У вас вопросы?
У нас ответы:) SamZan.net

градостроительная деятельность планирование проектирование разработка генеральных планов контроль осу.html

Работа добавлена на сайт samzan.net: 2016-01-17

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 6.4.2025

1 Роль реконструкции зданий в решении социальных, градостроительных и архитектурных задач.

Функции, права и обязанности строителей:

- градостроительная деятельность - планирование, проектирование, разработка генеральных планов, контроль осуществления мер по обустройству территории как среды жизнедеятельности человеческих сообществ;

- архитектурная деятельность – создание функционально, технологически и эстетически обусловленного пространственного образа объекта недвижимости как части среды жизнедеятельности человека, разработка проектной документации;

- строительная деятельность – осуществление практических решений, принятых в архитектурной или инженерной проектной документации.

В зависимости от численности населения городские и сельские населенные пункты подразделяются следующим образом:

- сверхкрупные города (свыше 3 млн человек);

- крупнейшие города (от 1 до 3 млн чел.);

- крупные города (от 250 тысяч до 1 млн. чел.);

- большие города (от 100 тысяч до 250 тысяч чел.);

- средние города (от 50 тыс. до 100 тысяч чел.);

- малые города и поселки (до 50 тысяч);

- крупные сельские нас. пункты (свыше 5 тысяч чел.);

- большие сельские нас. пункты ( от1 тысячи до 5 тысяч чел.);

- средние сельские нас. пункты ( от 200 чел. до 1 тысячи чел.);

- малые сельские нас. пункты ( мнее 200 чел.);

Среди различных групп городов распределение жилищного фонда, %. таково:

Крупные и крупнейшие 35;

Большие 27; Средние 10;

Малые 28

По периодам возведения общественный жилой фонд, %, делится следующим образом:

Дореволюционной постройки 5; Строительства 1917...I960гг. 27; Строительства 1961 г. и по настоящее время                    68

При этом в жилищном фонде, возведенном в период с 1961 г., приходится примерно 22 % на дома, построенные по типовым проектам второго поколения, и 15 % — по проектам третьего поколения.

Цель реконструкции жилого фонда заключается в его переустройстве для улучшения планировочного решения, повышения степени благоустройства инженерного оборудования зданий, создания квартир для посемейного заселения, отвечающих современным социологическим и демографическим требованиям. При реконструкции жилой застройки всесторонне учитываются социальные и градостроительные ее задачи, а также экономическая и техническая эффективность ее осуществления.

Социальные задачи реконструкции заключаются в коренном обновлении застройки и планировочной структуры жилого фонда. Эти задачи предусматривают улучшение и постепенное выравнивание условий жизни населения в старых и новых городских районах, которые должны удовлетворять современным и перспективным требованиям.

Градостроительные задачи реконструкции заключаются в улучшении планировочной структуры города, оздоровлении городской среды, повышении архитектурно-пространственных качеств застройки, совершенствовании сети магистралей улиц, площадей, транспортных и пешеходных связей, а также в упорядочении систем инженерного оборудования и коммунального хозяйства.

4 Срок службы зданий и их фактический износ.

Под сроком службы конструкций понимается календарное время, в течение которого под воздействием разных факторов они приходят в состояние, когда дальнейшая эксплуатация становится невозможной, а восстановление — экономически нецелесообразным.

Срок службы здания определяется сроком службы несменяемых конструкций: фундаментов, стен, каркасов.

Нормативный срок службы устанавливается СНиПом и является усредненным показателем, который зависит от капитальности зданий.

Здания и сооружения независимо от их класса и капитальности в процессе эксплуатации подвергаются материальному и моральному износу.

Степень материального износа здания и отдельных его частей зависит от физических свойств материалов, использованных при его строительстве, от характера и геометрических размеров конструкций, особенностей расположения здания на местности, условий эксплуатации и других факторов.

В большинстве случаев моральный износ наступает раньше, чем материальный.

К признакам морального износа жилых зданий относятся: несоответствие планировки квартир современным требованиям и нормам (в одной квартире проживает несколько семей, имеются проходные и темные комнаты, санитарные узлы не благоустроены); несоответствие инженерного оборудования дома современным требованиям и нормам; переуплотненность застройки жилых кварталов; недостаточное благоустройство и озеленение жилых кварталов.

Экономический срок службы — это примерный срок, по истечении которого требуется либо полная реконструкция здания, либо замена конструкций. Экономический срок службы рассматривают в расчете норм амортизации и эффективности расходования средств на ремонт.

4 Предварительная оценка возможности и целесообразности реконструкции жилых зданий.

Особенностью настоящего этапа реконструкции центров крупных городов является требование максимального сохранения сложившейся застройки, пригодной к дальнейшей эксплуатации.

Реконструкция жилой застройки должна решаться комплексно с учетом генерального плана развития города.

 Проектирование комплексной реконструкции жилых кварталов ведется в три этапа: 1) обследование сложившейся застройки и ее анализ;

2) прогнозирование содержания реконструктивных мероприятий на основе результатов обследования существующей застройки, генерального плана застройки города и перспективных разработок на более отдаленные периоды;

3) разработка проектов реконструкции жилых кварталов на срок реализации генерального плана (I этап) и за его пределами — до полного завершения комплексной реконструкции (II этап).

