Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

на тему- Установки промысловой подготовки нефти

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

                                                                                                                                Кафедра ПНГ

Курсовая работа

по дисциплине «Химическая технология природных энергоносителей и углеродных материалов»

на тему: «Установки промысловой подготовки нефти».

                                                         Выполнила студентка гр.ХТТ-08

Галингер Елена

Проверила: Трушкова Л.В

Тюмень, 2012


      При регенерации в псевдоожиженном слое катализатора практически устраняется возможность локальных перегревов, что позволяет проводить регенерацию при более высокой t, тем самым ввести в реактор более высокопотенциальное тепло и при необходимости сократить кратность рециркуляции катализатора. На установках КК сырья с высокой коксуемостью регенерацию катализатора осуществляют в двухступенчатых регенераторах, снабжённых холодильником для снятия избыточного тепла. Это позволяет раздельно регулировать температурный режим как в регенераторе, так и в реакторе.


                                                       1. Введение

    Увеличение объема производства нефтепродуктов, расширение их ассортимента и улучшение качества - основные задачи, поставленные перед нефтеперерабатывающей промышленностью в настоящее время. Решение этих задач в условиях, когда непрерывно возрастает доля переработки сернистых и высокосернистых, а за последние годы и высокопарафинистых нефтей, потребовало изменения технологии переработки нефти. Большое значение приобрели вторичные и, особенно, каталитические процессы. Производство топлив, отвечающих современным требованиям, невозможно без применения каталитического крекинга

      

      Каталитический крекинг представляет собой современный процесс превращения высококипящих нефтяных фракций в базовые компоненты высококачественных авиационных и автомобильных бензинов и в средние дистиллятные фракции - газойли. Промышленные процессы основаны на контактировании сырья с активным катализатором в соответствующих условиях, когда 40-50 вес % исходного сырья без рециркуляции превращается в бензин и другие легкие продукты. В процессе крекинга на катализаторе образуются углистые отложения, резко снижающие его активность, в данном случае крекирующую способность. Для восстановления активности катализатор регенерируют. Наибольшее распространение получили установки с циркулирующим катализатором в движущемся потоке и псевдоожиженном, или кипящем, слое.

 

        


2. Назначение процесса
.

   Основное назначение каталитического крекинга - получение высокооктановых компонентов бензина. Крекинг осуществляется при 420-550°С и является процессом качественного изменения сырья, т.е. процессом образования соединений, отличающихся от первоначальных по своим физико-химическим свойствам. В зависимости от сырья и условий процесса выход бензина при крекинге составляет 7-50 вес % (на сырье). Наряду с бензином образуются и другие продукты - газообразные, жидкие и твердые (кокс). В качестве сырья обычно применяют тяжелые дистилляты атмосферной или вакуумной перегонки нефти, а также деасфальтизаты и другие продукты.

       

 При каталитическом крекинге тяжёлые нефтяные фракции при 5ОО °С в значительной части превращаются в компоненты, выкипающие в пределах температур кипения бензина, и газообразные продукты, которые могут использоваться для производства высокооктановых компонентов бензина или как сырье для химических синтезов. В отличие от термического крекинга, каталитический крекинг проводится в специальной аппаратуре с применением специфического оборудования и в присутствии катализаторов.

       

Главным преимуществом каталитического крекинга перед термическим являет большая ценность получаемых продуктов: меньший выход метана, этана и диенов при более высоком выходе углеводородов С3 и С4 (особенно изобутана), а также ароматических углеводородов, олефинов с разветвленной цепью и изопарафинов. Антидетонационные свойства бензинов каталитического крекинга значительно выше, чем бензинов термического крекинга. Продукты крекинга имеют сложный состав. Так, при каталитическом крекинге цетана С16Н34 образуются (в вес %):  водовод, метан, этан и этилен – 5, пропан и пропилен – 23, бутан, изобутан и бутилены – 33, высшие углеводороды, входящие в состав бензина - 36

     

Состав продуктов крекинга керосиновых, соляровых и вакуумных дистиллятов, т.е. смесей весьма большого числа разных углеводородов, еще более сложен. Результаты каталитического крекинга углеводородных смесей существенно зависят от условий проведения процесса применяемого катализатора.

     

Каталитический крекинг в основном используют для производства высокооктановых компонентов автомобильного и авиационного бензина. При получении автомобильного бензина в качестве сырья обычно используются вакуумные дистилляты первичной переработки нефти, а при производстве авиабензина - керосино-соляровые фракции первичной перегонки нефти.


3. Характеристика технологии переработки нефти методом каталитического крекинга

      Аппаратурное оформление каталитического крекинга состоит из трех частей: реактора, регенератора и ректификационной колонны.

Центральной частью установки каталитического крекинга является реактор

(рис. 1.1)

Рис.1.1 Реакторный блок каталитического крекинга.

     Сырье проходит через нагреватель, смешивается с катализатором и поступает в вертикальную трубу (райзер), ведущую в нижнюю часть большого сосуда, который называется реактором.

      

      В момент, когда сырье поступает в реактор, процесс уже идет, поэтому время пребывания сырья в реакторе — всего несколько секунд. В более современных конструкциях крекинг, в основном, происходит уже в райзере. Таким образом, реактор нужен только для отделения углеводородов от катализатора. Это производится с помощью циклона, механического приспособления, использующего центрифугирование.

