kкр располагается критическая область, а слева область принятия гипотезы);
4) если вычисленное значение Кнабл попадает в область принятия гипотезы, то нулевая гипотеза принимается, если в критическую область нулевая гипотеза отвергается. Различают разные виды критических областей:
- правостороннюю критическую область, определяемую неравенством K > kкр ( kкр > 0);
- левостороннюю критическую область, определяемую неравенством K < kкр ( kкр < 0);
- двустороннюю критическую область, определяемую неравенствами K < k1, K > k2 (k2> k1).