У вас вопросы?
У нас ответы:) SamZan.net

это зависимость одной величины от другой

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024

4.5.Функции. Определение способа задания. Классификация функций. Основные элементарные функции.

Функция - это зависимость одной величины от другой.

Если существует взаимооднозначное соответствие между переменной х одного множества и переменной у другого множества, то она называется функциональной зависимостью. y=f(x).

Определение способа задания:

-аналитически (y=kx+b)

-графический (график)

-таблично 

x

1

2

3

y

4

5

8

-алгоритмически (с помощью ЭВМ)

Классификация функций:

Элементарные: - функции, которые получаются из основных элементарных ф-ций с помощью алгебраических действий (+,-,*,/,введение в степень). Основные элементарные ф-ции: 

1. y=xn - степенная

2. y=ax - показательная

3. y=logax - логарифмическая

4. y=sinx, y=cosx - тригонометрические.

Сложные:

Y=f(U), где U=(x), Y=f[(x)]

Если ф-ция у зависит от промежуточного аргумента U, который зависит от независимой переменной х, то y=f[(x)] называется сложным заданием х.

Определение пределов последовательности и ф-ции. Осн. св-ва пределов ф-ции 1ой переменной.

а) Предел последовательности:

y=f(Un), где U1,U2,...Un, а Un=n/(n2+1)

Предел: число а называется пределом переменной xn, если для каждого+ как угодно малого числа (эпсилон) существует такой номер N, что при n>N разность |xn-a|<

limxn=a

n

 -<Xn-a<

a-<Xn<a+

б) Предел ф-ции:
y=f(x) число а называется пределом переменной х, если разность м/ду ними есть б.м.в. |x-a|0, |x-a|<

Число А называется пределом ф-ции f(x) при ха, если для каждого, как угодно малого на период заданного числа . ->0, найдется такое как угодно малое на период заданного >0, что будут выполняться неравенства: Если |x-a|<, то |f(x)-A|<

Основные св-ва:
1.Если величина имеет предел, то только 1.

2. limC=C, где С- постоянная величина

3. Если -б.м.в., то lim=0

4. предела б.б.в. не существует

5. если limy=a, то y=a+, где -б.м.в.

17.Основные теоремы о пределах.

1. Предел суммы = суммы пределов:
limx=a, limy=b, тогда x=a+, y=b+, где  и  - б.м.в. x+y=(a+)+(b+)=(a+b)+(+), где +=- б.м.в.

xy=(ab)+, то lim(xy)=ab=limx+limy.

2. Теорема о пределе производной: если сомножители имеют пределы, то и произведение имеет предел, равный произведению пределов сомножителей.

limx=a, limy=b, то на основании 5го св-ва

x=a+

y=b+, где  и  - б.м.в.

x*y=(a+)*(b+)=a*b+(b+a+), то

                сумма б.м.в. = (дельта)

xy=ab+

xyab,

limxy=ab=limx*limy

3. Следствие: постоянная величина выноситься за знак предела.

limCx=limC*limx=C*limx

4. Предел от частного = частному пределов (кроме limx/limy=0

limx/y=limx/limy, т.к. limx=a, limy=b

x=a+, y=b+

x/y=(a+)/(b+)

18.20. 1й, 2й замечательный пределы.

1й: limsinx/x=1, limx/sinx=1. x0

j

lim((Sin)/)=1

x0

SOAC<SсектораOAC<SOCB

SOAC=1/2*OC*AD, OA=OC=1, то

SOAC=1/2*OC*OA*Sin=1/2*Sin

SсектораOAC=1/2*OA*OC*=1/2*(т.к. OA=OC)

SOCB=1/2*OC*BC=1/2*OC*OC*tg=1/2*tg

1/2*Sin<1/2*<1/2tg //*2

sin<<tg//:sin

1</sin<1/cos, =>cos<sin/<1,

limCos<lim((Sin)/)<lim1, по признаку 

0       0                          существования  

                                                 предела ф-ции 

                          lim((Sin)/)=1

 0

2ой: lim(1+1/n)n=e2.7183

       n

Зная, что 1/n= - б.м.в., то n=1/ и 

                x                      0

lim(1+1/n)1/=e

0

Основные приемы нахождения пределов.

1. Подстановка: при хх0 и х0области определения ф-ции f(x), предел ф-ции f(x)= его частному значению при х=х0

limf(x)=f(x0)

xx0

2. Сокращение: при х и хх0 f(x)/g(x)=0/0, то сокращают числитель и знаменатель на множитель, стремящийся к 0.