Та часть углеводородов, которая во время крекинга превращается в кокс, оседает в виде отложений на катализаторе. Когда поверхность катализатора покрывается отложениями, катализатор становится неактивным (отработанным). Чтобы удалить эти углеродные отложения, отработанный катализатор подают в сосуд, называемый регенератором (рис. 1.2),

Рис1.2. Регенерация катализатора.

где его смешивают с горячим воздухом, нагретым приблизительно до 600°С (1100°F). В Результате происходит следующая химическая реакция:

С + 02 СО и СО2 (в более старых моделях),

С + 02 СО2 (в более новых моделях).

Углерод соединяется с кислородом, и при этом образуется диоксид углерода (СО2) и иногда монооксид углерода (СО), а также выделяется большое количество тепла. Тепло в виде горячего потока СО и СО2 обычно используют в какой-либо части процесса, например, чтобы нагреть сырье в теплообменнике. В более старых моделях поток СО/СО2 отправляют в печь, где СО доокисляется до СО2, прежде чем СО2, наконец, отправляется в атмосферу. Восстановленный катализатор выходит из нижней части регенератора. Его можно снова смешать с сырьем и направить в реактор. Таким образом, катализатор находится в непрерывном движении, проходя по циклу крекинг-регенерация.

Тем временем углеводородная смесь, полученная в результате крекинга, подается (перекачивается) в ректификационную колонну (ректификация - это тепломассообменный процесс, применяемый для разделения жидких смесей, компоненты которых различаются по температурам кипения), предназначенную для разделения продуктов каталитического крекинга.
В колонне смесь обычно разделяется на следующие фракции: углеводородные газы (С4 и более легкие, то есть С4-), крекинг-бензин, легкий крекинг-газойль, тяжелый крекинг-газойль и кубовый остаток, который называется рециркулирующий газойль.

.

Рис. 1.3. Фракционирование

     Последний продукт может использоваться разными способами, но чаще всего его смешивают со свежей порцией сырья, с которой он снова поступает в процесс. Если число циклов достаточно велико, рециркулирующий газойль может полностью исчезнуть. Такой вариант носит название рециркуляция до уничтожения.

    Все узлы установки каталитического крекинга, соединенные в общую систему, показаны на рисунке 1.4

Рисунок 1.4 Установка каталитического крекинга


4.  Параметры, влияющие на совершенствование процесса каталитического крекинга
.

      Каталитический крекинг происходит, как правило, в паровой фазе в системе без притока и отдачи тепла, поэтому его относят к адиабатическим процессам. При адиабатическом процессе внешняя работа полностью затрачивается на изменение внутренней энергии системы.

    В зависимости от характеристик перерабатываемого сырья и системы или типа установки, а также от состава и свойств катализатора устанавливается определенный технологический режим. К основным показателям технологического режима установок каталитического крекинга следует отнести температуру, давление, соотношение количества сырья и катализатора, находящегося в зоне крекинга, а также кратность циркуляции катализатора.

Каталитический крекинг проводят в следующих условиях:

Температура, °С крекинга - 450-525

регенерации катализатора - 540-680

Давление, ат. в реакторе - 0,6-1,4

в регенераторе - 0,3 - 2,1

Рассмотрим основные закономерности процесса.

    Температура. С повышением температуры увеличивается октановое число бензина, возрастает выход газов С13 и олефинов С4 и выше, снижается выход бензина и кокса, но повышается соотношение бензин: кокс и снижается соотношение выходов легкого и тяжелого газойля.

    Давление. При повышении давления увеличивается выход парафиновых углеводородов и бензина, снижается выход газов С13, олефинов и ароматических углеводородов. Выход кокса в условиях промышленного процесса от давления практически не зависит.


Глубина крекинга.
 

Рециркуляция. Глубину превращения (или глубину крекинга) принято оценивать количеством сырья, превращенного в бензин, газ или кокс. При крекинге в одну ступень (однократный крекинг) глубина превращения равна 45-60%. Примерный выход продуктов при однократном каталитическом крекенге керосина - соляровой фракции прямой перегонки нефти приведен ниже (индекс активности катализатора 28-32):

Глубина крекинга,% - 50 - 60

Выход, вес.% сухой газ (С3 и легче) -  5-6,5 7-8,5

бутан - бутиленовая фракция - 5,5-9 9-10,5

дебутанизированный бензин (к. к. 205 - 210°С) - 31-32, 36-38

газойль - 50 40

кокс - 3 - 4, 5 - 4, 5-6

    

Когда хотят достигнуть более глубокого превращения, т.е. получить из сырья больше бензина, подвергают крекингу не только исходное сырье, но и образующиеся в процессе газойлевые фракции. На большинстве промышленных установок каталитическому крекингу подвергают именно смесь исходного сырья с газойлем каталитического крекинга или иногда раздельно свежее сырье и газойлевые фракции. Таким образом газойль возвращается в систему для использования его в качестве вторичного сырья - рециркулятор. В зависимости от того, сколько газойля подвергается каталитическому крекингу, глубина крекинга может достигать 80-90%. Отношение массы рециркулирующего газойля к массе свежего сырья называется коэффициентом рециркуляции; оно изменяется от нуля до 2,3 при крекинге с рециркуляцией. Глубина крекинга возрастает с увеличением коэффициента рециркуляции.