Kaк правило, реконструкционные работы считаются рентабельными, если затраты на их проведение не превышают 70 % стойкости нового здания, но это не относя к случаю, когда речь идет о модернизации и восстановлении зданий, являющихся историческими или архитектурными памятниками.

Как показывают расчеты, в структуре единовременных затрат, связанных с реконструкцией общесоюзных серий, удельный вес реконструкции составляет 50...60%. Остальные затраты связаны с устранением морального износа и решением главной задачи — улучшением условий проживания. При этом реконструкция более эффективна, так как она дает возможность не только улучшить качество квартир, но и повысить плотность застройки, что весьма важно в условиях дефицита свободных городских территорий.

6 Цели и задачи реконструкции промышленных предприятий. Долговечность и износ производственных зданий.

При реконструкции производственных зданий решаются следующие основные задачи:

- приведение объемно-планировочной структуры здания в соответствие с потребностями модернизируемого или вновь размещаемого производства, а в случае изменения функционального назначения здания с требованиями вновь располагаемых цехов или служб;

- повышение эксплуатационных качеств существующих несущих и ограждающих конструкций в соответствии с новыми требованиями производства;

- изменение основных строительных параметров здания (конфигурации, плана, высот помещений, сетки колонн), связанное с развитием производства, а также с условиями проведения реконструктивных строительных работ, в том числе без остановки технологического процесса;

- модернизация инженерных систем для обеспечения потребностей модернизируемого производства и создания требуемых нормами условий труда работающих;

- совершенствование архитектурно-художественных качеств здания и его интерьеров с учетом современных требований к общей композиции предприятия и промышленной эстетики.

Реконструкция действующих предприятий — это переустройство существующих цехов и объектов основного, подсобного и обслуживающего назначения, как правило, без расширения имеющихся зданий и сооружений основного назначения, связанное с совершенствованием и повышением технико-экономического уровня на основе достижений научно-технического прогресса и осуществляемое по комплексному проекту на реконструкцию предприятия в целях увеличения

8 Особенности реконструкции производственных зданий. Необходимость проведения реконструкции промышленных зданий и сооружений.

При реконструкции производственных зданий решаются следующие основные задачи:

приведение объемно-планировочной структуры здания в соответствие с потребностями модернизируемого или вновь размещаемого производства, а в случае изменения функционального назначения здания с требованиями вновь располагаемых цехов или служб;

повышение эксплуатационных качеств существующих несущих и ограждающих конструкций в соответствии с новыми требованиями производства;

изменение основных строительных параметров здания (конфигурации, плана, высот помещений, сетки колонн), связанное с развитием производства, а также с условиями проведения реконструктивных строительных работ, в том числе без остановки технологического процесса;

модернизация инженерных систем для обеспечения потребностей модернизируемого производства и создания требуемых нормами условий труда работающих;

совершенствование архитектурно-художественных качеств здания и его интерьеров с учетом современных требований к общей композиции предприятия и промышленной эстетики.

Характер работ в условиях действующего производства вызывает существенное отличие реконструкции от нового строительства в области проектных решений зданий и технологических процессов их возведения, что сопряжено с рядом факторов, не свойственных возведению новых объектов.

Условия производства работ значительно усложняются из-за повышенной стесненности и необходимости совмещения строительно-монтажных работ с основной деятельностью предприятия. Объемно-планировочные и конструктивные решения реконструируемых зданий ограничивают возможность использования оптимальных комплектов строительных машин и поточной организации строительно-монтажных работ, что приводит к повышенной трудоемкости выполнения работ, непроизводительным затратам рабочего времени, низкой эффективности использования строительных машин и, как следствие, существенным экономическим потерям, которые в ряде случаев не компенсируются действующими поправочными коэффициентами к сметным нормам. Особенно заметно эти негативные последствия проявляются при демонтаже и монтаже строительных конструкций.

При реконструкции появляется необходимость выполнения комплекса работ, не присущих новому строительству — демонтаж конструкций, их усиление: замена отдельных конструктивных элементов, разборка сооружений.

Относительные изменения технологий и замена оборудования промышленного производства происходят в машиностроении через 10...15 лет, в химической промышленности — менее 6...8 лет, в электронной — через 5 лет.

Предприятиям до начала реконструкции необходимо проведение комплекса исследований для нахождения исходных параметров, определяющих концепцию обновления основных фондов.

Применение при планировании работ реконструкции промышленных предприятий разработанной схемы дает возможность получить следующие результаты: - информацию о расширении затрат, необходимых для проведения работ, и их влияние на инфраструктуру; - полезный эффект при реализации строительных программ благодаря концентрации и непрерывному вводу мощностей предприятий; - сокращение затрат реконструируемых предприятий благодаря разработке оптимальных функционально-технологических решений с одновременным улучшением условий производства и жизненного уровня; - минимальные затраты строительных организаций, ведущих работы по реконструкции, при обширной инженерной подготовке.

19 Основы проектирования реконструкции. Инженерные изыскания площадки реконструируемого объекта.