3. уничтожение иррациональности (* числитель и знаменатель на 1 число).

4.деление на наивысшую степень х: при х и хх0 f(x)/g(x)=0/0, то делим числитель и знаменатель на наивысшую степень.

5. сведение к известным пределам: lim((Sinx)/x)=1

x

lim(1+1/n)x=e

x

22.Непрерывность ф-ции в точке и на интервале.

x=x0+x, x=x-x0

y=f(x0+x)-f(x0)

Ф-ция y=f(x) наз. непрерывной в точке x0, если она определена в окрестности этой точки, а limy=0. (б.м. приращению аргумента соответствует б.м. приращению ф-ции).

limy=lim[f(x)-f(x0)]=limf(x)-limf(x0)=0, то 

limf(x)=limf(x0)

xx0

Ф-ция непрерывна в точке х0, если ее предел = значению этой ф-ции в точке х0

Ф-ция явл. непрерывной на интервале, если она непрерывна в каждой его точке.

Признаки существования а) предела ф-ции и б) предела последовательности.

а) если все значения ф-ции f(x) заключены между значениями ф-ции (x) и g(x), которые имеют 1 предел при ха, то и limf(x)=A

(x)<=f(x)<=g(x), где lim(x)=А, limg(x)=А, то limf(x)=A. ха

б) Если последовательность монотонно возрастает и ограниченна сверху, то она имеет предел.

Последовательность монотонно возрастает, если последующий член>предыдущего (xn+1>xn)

Последовательность ограничена сверху, если существует такое М, что xn<=M.

21.Бесконечно малые величины и их св-ва:

величина называется б.м.в. в каком-то процессе, если она в этом процессе бесконечно уменьщается.(=m/V, если V, то 0)

Св-ва б.м.в.:

-сумма или разность конечного числа б.м.в. есть б.м.в. ( и -б.м.в., то =б.м.в.)

-произведение б.м.в. на величину ограниченную есть б.м.в. (U<=M, то *U=б.м.в.)

-произведение б.м.величин=б.м.в.

-произведение б.м.в. на постоянную = б.м.в

Бесконечно большие величины и их св-ва.

б.б.в - величина для которой |Xn| (при xn=1/n, n0, то xn)

Св-ва:

-величина обратная б.б.в. явл. б.м.в. (1/=0; 1/0=)

-сумма б.б.в. (с одинаковым знаком) есть б.б.в.

-произведение 2х б.м.величин=б.м.в.

-частное от деления 2х б.б.в = неопределенность

25.Св-ва непрерывных ф-ций:
в отрезке:

1. Если ф-ция y=f(x) непрерывна на [a,b] и f(a)*f(b)<0, т.е. знаки f(a) и f(b) противоположны, то на (a,b)  найдется хотя бы одна точка х=с, что f(c)=0 (график)-теорема Больцана-Коши.




1. Юлий Цезарь Пролог Когда у нее начались месячные ее заперли в клетку
2. аргументация восходит к латинским словам аrgumentum rguo означающим пояснение проясняю
3. Організація та методика проведення занять з технічної праці в 5-му класі
4. Алмаз
5. реферату- Деревій звичайний дерен справжній дзвоники скупченіРозділ- Біологія Деревій звичайний дерен сп
6. Цели данной работы- раскрыть роль государственной поддержки инновационной деятельности рассмотреть госу
7. Зародження партійно-радянської преси України
8. МОДУЛЬ 4 2012 Закон Вагнера регулировал Испол
9. Парабола за~дылы~ымен ~оз~алатын н~ктені~ траекториясыны~ т~рін аны~та~ыз
10. реферату- Невербальні засоби комунікаціїРозділ- Менеджмент Невербальні засоби комунікації ПЛАН Вступ
11. Материалы строительные.html
12. тематики Мета- Ознайомити учнів із видатними математиками та їхнім вкладом в розвиток математичної науки;
13.  Охотник глупый и ничтожный охотник спутав кота с кроликом с этим мерзким травоядным грызуном выстрелил из
14. темам курса Основы предпринимательской деятельности для студентов заочного отделения Тема 1
15. Повышение эффективности использования орошаемых и осушаемых земель на основе интенсификации, связанной с экономией электроэнергии и пресной воды
16. Возможная опасность какоголибо неблагоприятного исхода
17. психологических операций
18. аномальных феноменов
19. статья Автор составитель- Авдеева Елена Анатольевна учительлого
20. Получение и применение кальция и его соединений