       Характерно, что выход жидких углеводородов, включая фракцию С3-С4, увеличивается до глубины крекинга 80%, а затем снижается. Если же выделить фракцию С3 - С4, то сумма получаемых жидких продуктов по мере увеличения глубины крекинга непрерывно снижается, в данном случае до 62,9 объемн.%. По мере увеличения глубины крекинга выход газойля падает, а при 100% -ной глубине крекинга становится равным нулю.

Объемная скорость. Отношение объема сырья, подаваемого в реактор за 1 ч, к объему катализатора, находящегося в зоне крекинга, называется объемной скоростью. Обычно на одну весовую единицу катализатора, находящегося в зоне крекинга, подается от 0,6 до 2,5 вес. ед. сырья в час. Часто объемную скорость выражают в объемных единицах - объем/ (объем*ч) или м3/ (м3*ч) и записывают в виде ч-1
       Кратность циркуляции катализатора. В системах каталитического крекинга с циркулирующим пылевидным или микросферичёским катализатором на 1 т поступающего в реактор сырья вводится 7-20 т регенерированного катализатора, а на установках каталитического крекинга, где применяются крупнозернистые катализаторы (частицы диаметром 3 - 6мм), - от 2 до 5 - 7 т в зависимости от конструкции установки. Указанное отношение (7 - 20 т/т) называют весовой кратностью циркуляции катализатора. Иногда это соотношение выражают в объемных единицах, тогда оно называется объемной кратностью циркуляции катализатора. Следует различать кратность циркуляции катализатора по свежему сырью и по всей загрузке реактора (свежее сырье плюс рециркулят). В последнем случае при одном и том же количестве катализатора кратность циркуляции будет меньше.

       

          Жесткость крекинга. Известно, что снижение объемной скорости так. же как и увеличение, кратности циркуляции катализатора, способствует повышению выхода бензина и глубины крекинга. Влияние этих параметров на глубину крекинга можно выразить отношением кратности циркуляции к объемной скорости. Это отношение называется фактором жесткости крекинга. Фактор жесткости может быть вычислен по свежему сырью реактора и по суммарной загрузке реактора (свежее сырье плюс рециркулирующий газойль).

      

     Эффективность крекинга. Отношение суммарного выхода (в объемных или весовых процентах) дебутанизированного бензина и фракции С4 к глубине крекинга исходного сырья (в объемных или весовых процентах) именуют эффективностью крекинга. Эффективность (коэффициент) обычно равна 0,75 - 0,8, если она была подсчитана на основе весовых процентов.

В результате каталитического крекинга на установках получают до 15 вес % газа, содержащего водород, аммиак и легкие углеводороды, 30 - 55 вес % высокооктанового компонента автомобильного бензина (или 27 - 50 вес % авиационного бензина), 2 - 9 вес % кокса и легкий и тяжелый газойли. Газ после очистки и газофракционирования используется для технологических или бытовых нужд. Компоненты автомобильного (или авиационного) бензина после стабилизации компаундируются с другими компонентами и используются в качестве товарных топлив. Легкий газойль используется как компонент дизельного топлива (при необходимости - после гидроочистки) или, вместе с тяжелым газойлем, как сырье для получения сажи или приготовления сортовых мазутов.
5. Химические основы процесса

    

     При каталитическом крекинге протекают реакции расщепления, алкилирования, изомеризации, ароматизации, полимеризации, гидрогенизации и деалкилирования. Некоторые из них являются первичными, но большинство - вторичными.

     

         Крекинг парафинов. При крекинге парафиновых углеводородов нормального строения доминируют реакции разложения. Продукты крекинга состоят главным образом из парафиновых углеводородов более низкого молекулярного веса и олефинов. Выход олефинов увеличивается с повышением молекулярного веса сырья. Термическая стабильность парафиновых углеводородов понижается с увеличением молекулярного веса. Тяжелые фракции нефтепродуктов являются менее стабильными и крекируются значительно легче, чем легкие фракции. Наиболее часто разрыв молекул происходит в ее средней части.

      Механизм каталитического крекинга - карбоний-ионный. Согласно этому механизму, часть молекул парафинов подвергается термическому расщеплению, а образующиеся олефины присоединяют протоны, находящиеся на катализаторе, и превращаются в карбоний-ионы. Карбоний-ионы являются агентами распространения цепной реакции. В результате целого ряда превращений образуются парафиновые углеводороды меньшего молекулярного веса, чем исходные, и новые большие карбоний-ионы, которые затем расщепляются. Реакции дегидрогенизации при крекинге высокомолекулярных парафинов играют незначительную роль. Однако процесс дегидрогенизации низкомолекулярных парафинов, особенно газообразных, имеет практическое значение для превращения малоценных газообразных продуктов в ценные - олефины. При крекинге парафиновых углеводородов нормального строения протекают и вторичные реакции с образованием ароматических углеводородов и кокса.

 

    Много ароматических углеводородов при каталитической ароматизации получается из парафинов, структура которых допускает образование бензольного кольца.