После принятия решения о целесообразности реконструкции зданий или сооружений может возникнуть необходимость в дополнительных инженерных изысканиях, включая геодезические, геологические и гидрометеорологические. Цель этих работ — прогнозирование общего состояния площадки объекта с учетом предполагаемых мероприятий по реконструкции (усиления строительных конструкций, перестройки и строительству новых зданий и сооружений, освоения новых технологий и других изменений условий эксплуатации).

При этом должны быть получены исходные данные для разработки проектно-сметной документации на работы по охране окружающей среды, выбору типа оснований под вновь проектируемые здания и усилению существующих фундаментов, способы производства работ по отрывке котлованов, креплению их стенок и устройству фундаментов, мероприятия по уменьшению влияния вновь проектируемых сооружений на деформации существующих. Необходимо учесть возможность увеличения нагрузок на существующие фундаменты, устройства новых подвальных помещений, воздействия на основания и фундаменты агрессивных жидкостей, технологических температур и др.

Инженерно-геологические обследования площадки застройки производят путем бурения скважин глубиной до 10 м, диаметром до 37 мм и глубиной до 20 м, диаметром до 127 мм с помощью буровых механических (иногда ручных) установок. При этом определяют виды грунтовых пластов, наличие линз, выклинивание пластов и их распространение, а также определяют физические характеристики проходимых геологических пластов, что осуществляется, как правило, лабораторными методами. Полевые методы используют в тех случаях, когда отбор образцов требуемого качества практически невозможен или затруднен. Необходимо обратить внимание на уровень грунтовых вод, определить направление их потока, дебит и т. д.

Инженерно-гидрогеологические изыскания выполняют при обследовании подтопленных территорий или при угрозе подтопления.

В результате проведения инженерных изысканий с учетом данных обследования оснований и фундаментов (см. § 5.2) должны быть собраны материалы, достаточные для разработки проекта реконструкции зданий и сооружений. Они включают: 1) инженерно-геодезическую съемку площадки реконструируемого объекта со схемой расположения всех зданий и сооружений; 2) инженерно-геологические (литологические разрезы по скважинам и литологические профили по основным направлениям) разрезы участка с данными об уровнях грунтовых вод; 3) обмерочные чертежи существующих фундаментов с указанием обнаруженных дефектов и отступлений от проекта и нормативных требований (если они имеются); 4) данные о физико-механических свойствах грунтов оснований участка застройки; 5) гидрометеорологическую обстановку на рассматриваемой территории.

производственных мощностей, улучшения качества и изменения номенклатуры продукции, в основном без увеличения численности работающих при одновременном улучшении условий их труда и охраны окружающей среды.

При реконструкции действующих предприятий могут осуществляться расширение отдельных зданий и сооружений основного, подсобного и обслуживающего назначения в случаях, когда новое высокопроизводительное и более совершенное по техническим показателям оборудование не может быть размещено в существующих зданиях; строительство новых и расширение существующих цехов и объектов подсобного и обслуживающего назначения в целях ликвидации диспропорций; строительство новых зданий и сооружений взамен ликвидируемых на территории действующих предприятий, дальнейшая эксплуатация которых по техническим и экономическим условиям нецелесообразна.

Техническое перевооружение действующих предприятий — это комплекс мероприятий по повышению технико-экономического уровня отдельных производств, цехов и участков на основе внедрения передовой техники и технологии, механизации и автоматизации, модернизации и замены устаревшего и физически изношенного оборудования новым более производительным, а также по совершенствованию общезаводского хозяйства и вспомогательных служб.

Цель технического перевооружения действующих предприятий — всемерная интенсификация производства, увеличение производственных мощностей выпуска продукции и улучшение ее качества при обеспечении роста производительности труда и сокращения рабочих мест, снижения материалоемкости и себестоимости продукции, экономии материальных и топливно-энергетических ресурсов, улучшения других технико-экономических показателей предприятия. Доля строительно-монтажных работ не должна превышать 10% капитальных вложений, предусмотренных на техническое перевооружение.

Целесообразность дальнейшего использования зданий с сохранением или изменением функций, реконструкции или сноса, как и у жилых зданий, определяется степенью их износа.

Возможные повреждения и физический износ конструкций промышленных зданий и сооружений может быть классифицирован по следующим основным признакам: причинам, их вызывающим;

механизму коррозионного процесса разрушения конструкций;

значимости последствий разрушения и трудоемкости восстановления зданий.

Моральный износ, т. е. потеря экономической эффективности, производственных зданий проявляется в двух формах.

Первая — обусловлена уменьшением во времени их первоначальной стоимости. Она вызвана снижением величины общественно необходимого труда на строительство аналогичных объектов в тех же условиях в более поздние периоды. На целесообразность сохранения здания и его функции она влияет только при учете его остаточной стоимости, определяемой как разность между восстановительной стоимостью и суммой начисленной амортизации на его восстановление.

Вторая форма морального износа имеет место при худшем соответствии параметров существующих зданий требованиям реорганизации производства по сравнению с более прогрессивными решениями объектов аналогичного назначения (здание-эталон). Не оптимальными могут быть размеры сетки колонн, конфигурация в плане, высота этажей, несущая способность конструкций, мощность вентиляции, кондиционирования и т. д.