   Изопарафиновые углеводороды крекируются легче. Водорода и метана при этом получается больше, чем при крекинге нормальных парафинов, а углеводородов С3 и С4 (газа) - меньше. Фракции С4, С5 и С6 содержат меньше олефинов вследствие того, что насыщение сильно разветвленных молекул непредельных углеводородов достигается легче, чем для неразветвленных.


Крекинг нафтенов.
При крекинге нафтенов одновременно может происходить отщепление боковых цепей. На первой стадии нафтеновые углеводороды с длинными алкильными цепями превращаются в алкилнафтеновые или алкилароматические углеводороды со сравнительно короткими боковыми цепями. Короткие алкильные цепи, особенно метильный и этильный радикалы, термически стабильны и в условиях промышленного каталитического крекинга уже не отщепляются.

    

Алкильные боковые цепи алкилнафтеновых углеводородов расщепляются с образованием парафинов и олефинов, которые вместе с низкомолекулярными моноциклическими нафтеновыми углеводородами и деалкилированными ароматическими углеводородами составляют конечные продукты крекинга. Крекинг ароматических углеводородов сопровождается деалкилированием и конденсацией. При деалкилировании алкилароматических углеводородов получаются парафины, олефины и алкилароматические углеводороды с более короткими боковыми цепями. Разрыв связи углерод - углерод происходит непосредственно у кольца, но такое деалкилирование не протекает интенсивно, если алкильная цепь содержит менее трех углеродных атомов.

    Реакционная способность углеводородов возрастает с увеличением молекулярного веса, но все же остается значительно меньшей, чем у изомерных моноалкилбензолов.

Инициирование каталитического крекинга алкилароматических углеводородов, так же как и для парафиновых углеводородов, начинается с образования карбоний-иона в результате присоединения протона катализатора. Между молекулами ароматических углеводородов или между ними и олефинами (или другими непредельными углеводородами) происходит конденсация. В результате образуются полициклические ароматические углеводороды вплоть до асфальта и кокса, поэтому при переработке сырья со значительным содержанием полициклических углеводородов при одинаковой степени превращения образуется значительно больше кокса, чем при переработке сырья, содержащего преимущественно моноциклические ароматические углеводороды.

Крекинг олефинов, образующихся в результате расщепления парафиновых, нафтеновых и ароматических углеводородов, а также самих олефинов, является вторичной реакцией. Инициирование реакции крекинга, как и других реакций олефинов, происходит в результате образования карбоний-иона. Если этот ион достаточно велик (С6 или больше), то он может расщепляться в карбоний-иона, а вновь образовавшийся ион, если это возможно, изомеризуется во вторичный или третичный ион. Если же карбоний-ион невелик (С3 - С5), он превращается либо в олефин (в результате передачи протона катализатору или нейтральной молекуле олефина), либо в парафин (присоединяя гидрид-ион от нейтральной молекулы).


 
Изомеризация олефинов. При изомеризации олефинов могут происходить миграция двойной связи, скелетная и геометрическая V изомеризация. Возможность изомеризации является важным преимуществом каталитического крекинга перед термическим: в результате изомеризации повышается октановое число бензиновых фракций и увеличивается выход изобутана, имеющего большую ценность как сырье для алкилирования.

   

Полимеризация и деполимеризация. Полимеризация олефинов также является важной реакцией. В сочетании с последующим крекингом полимеризация приводит к образованию олефинов и парафинов. Однако глубокая полимеризация ведет к образованию тяжелых продуктов, которые адсорбируются на катализаторе и разлагаются на кокс и газ. При высоких температурах (600°С) и низких давлениях может протекать деполимеризация.                                                                                                         

     

Циклизация и ароматизация. Вторичной реакцией олефинов, протекающей в более поздних стадиях процесса, является частичное их дегидрирование. В результате образуются диены или олефины расщепляются на диены и парафины. Вторичные реакции между олефинами и диенами могут привести к образованию циклопарафинов. Ароматические углеводороды получаются в результате дегидроциклизации циклоолефинов или нафтеновых углеводородов, образовавшихся в начальных стадиях процесса.

    

Прочие реакции. Реакцией, возможной в условиях каталитического крекинга, является алкилирование ароматических углеводородов. Оно нежелательно, так как образующиеся более тяжелые продукты способны алкилироваться дальше или конденсироваться с образованием кокса; при этом уменьшается выход бензина.

   Крекинг сложных углеводородов может затрагивать какую-либо часть молекулы независимо от других ее частей. Например, длинные парафиновые цепи нафтеновых и ароматических углеводородов расщепляются так же, как если бы они были парафиновыми углеводородами с тем же числом атомов углерода в молекуле. Кольца нафтеновых или ароматических углеводородов не изменяются в том процессе деалкилирования или расщепления парафиновых боковых цепей. Дегидрогенизация нафтеновых колец обычно происходит после частичного деалкилирования.

Обычно одним из лучших критериев интенсивности побочных реакций является отношение выхода бензина и кокса. Высокое отношение указывает на преобладание желательных реакций, разумеется, при условии, что октановое число бензина высокое. Низкое отношение выходов бензина и кокса указывает на интенсивное протекание нежелательных побочных реакций.

                                                                                                         

           

 

                                                                                                               

      К желательным реакциям относятся изомеризация, гидрирование, циклизация и ароматизация (неглубокая) олефинов; эти реакции ведут к высокому выходу парафиновых, углеводородов изостроения и ароматических углеводородов, выкипающих в пределах температуры кипения бензина, и высокому отношению изо - и нормальных парафиновых углеводородов. Нежелательные реакции (крекинг, дегидрогенизация и полимеризация олефинов, алкилирование и конденсация ароматических углеводородов) приводят к высоким выходам водорода и кокса, низкому выходу олефинов и к получению сравнительно тяжелых газойлей, при этом выход бензина и его октанового числа снижаются.. 


6. Сырьё и продукты каталитического крекинга

6.1 Сырьё.

Основным сырьем промышленных установок каталитического крекинга являются атмосферные и вакуумные дистилляты первичной перегонки нефти. В зависимости от фракционного состава дистиллятное сырье можно отнести к одной из следующих групп.

   

Первая группа - легкое сырьё. К этой группе относятся дистилляты первичной перегонки нефти (керосино-соляровые и вакуумные). Средняя температура их кипения составляет 260-280 °С. относительная плотность 0,830-0,870, средний молекулярный вес 190-220. Легкие керосино-соляровые дистилляты прямой гонки являются хорошим сырьем для производства базовых авиационных бензинов, так как дают большие выходы бензинов при малом коксообразовании.

  

Вторая группа - тяжелое дистиллятное сырье. К этой группе относятся тяжелые соляровые дистилляты, выкипающие при температурах от 300 до 550°С или в несколько более узких пределах, а также сырье вторичного происхождения, получаемое на установках термического крекинга и коксования (флегма термического крекинга и газойль коксования). Их средние молекулярные веса приблизительно в 1,5 раза выше, чем у легких видов сырья, а именно 280 - 330 вместо 190 - 220. В противоположность легкому сырью, тяжелое дистиллятное сырье перед направлением в реактор или в узел смешения с горячим катализатором в парообразное состояние переводят не целиком. Тяжелые соляровые дистилляты с относительной плотностью 0,880 - 0,920, как правило, используются для производства автомобильных бензинов.

        Третья группа - сырье широкого фракционного состава. Это сырье можно рассматривать как смесь дистиллятов первой и второй групп; оно содержит керосиновые и высококипящие соляровые фракции, а также некоторые продукты, получаемые при производстве масел и парафинов (экстракты, гачи, петролатумы, легкоплавкие парафины и др.). Предел выкипания дистиллятов третьей группы 210 - 550 °С.

  

          Четвертая группа - промежуточное дистиллятное сырье. Оно представляет собой смесь тяжелых керосиновых фракций с легкими и средними соляровыми фракциями и имеет пределы выкипания - 250-470 °С. К ним можно отнести также и смеси, перегоняющиеся в более узких пределах, например 300-430°С. Промежуточное сырье используется для получения автомобильных и авиационных базовых бензинов.
        Керосиновые и соляровые дистилляты, вакуумные дистилляты прямой перегонки нефти являются хорошим сырьем для каталитического крекинга. Это же относится и к легкоплавким парафинам (отходам от депарафинизации масел). Менее ценное сырье-экстракты, получаемые при очистке масляных дистиллятов избирательными растворителями так как они содержат много труднокрекируемых ароматических углеводородов. Во избежание сильного коксообразования экстракты крекируют в смеси с прямогонными соляровыми дистиллятами. Реже в качестве сырья для каталитического крекинга используются нефти и остаточные нефтепродукты (без предварительной очистки).

       

         При каталитическом крекинге дистиллятов прямой гонки образуется больше бензина и меньше кокса, чем при крекинге подобных (по фракционному составу) дистиллятов с установок термического крекинга и коксования. При каталитическом крекинге тяжелых вакуумных дистиллятов, мазутов и других смолистых остатков образуется много кокса. Кроме того, содержащиеся в таком сырье сернистые, азотистые и металлорганические соединения отравляют катализатор. Поэтому высокосмолистые мазуты и тем более гудроны каталитическому крекингу не подвергают.

6.2 Продукты каталитического крекинга.

   

Количество и качество продуктов каталитического крекинга зависят от характеристики перерабатываемого сырья и катализаторов, а также от режима процесса. На установках каталитического крекинга получают жирный газ, нестабильный бензин, легкий и тяжелый каталитические газойли. Иногда предусмотрен отбор легроина.

   

Жирный газ, получаемый на установках каталитического крекинга характеризуется значительным содержанием углеводородов изостроения, особенно изобутана. Это повышает ценность газа как сырья для дальней шей переработки. Жирный газ установки каталитического крекинга и бензин для удаления из него растворенных легких газов поступают на абсорбционно-газофракционирующую установку. Работа этой установки тесно связана с работой установки каталитического крекинга. Связь заключается не только в том, что на абсорбционно-газофракционирующую установку поступают легкие продукты с установки каталитического крекинга, но и в технологической взаимозависимости обеих установок.

Так, с увеличением количества газа, образующегося при крекинге, необходимо вводить в работу дополнительный компрессор на абсорбционно-газофракционирующей установке во избежание повышения давления на установке каталитического крекинга. С увеличением температуры конца кипения нестабильного бензина приходится изменять режим бутановой колонны, чтобы не снизить глубину отбора бутан-бутиленовой фракции.

:

        

.

Сухой газ, получаемый после выделения бутан-бутиленовой и пропан - пропиленовой фикций, большей частью используется как энергетическое топливо.