Физическая долговечность промышленных зданий и сооружений находится в пределах 50... 100 лет.

19 Особенности учета нагрузок и воздействий при проектировании реконструкции.

Нагрузки и воздействия при реконструкции, как и при проектировании новых объектов, определяются с учетом их статистической изменчивости. Значения нагрузок принимают в соответствии со СНиП 2.01.07—85 «Нагрузки и воздействия», а также с учетом технологических заданий, учитывающих специфику конкретного производства. При проектировании реконструкции необходимо тщательно проанализировать фактически действующие и перспективные нагрузки и воздействия, использовав все возможности для обеспечения безопасной эксплуатации отдельной конструкции (сооружения) в новых условиях без усиления.

При проектировании реконструкции нагрузки в зависимости от продолжительности воздействия, так же как и при проектировании новых объектов, делят на постоянные и временные. Последние, в свою очередь, подразделяют на длительные, кратковременные и особые. К постоянным относятся вес несущих и ограждающих конструкций, давление и вес грунта, воздействие предварительного напряжения при усилении и т. п. Длительная временная — это вес стационарного технологического оборудования, давление жидкости, газов, сыпучих материалов в емкостях для их хранения, длительные температурные воздействия, определенная часть крановых и снеговых нагрузок и т. д. К кратковременным нагрузкам относятся вес людей, деталей, материалов и оборудования в зонах ремонта и обслуживания оборудования, определенная часть транспортной, снеговой и ветровой нагрузок, а также температурно-климатические воздействия. К особым нагрузкам относятся нагрузки, которые возникают при аварийных ситуациях, сейсмические, взрывного действия, неравномерные осадки оснований при коренном изменении структуры грунта и т.п.

Нормативные нагрузки при реконструкции устанавливаются по заранее заданной вероятности превышения средних значений или по наибольшим значениям, предусмотренным нормальной эксплуатацией технологического оборудования. По нормативным нагрузкам выполняется расчет конструкций по второй группе предельных состояний и оснований здания (сооружения).

Расчет конструкций на прочность и устойчивость выполняется на нагрузки, которые получают умножением нормативной на коэффициент надежности по нагрузке Y, обычно больший единицы. С учетом Yf выполняется также расчет образования трещин в железобетонных конструкциях 1-й и 2-й категорий трещиностойкости.

Конструкции должны рассчитываться с учетом реальных, в том числе наиболее неблагоприятных сочетаний нагрузок.

Различают:

основные сочетания, которые включают постоянные, длительные и кратковременные нагрузки

особые сочетания, включающие постоянные, длительные, возможные кратковременные и одну из особых нагрузок.

При расчете на основные сочетания первой группы учитывают постоянные, длительные и одну (обычно самую неблагоприятную) временную нагрузку; при расчете на основные сочетания второй группы учитывают постоянные, длительные и 2...3 кратковременные нагрузки, причем последние умножаются на коэффициент сочетаний, равный 0,9. )

Учет степени ответственности производится путем умножения расчетных нагрузок на коэффициент надежности по назначению Yп, который принимается:

Yп=1—для зданий и сооружений I класса (ТЭЦ, ГРЭС, АЭС,

Yn=0,95—для зданий и сооружений II класса (промышленные и гражданские объекты);

Yn=0,9—для зданий III класса (складские помещения, одноэтажные жилые дома, временные здания).

Нормативные и расчетные характеристики материалов старых конструкций определяются по результатам испытаний неразрушающими или разрушающими методами. Те же характеристики для элементов усиления — по рекомендациям соответствующих норм проектирования. При этом должны учитываться соответствующие коэффициенты условий работы конструкции.

При расчете конструкций на дополнительные нагрузки необходимо учитывать существующие фактические прогибы и деформации, а также наличие трещин в сжатой и растянутой зонах, которые оказывают существенное влияние на деформативность элементов. При расчете конструкций по второй группе предельных состояний общий прогиб конструкций суммируется из существующего к моменту приложения нагрузки и дополнительного. Общий прогиб не должен превышать допустимый для проектируемого типа конструкции.

9 Основные принципы проектирования усиления железобетонных и каменных  конструкций.

1.Необходимо стремиться к максимальному сохранению существующих зданий, сооружений и конструкций.

2.При определении нагрузок на существующие конструкции необходимо использовать фактические данные о собственной массе технологического оборудования и строительных материалов.

3.При усилении следует отдавать предпочтение индустриальным способам

4.Принятию решения по усилению должен предшествовать тщательный анализ возможности использования существующих конструкций в новых условиях эксплуатации.

5.При выборе вариантов усиления следует отдавать предпочтение решениям с четкой расчетной схемой, обеспечивающей совместную работу усиливаемой конструкции с элементами усиления и позволяющей достоверно определить дополнительно воспринимаемую нагрузку.

6.Проект усиления разрабатывается с учетом многих исходных данных: рабочих чертежей строительных конструкций и исполнительных схем и т. п

7.Усиление конструкций может осуществляться по двум схемам: возведение новых разгружающих или заменяющих конструкций, которые полностью или частично воспринимают дополнительные нагрузки; увеличение несущей способности существующих конструкций

8.Бетон усиления должен приниматься на один класс выше, чем условный класс прочности бетона усиливаемого элемента, но не ниже В15 — для надземных конструкций и В12,5 — для фундаментов. Кроме того, при агрессивных условиях эксплуатации класс бетона должен отвечать требуемой плотности и стойкости, соответствующим требованиям эксплуатационной среды.

Раствор для заделки отверстий, защитной штукатурки и т.п. принимается не ниже марки 150.

При усилении бетонных и железобетонных конструкций наращиванием, «рубашками» и обоймами следует использовать портландцемент марки не ниже 400. Для ускорения твердения бетона рекомендуется применение быстротвердеющих цементов и добавок ускорителей твердения

9.При виброуплотнении бетона крупность заполнителя  принимается не более 20 мм. Состав бетона должен обеспечить проектную прочность элементов усиления и качественное уплотнение бетонной смеси. При выполнении работ в зимнее время усиливаемые конструкции и бетон усиления должны иметь температуру не менее +15 °С.

10. Минимальная толщина защитного слоя бетона предварительно напряженной арматуры усиления принимается 20 мм.

11. Расчет конструкций усиления производится по первой и второй группам предельных состояний.

12. Расчет усиленных конструкций должен учитывать изменение их статической схемы и напряженного состояния. При этом в усиленных статически неопределимых конструкциях необходимо учитывать возможность перераспределения усилий, ограничивая величину перераспределения моментов до 30 %.

13. При повреждении площади сечений элементов или арматуры более чем на 50 % несущая способность существующей конструкции в расчетах не учитывается и вся нагрузка передается на элементы усиления. При приварке к существующей арматуре стержней усиления ее расчетное сечение следует снижать на 25 % в связи с возможным пережогом при сварке.

14. При изгибе и внецентренном сжатии совместная работа элементов усиления с усиливаемой конструкцией может учитываться только при обеспечении их надежного соединения.

15. Как и в обычных конструкциях, расчет прочности усиленных элементов производится для сечений нормальных и наклонных к продольной оси элемента, а также на местное действие нагрузки

16. Если в усиленном элементе применены бетоны и арматура различных классов, каждый вид бетона и арматуры вводится в расчет со своими расчетными сопротивлениями. При этом центр тяжести всего усиленного элемента и статические моменты рекомендуется определять, приводя все расчетное сечение к бетону одного класса.

17. При разгрузке усиливаемых конструкций до нагрузок, не превышающих 65 % максимальных, расчетные характеристики бетона и арматуры принимаются равными их нормативным значениям. При невозможности разгрузки конструкций и превышении указанного уровня сопротивления бетона и арматуры уменьшаются на 20%.

18. При применении комплексного усиления (бетон — металл) следует учитывать в расчетах податливость узлов сопряжения, которая при металлических упорах на бетон через слой раствора принимается в пределах 1...5 мм/узел, а при сопряжении металла с помощью болтов — 1 мм/узел.

22 Усиление железобетонных конструкций. Усиление плит перекрытий.

Применяется ряд способов усиления монолитных и сборных плит перекрытий. Рассмотрим некоторые из них.

1. Способ наращивания плиты перекрытия состоит в нанесении на ее поверхность нового слоя армированного бетона. Для обеспечения хорошего сцепления нового бетона со старым поверхность перекрытия очищается от инородных включений и промывается водой, после чего делается насечка зубилом на глубину 0,5-1 см. Если же бетон плиты был подвержен значительной коррозии или пропитан техническими маслами, то необходимо обеспечить шпоночное соединение между его новым и старым слоями. Для этого в перекрытии пробиваются сквозные отверстия размерами 8x8 см и шагом 50-80 см. В отверстия вставляются V-образные стержни шпоночного усиления Ø6-8 мм. Образуемые после бетонирования железобетонные шпонки воспринимают касательные усилия между новой и старой плитами при изгибе, обеспечивая их совместную работу.  

Бесшпоночное наращивание

1-Бетон кл. В15...В25

2-Арматурная сетка Ø4...16, шаг 100...200

Наращивание с железобетонными шпонками

1-Бетон кл. В15...В25

2-Арматурная сетка Ø6...16, шаг 100...250

3-V-образный стержень Ø8...12

Наращивание со стальными шпонками

1-Бетон кл. В15...В20

2-Арматурная сетка Ø6...16, шаг 100...250

3-Стержень Ø8...12

2 Способ подращивания заключается в нанесении на потолочную поверхность плиты слоя бетона, армированного сеткой. Усиление, эскиз которого представлен в табл.1, п.4, производится в следующем порядке: у опор на потолочной поверхности плиты обнажается рабочая арматура, к которой привариваются стальные пластины (коротыши).

Стержни усиления сначала у одной опоры  привариваются к пластинам и нагреваются до требуемой температуры током высокой частоты, а затем привариваются у другой опоры. После остывания стержни оказываются в напряженном состоянии.

Распределительная арматура сетки с помощью вязальной проволоки прикрепляется к рабочим стержням.

После усиления потолочная поверхность плиты оштукатуривается или покрывается торкретбетоном.