   Нестабильный бензин. При каталитическом крекинге можно вырабатывать высокооктановый автомобильный бензин или сырье для получения базового авиационного бензина путем каталитической очистки.

 

  При производстве базового авиационного бензина исходным сырьем являются керосиновые и легкие соляровые дистилляты первичной перегонки нефти или их смеси, выкипающие в пределах 240-360 °С. Сначала получают бензин с концом кипения 220-245 °С (так называемый мотобензин). После стабилизации этот бензин поступает на дальнейшую переработку - каталитическую очистку (вторая ступень каталитического крекинга), на которой получают базовый авиационный бензин. Последний, в результате каталитической очистки, содержит, по сравнению с автомобильным бензином, значительно меньше олефинов и больше ароматических углеводородов, что соответственно повышает стабильность и октановое число авиационного бензина. Базовые авиационные бензины в зависимости от свойств перерабатываемого сырья и условий процесса имеют октановые числа по моторному методу от 82 до 85, а с добавкой этиловой жидкости (3 - 4мл на 1 кг бензина) - от 92 до 96.

    

При производстве автомобильного бензина в качестве исходного сырья, как правило, используются дистилляты, полученные при вакуумной перегонке нефти и выкипающие при 300-550°С или в несколько более узких пределах. Получаемые на установках каталитического крекинга автомобильные бензины имеют октановые числа по моторному методу 78 - 82 (без добавки этиловой жидкости), а по исследовательскому методу 88 - 94 без этиловой жидкости и 95-99 с добавлением 0,8мл ТЭС на 1л.

    

Нестабильный бензин каталитического крекинга подвергают физической стабилизации с целью удаления растворенных в нем легких углеводородов, имеющих высокое давление насыщенных паров.

     

Из стабильных бензинов каталитического крекинга приготовляют авиационные бензины или используют их как высокооктановые компонента для приготовления автомобильных бензинов разных марок. Компоненты автомобильного бензина каталитического крекинга в нормальных условиях хранения достаточно химически стабильны.


      
Автомобильные бензины представляют собой, как правило, смеси многих компонентов. Среди них есть фракции, полученные в разных процессах, в том числе и высокооктановые продукты каталитического крекинга. В зависимости от марки бензина состав компонентов может колебаться в широких пределах. Так же, как и при приготовлении авиационных бензинов, в пределах, разрешенных стандартом, к автомобильным бензинам (кроме бензина А-72) допускается добавление этиловой жидкости.

    

        Для обеспечения нормальной работы более экономичных двигателей с высокими степенями сжатия все больше вырабатывается высококачественных автомобильных бензинов АИ-93 и АИ-98. Эти бензины имеют октановые числа по исследовательскому методу соответственно 93 и 98 пунктов; максимально допустимая концентрация тетраэтилсвинца в бензинах не должна превышать 0,82 г на 1 кг бензина, температура конца кипения их не должна быть выше 195°С. Бензины АИ-93 и АИ-98 обладают хорошей стабильностью, что позволяет хранить их длительное время.

   

      Легкий газойль. Легкий каталитический газойль (дистиллят с н. к.175-200°С и к. к.320-350 °С) по сравнению с товарными дизельными фракциями имеет более низкое цетановое число и повышенное содержание серы. Цетановое число легкого каталитического газойля, полученного из легких соляровых дистиллятов парафинового оснований, составляет 45-56, из нафтеноароматических дистиллятов - 25-35. При крекинге более тяжелого сырья цетановое число легкого газойля несколько выше, что объясняется меньшей глубиной превращения.

      Цетановые числа с повышением температуры крекинга снижаются. Легкие каталитические газойли содержат непредельные углеводороды и значительные количества. (28-55%) ароматических углеводородов. Температура застывания этих газойлей ниже, чем температура застывания сырья, из которого они вырабатываются.

     На качество легкого газойля влияет не только состав сырья, но и катализатор и технологический режим. С повышением температуры выход легкого каталитического газойля и его цетановое число уменьшаются, а содержание ароматических углеводородов в нем повышается.

     

      Понижение объемной скорости, сопровождающееся углублением крекинга сырья, приводит к тем же результатам. При крекинге с рециркуляцией выход легкого газойля снижается (в большинстве случаев он подается на рециркуляцию), уменьшает его цетановое число и возрастает содержание в нем ароматических углеводородов. Легкие каталитические газойли используются в качестве компонентов дизельного топлива в том случае, если смешиваемые компоненты дизельного топлива, получаемые при первичной перегонке нефти, имеют запас (превышение) по цетановому числу и содержат серы в количестве ниже нормы.
        
В других случаях легкий газойль используют лишь в качестве сырья (или его компонента) для получения сажи (взамен зеленого масла) или в качестве разбавителя при получении мазутов. Возможно и комбинированное использование легкого газойля, В этом случае его подвергают экстракции одним из растворителей, применяемых в производстве масел селективным методом. Легкий газойль, частично освобожденный от ароматических углеводородов, после отгонки растворителя (рафинат) имеет более высокое цетановое число, чем до экстракции, и может быть использован в качестве дизельного топлива; нижний слой, содержащий большую часть ароматических углеводородов, также после отгонки растворителя (экстракт) может быть использован в качестве сырья для получения высококачественной сажи.