Подращивание с приваркой рабочих стержней усиления

1-Бетон кл. В15...В25

2-Арматурная сетка Ø8...16,

3-Стальная пластина δ=8...12

Кроме рассмотренных случаев повышения прочности перекрытия слоем армированного бетона, возможно его усиление стальными балками и фермами, частично или полностью воспринимающими полезную нагрузку.

Усиление зоны стыка плит перекрытия с ригелем при малой площадке опирания показано на рис.3.4. Принцип усиления основан на устройстве под аварийной плитой опорного столика, подвешиваемого на стальной пластине или тяжах, закрепленных в полках смежных плит. Для более надежного заанкеривания тяжей возможна также их приварка к монтажным петлям панели.

Монолитные плиты перекрытия можно усиливать методом наращивания, т.е. бетонированием дополнительной железобетонной плиты поверх существующей, а также подведением дополнительных опор в виде монолитных железобетонных или металлических балок.

Сборные железобетонные пустотные плиты могут усиливаться с использованием пустот. Для этого сверху в зоне расположения канала пробивают полку и устанавливают арматурный каркас. При усилении только опорной части плиты каркасы располагаются на части ее пролета, а при необходимости усиления по нормальному и наклонному сечениям — по всей длине плиты. После этого канал заполняют пластичным бетоном на мелком щебне и плиту рассчитывают с учетом дополнительной арматуры (рис. 10.52).

Рис. 10.52, Усиление сборных многопустотных плит перекрытия:

1усиливаемая плита: 2 — опора; 3 — дополнительный арматурный каркас; 4 — бетон усиления

Усиление опорных частей пустотных плит при недостаточной площади их опирания рекомендуется осуществлять по следующим схемам:

для крайних опор путем установки в каналах арматурных каркасов с выносом их за торцы плит на требуемую длину, последующей установкой вертикальных каркасов параллельно торцам плит, бетонированием анкерной балки и опорных участков пустот плиты (рис. 10.53);

Рис. 10.53. Усиление опорных частей многопустотных плит:

1усиливаемая плита; 2 — опора; 3 — арматурный каркас усиления

для промежуточных опор установкой общих вертикальных каркасов в предварительно пробитые отверстия приопорных зон смежных плит и последующим бетонированием каналов с дополнительно установленной арматурой. В этом случае плиты работают как неразрезные конструкции.

Продольные ребра сборных железобетонных ребристых плит усиливают подведением дополнительных металлических опор, уменьшающих пролет ребер, дополнительными металлическими балками, которые включаются в работу с помощью подклинки; шпренгельными конструкциями. Эффективным способом усиления продольных ребер плит по нормальным сечениям является установка дополнительных арматурных каркасов в швах между плитами и бетонирование швов. Возможно также наращивание продольных ребер с дополнительной арматурой при обеспечении ее связи с существующей рабочей арматурой.

Усиление продольных ребер на действие поперечных сил производят путем установки дополнительных предварительно напряженных накладных хомутов.

Если невозможно выполнить набетонку для усиления плит, опертых по контуру, рекомендуется подвести под плиты предварительно напряженный пространственный шпренгель (рис. 10.54), который состоит из двух взаимно пересекающихся в одном уровне плоских шпренгелей, верхние пояса которых плотно подгоняются под нижнюю плоскость плиты, а нижние пояса предварительно напрягаются механическим или термомеханическим способом.

Рис. 10.54. Усиление сборной плиты, опертой по контуру, пространственным шпренгелем:

1усиливаемая плита; 2 — элемент несущего контура; 3  пространственный шпренгель; 4 — верхний пояс; 5 — нижний пояс; 6 — промежуточные стойки; 7 — центральная стоика; 8  болты для подвески шпренгеля; 9 передаточные траверсы

Рис. 10.55. Варианты устройства опорных столиков: а — при наличии закладных деталей в ригеле; б — при отсутствии закладных Деталей в ригеле; 1 — ригель; 2 — плита; 3 — закладная деталь в ригеле; 4 — опорный столик; 5 — тяжи; 6 — горизонтальная опора; 7 — упорный уголок

Для усиления опирания сборных плит перекрытия и покрытия на ригели и стропильные конструкции рекомендуется подвести под опоры металлические столики из уголков, закрепив их с помощью тяжей или обойм к смежным конструкциям или верхнему поясу ригелей и стропильных конструкций (рис. 10.55, 10.56).

10.8. Установка дополнительных закладных деталей и усиление стыков При реконструкции часто возникает необходимость в установке дополнительных закладных деталей или восстановлении пропущенных при изготовлении конструкций. При этом следует различать конструктивные закладные детали, на которые не передаются значительные усилия, а также закладные детали, которые воспринимают значительные изгибающие моменты и отрывающие усилия.

Рис. 10.56. Усиление опирания плит:

1ригель; 2 — плита; 3 — крепление тяжа к плите; 4 — наклонный тяж; 5 — упорный столик; 6 — ребра жесткости; 7 — хомуты; 8 — уголок опорного столика

К первой группе относятся закладные детали для фиксации элементов, которые устанавливаются на несущие конструкции (плиты покрытия на балки и фермы, балки и фермы на колонны, самонесущие стены и стеновые панели к колоннам и т.п.). Эти закладные детали испытывают сжимающие или незначительные сдвигающие усилия и легко устанавливаются с помощью специального металлического хомута.

23 Усиление железобетонных балок по нормальным сечениям.

Важным обстоятельством при выборе метода усиления является характер трещин, образующихся на боковой поверхности балок. Так, балки с чрезмерно раскрытыми нормальными трещинами усиливаются в пролете  подведением упругих или  жестких опор или подваркой дополнительной арматуры, а балки с наклонными трещинами - стальной обоймой или кронштейнами.

Усиление производится в следующем порядке:

- устраиваются опоры под конструкцию усиления в виде отдельных стоек или консолей, привариваемых к стальной обвязке колонн;

- разгружается перекрытие в зоне усиления;

- монтируется конструкция усиления (балка или ферма);

- включается конструкция усиления в работу путем забивки стальных клиньев в распор с ригелем.

Упругой опорой (балкой)

 

1-Стальная балка

2-Стальные пластины (клинья)

8=4...10

3-  b=50...80

δ=4…6

Упругой опорой (фермой)

Жесткой опорой (стойкой)

1-Стойка

2-Гнутый швеллер

3- Стальная пластина (клин) δ=4...10

Жесткой опорой (подкосами)

1-Подкосы

2-Стальная пластина δ=10...12

3-Гнутый швеллер δ=10...12

4-Стальная пластин; δ=10...12

Наиболее простым в техническом исполнении является усиление балок подведением промежуточной жесткой опоры в виде стойки или подкосов. Однако следует учитывать, что промежуточная опора изменяет расчетную схему балки, в результате чего возникает надопорный отрицательный момент, на который проверяется существующее армирование балки.

Промежуточные опоры  можно выполнять на самостоятельном фундаменте или с использованием уже существующих. Важным требованием к устройству отдельного фундамента является предварительное уплотнение грунта и его основании с целью избежания просадки. Уплотнение производится гидродомкратами таким образом, чтобы давление на грунт было не менее давления под подошвой фундамента.

Усиление балок предварительно напряженными затяжками широко используется при реконструкции зданий,

Затяжки делают шпренгельные, горизонтальные и комбинированные.

Основными элементами затяжек являются горизонтальные и наклонные тяжи, изготавливаемые из стержневой арматуры классов АIII, АIV диаметром 18-40 мм или прокатных профилей уголкового и швеллерного типов. Тяжи располагаются у боковых поверхностей элемента и закрепляются с помощью анкерных устройств в торце.

Балка, усиленная затяжкой, превращается из изгибаемого элемента во внецентренно сжатую комбинированную систему, напряженное состояние которой является функцией нескольких параметров, в том числе и усилия предварительного обжатия затяжкой.

При достаточном преднапряжении и надежном заанкеривании затяжки предполагается, что напряжения в ней, а также в рабочей арматуре усиливаемой балки нарастают пропорционально и достигают расчетного сопротивления одновременно.

Работа по усилению производится в следующем порядке:

-  заготавливаются детали усиления: стержни, натягивающие муфты (гайки), анкерные устройства;

-  максимально разгружается перекрытие в зоне усиления балки;

-  монтируются элементы конструкции усиления (поз. 1-6, габл.3.5, п.1);

-  производится натяжение затяжки механическим или электромеханическим способами;

-  все элементы конструкции усиления окрашиваются защитными покрытиями: эмалью, перхлорвиниловым лаком и др.

Усиление шпренгелем

1-Арматура Ø16…36

2- Арматура Ø40…60

3- Мет.пластина δ=10…14

4- Гнутый швеллер

5- Мет пластина δ=10…12 δ=8…10

6- Напрягающая муфта

Усиление затяжкой

1-Затяжка Ø16…36

2-Опорный столик из стальной пластины δ=8…16

Усиление приваркой дополнительной арматуры

1-Арматура усиления Ø10…32

2-Соединительный элемент δ=8…25 или Ø8…25

23 Усиление железобетонных балок по наклонным сечениям.

Наклонные трещины в балках образуются по разным причинам: от проскальзывания рабочей продольной арматуры в зоне заанкеривания, слабого армирования поперечными стержнями, низкой прочности бетона, недостаточных размеров поперечного сечения балки, перегрузки. Усиление предварительно напряженными хомутами производится в следующем порядке:

-  заготавливаются детали усиления;

-  разгружается перекрытие в зоне усиления балки;

-  монтируется конструкция усиления;

-  натягиваются последовательно с помощью гаек хомуты (поз.1) и привариваются к уголкам (поз.4). Натяжение хомутов струбцинами (поз.2, табл.3.6) производится после приварки хомутов;

-  наносится на все металлические детали конструкции усиления антикоррозийное покрытие.

Усиление хомутами

Стержни (хомуты) Ø10…16

Пластина b=40…60 δ=4…6

L50…100

Усиление затяжкой

Стержни (хомуты) Ø10…16

Струбцина Ø12…18

Пластина b=40…60 δ=4…6

L50…100

Усиление приваркой дополнительной арматуры

Балка усиления

Поперечная балка

Связующий стержень Ø16…25

25 Усиление железобетонных колони.