    

       Тяжелый газойль. Тяжелый газойль является остаточным продуктом каталитического крекинга. Качество его зависит от технологических факторов и характеристик сырья, а также от качества легкого газойля. Тяжелый газойль может быть загрязнен катализаторной пылью; содержание серы в нем обычно выше чем в сырье каталитического крекинга. Тяжелый газойль используют либо при приготовлении мазутов, либо в качестве сырья для термического крекинга и коксования. В последнее время его использует как сырье для производства сажи.

                                                                                                           

  •  
    Выбор подходящего типа реактора

       На глубину конверсии сырья в значительной степени оказывает влияние газодинамический режим контактирования сырья с катализатором, осуществляемый в реактора различных  типов:                                                                -  реактор с движущимся слоем шарикового катализатора

-реактор с псевдоожиженным (кипящим) слоем микросферического катализатора

        В последние годы постепенно вводят более совершенные типы раектора- прямоточный реактор с восходящим потоком газокатализаторной смеси (лифт-реактор).        


 

Заключение.

       Целевым назначением процесса каталитического крекинга является получение высококачественного бензина с октановым числом (в чистом виде) 90-92 по исследовательскому методу.

       На совершенствование процесса каталитического  крекинга большое влияние оказывают параметры технологического режима, которые определяют выход и качество получаемых продуктов, экономические показатели производства и его экологическую характеристику. Пределы их значений зафиксированы в технологическом регламенте установки. В процессе её эксплуатации эти параметры поддерживаются на постоянном уровне при условии неизменного состава сырья и катализатора.

Основными факторами процесса являются:

-Физико-химические свойства сырья, групповой химический состав сырья более значительно влияет на выход и качество продуктов крекинга.

- Предварительная подготовка (облагораживание) сырья, облагораживание сырья осуществляется с целью снижения содержания металлов и коксогенных компонентов в сырье до такой степени, чтобы его последующая каталитическая переработка была бы более экономична.

-Температура в реакторе, В интервале температур 440 - 480 °С образование бензиновых и дизельных фракций протекает достаточно быстро. С ростом температуры увеличивается и степень превращения сырья. Повышение температуры до 480 - 500 °С ведет к усилению газо- и коксообразования и к снижению выхода бензина. Октановое число бензина возрастает

-Давление в рабочей зоне реактора, процесс каталитического крекинга проводят под небольшим избыточным давлением 0,14 - 0,18 МПа. При повышении давления увеличивается выход парафиновых углеводородов и бензина, снижается выход газов С1-С3, олефинов и ароматических углеводородов.

- Кратность циркуляции катализатора и  объёмная скорость подачи сырья: снижение объёмной скорости, так же, как и увеличение кратности циркуляции катализатора, способствует повышению выхода бензина и глубины крекинга.

- Выбор эффективного и современного катализатора, в настоящее время почти все установки каталитического крекинга переведены на работу с синтетическими кристаллическими алюмосиликатными катализаторами, содержащими в своем составе цеолиты.

   Также на совершенствование каталитического крекинга большое влияние оказывает выбор реактора, в последние годы постепенно вводят более совершенные типы раектора- прямоточный реактор с восходящим потоком газокатализаторной смеси (лифт-реактор).        

        Всё это помогает  улучшить выход и качество  целевого продукта, делает процесс более эффективным, экономичным и безопасным.


Список литературы:

1. Магарил Р.З. Теоретические основы химических процессов перработки нефти: Учебное пособие. – М.: КДУ, 2008.-280с.

2. Ахметова С.А. Технология глубокой переработки нефти в моторные топлива: Учебное пособие.-:Недра, 2007.-302с.

3. Глаголева О.Ф.,  Капустин В.М. Учебник «Первичная переработка нефти», М.: Химия.2005,400с., 25п.л.

4. Трушкова Л.В. Курс лекций по дисциплине «Химическая технология природных энергоносителей и углеродных материалов».: Учебное пособие.-Тюмень: ТюмГНГУ, 2006.-92с.

5. Трушкова, Л.В. Расчёты по химии и технологии переработки нефти и газа : учебное пособие / Л. В. Трушкова ; ТюмГНГУ. - 2-е изд., испр. и доп. - Тюмень : ТюмГНГУ, 2006. - 105 с.

6. Справочник нефтепереработчика : справочное издание / под ред. Г. А. Ластовкина, Е. Д. Радченко, М. Г. Рудина. - Л. : Химия. Ленинградское отделение, 1986. - 648 с.

 7. Капустин В.М. «Технология переработки нефти» Часть 2-я. Диструктивные процессы. Учебное пособие .-М.: Химия, 2008.-334 с.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

                                                                                                                                Кафедра ПНГ

Курсовая работа по дисциплине «Спецпрактикум»

«Совершенствование процесса каталитического крекинга»

                                            

 

Выполнила студентка гр.ХТТ-09

Мальцева Кристина

Проверила: Трушкова Л.В.

                                                            Тюмень2013.

Тюмень, 2013

Изм.

Лист

№ докум.

Подпись

Дата

Лист

29

Совершенствование процесса каталитического крекинга

Разраб.

Мальцева К.А

Провер.

Трушкова Л.В.

Л.В

Реценз.

Н. Контр.

Утверд.

Содержание

Лит.

Листов

27

ХТТ-09-1

Изм.

ист

№ докум.

Подпись

Дата

Лист

4

Совершенствование процесса каталитического крекинга

Разраб.

Мальцева К.А

Провер.

Трушкова Л.В.

Реценз.

Н. Контр.

Утверд.

Введение

Лит.

Листов

27

ХТТ-09-1

Изм.

Лист

№ докум.

Подпись

Дата

Лист

5

Совершенствование процесса каталитического крекинга

Разраб.

Мальцева К.А

Провер.

Трушкова Л.В.

Реценз.

Н. Контр.

Утверд.

Назначение процесса

Лит.

Листов

27

ХТТ-09-1

Изм.

Лист

№ докум.

Подпись

Дата

Лист

6

Совершенствование процесса каталитического крекинга

Разраб.

Мальцева К.А

Провер.

Трушкова Л.В.

Трушкова Л.В.

Л.В

Реценз.

Н. Контр.

Утверд.

Характеристика технологии переработки нефти методом каталитического крекинга

Лит.

Листов

27

ХТТ-09-1

Сепараторы для катализатора

Сырье:

Тяжелый газойль + легкая фракция вакуумной перегонки

Продукты крекинга

Реактор

Свежий катализатор

Отработанный катализатор

Изм.

Лист

№ докум.

Подпись

Дата

Лист

7

Характеристика технологии переработки нефти методом каталитического крекинга

Отработанный катализатор

Нагретый воздух

Свежий катализатор

CO/ CO2

C+O2CO2(СО)

Изм.

Лист

№ докум.

Подпись

Дата

Лист

8

Характеристика технологии переработки нефти методом каталитического крекинга

Крекинг-газ

Крекинг-бензин

Легкий крекинг-газойль

Тяжелый крекинг-газойль

Рециркулирующий газойль

Продукт из реактора

Насос для подачи сырья

Ректификационная колонна

Изм.

Лист

№ докум.

Подпись

Дата

Лист

10

Совершенствование процесса каталитического крекинга

Разраб.

Мальцева К.А

Провер.

Трушкова Л.В.

Л.В

Реценз.

Н. Контр.

Утверд.

Параметры, влияющие на совершенствование процесса каталитического крекинга.

Лит.

Листов

27

ХТТ-09-1

Изм.

Лист

№ докум.

Подпись

Дата

Лист

11

7

Совершенствование процесса каталитического крекинга

Изм.

Лист

№ докум.

Подпись

Дата

Лист

12

Совершенствование процесса каталитического крекинга

Изм.

Лист

№ докум.

Подпись

Дата

Лист

13

Химические основы процесса

Изм.

Лист

№ докум.

Подпись

Дата

Лист

14

Химические основы процесса

Изм.

Лист

№ докум.

Подпись

Дата

Лист

15

Химические основы процесса

Изм.

Лист

№ докум.

Подпись

Дата

Лист

16

Химические основы процесса

Изм.

Лист

№ докум.

Подпись

Дата

Лист

18

Сырьё и продукты каталитического крекинга

Изм.

Лист

№ докум.

Подпись

Дата

Лист

19

Продукты каталитического крекинга

Изм.

Лист

№ докум.

Подпись

Дата

Лист

21

Продукты каталитического крекинга.

Изм.

Лист

№ докум.

Подпись

Дата

Лист

22

Продукты каталитического крекинга

Изм.

Лист

№ докум.

Подпись

Дата

Лист

24

Продукты каталитического крекинга.

Изм.

Лист

№ докум.

Подпись

Дата

Лист

14

Совершенствование процесса каталитического крекинга

Изм.

Лист

№ докум.

Подпись

Дата

Лист

29

Заключение

Изм.

Лист

№ докум.

Подпись

Дата

Лист

34

Список литературы




1. 4530 Пояснити вплив кондуктивних ВЧ перешкод на характеристики та умови функціонування електрообладнанн
2. .1. Назовите вид искусственного сооружения труба мост тоннель лоток 9
3. введением эндотрахеальной трубки
4. Восточное средневековье
5. Хуи Выделим контрольный объем ограниченный сечениями 1 1 и 2 2 и боковыми цилиндрическими поверхностями
6. либо этап урока но присутствует на всех видах и этапах занятий.
7. ВВЕДЕНИЕ Оборотные средства предприятий составляют ощутимую часть национального богатства Российской Ф
8. Имя. Вот список имён
9. Государственные доходы и принципы их формирования
10. 3 МЕХАНІКА ГНУЧКИХ ГЛИБОКОВОДНИХ СИСТЕМ
11. Тема игры- Следствие ведут колобки
12. по теме Изучение текстового процессора MS Word Прочитайте текст приведённый ниже и разбейте его на 23 части.
13. Дипломная работа- Испытание сортов мягкой яровой пшеницы в условиях Щучанского района Курганской области
14. Балтийский федеральный университет имени Иммануила Канта БФУ им.
15. Функции государства в экономике
16. ФІНАНСОВИЙ ОБЛІК І Поняття фінансового обліку його об~єкти
17. Патофизиология (Патофизиология лейкозов)
18. Реферат- Вклад Галилео Галилея как основоположника классической физики
19. Оценка загрязнения окружающей среды
20. Место и роль ислама в конституции Турецкой республики.html