Наибольшее распространение получили следующие методы усиления ствола колонн:

1. железобетонные обоймы;

2. одностороннее и двухстороннее наращивание сечения;

3. металлические обоймы ненапряженные и с предварительным напряжением хомутов;

4. предварительно напряженные металлические распорки.

Усиление железобетонной обоймой (рис.3.8, а) считается наиболее простым и надежным способом увеличения несущей способности  колонны.

Обойма состоит из продольной арматуры, замкнутых хомутов, бетонного слоя, охватывающего сечение колонны.

Перед усилением поверхность колонны подготавливается следующим образом: удаляется штукатурный слой; зубилом делается насечка в бетоне на глубине 3-6 мм; промывается за час до бетонирования поверхность старого бетона чистой водой.

Железобетонная обойма обычно имеет толщину 6-12 см. Сечение и количество продольной арматуры определяется расчетом при условии обеспечения совместной работы обоймы с колонной. Поперечная арматура принимается диаметром не менее 6 мм и устанавливается с шагом S, удовлетворяющим требованиям: 15d≥S≥3δ; S≤200 мм, где d - диаметр продольной арматуры; δ - толщина обоймы.

Усиление колонн односторонним наращиванием сечения (рис.3.8, б) обычно применяется во внецентренно сжатых колоннах для уменьшения начального эксцентриситета приложения внешней нагрузки и увеличения прочности колонн. Важным условием надежности усиления является обеспечение совместной работы нового бетона со старым. Для этого предусматриваются те же мероприятия, что и при усилении железобетонными обоймами, и, кроме того, новая продольная арматура соединяется на сварке со старой с помощью стальных коротышей Ø10-30 мм, устанавливаемых с шагом 500-800 мм. В связи с большой трудоемкостью усиления одностороннее наращивание применяется редко.

Усиление колонн стальной обоймой (рис.3.8, в), довольно простое в исполнении, незначительно увеличивает размер поперечного сечения и позволяет использовать колонну в эксплуатационном режиме сразу же после ее усиления Продольные элементы обоймы из уголковой стали устанавливаются на цементно-песчаном растворе и прижимаются к колонне с помощью струбцин, после чего к уголкам привариваются поперечные планки, устанавливаемые по длине колонны с шагом 400-600 мм.

В предварительно напряженных обоймах поперечные планки нагреваются до температуры 100-120°С, а затем уже привариваются к продольным элементам. При остывании планки укорачиваются и создают эффект преднапряжения.

Усиление колонн стальными распорками (рис.3.8, г) является достаточно эффективным средством увеличения их несущей способности, которая повышается пропорционально площади поперечного сечения распорок.

Распорки состоят из двух уголков (швеллеров), связанных между собой соединительными планками.

Вверху и внизу каждой распорки крепятся опорные уголки, через которые усилие распора передается на консоли. Как видно из рис.3.8, г, распорки с перегибом устанавливаются в середине их высоты. Для создания предварительного напряжения сжатия распорки с помощью натяжных болтов выпрямляются, принимая вертикальное положение. При этом распорки надежно включаются в совместную работу с колонной, частично разгружая ее. Величина сжимающих напряжений в распорках в период их включения в работу по данным [5] достигает 60-80 МПа.

Усиление колонн предварительно напряженными распорками целесообразно при длине распорок не более 5 м, когда не требуется большого расхода металла для обеспечения их устойчивости. Пример расчета распорок представлен в [5].

23 Усиление консолей железобетонных колонн.

Выбор метода усиления консоли колонны, как правило, зависит от ее формы и характера действующих усилий. Так, при больших изгибающих моментах эффективной оказывается горизонтальная затяжка (табл.3.7, п.1) из тяжей, натягиваемых гайками до напряжений 60-90 МПа. При больших значениях поперечной силы и сжимающих напряжений в наклонной сжатой полосе целесообразно усиление преднапряженной наклонной затяжкой (табл.3.7, п.2) или металлическим столиком (табл.3.7, п.3), приваренным к продольной арматуре колонны.

Площадь сечения ветвей горизонтальной затяжки определяется по формуле

As13=1,25(М1-М)/Rsnh01·0,9,

где М1, М - соответственно изгибающие моменты, воспринимаемые консолью после и до усиления;

h01 - полезная высота сечения консоли, усиленной затяжкой.

Горизонтальной затяжкой

 

1-Составная балка

2-Затяжка Ø=16…25

3-Гайка M16…M25

Наклонной затяжкой

1-Обвязка L50…100

2-Затяжка Ø12…18

3-Планки b=40…60 δ=4…6

Металлическим столиком

1-Стальные пластины δ=8…16

2-Опорная деталь L75…100

15 Усиление стропильных железобетонных ферм.

Усиление стропильных ферм в практике эксплуатации здании встречается довольно часто. Причины усиления разнообразны.

Дефекты:

1.дефекты изготовления (смещение арматурных каркасов, недостаточное предварительное напряжение нижнего пояса);

2.дефекты из-за неправильной перевозки и монтажа;

3.перегрузка фермы.

В каждом конкретном случае оценивается степень повреждения элементов фермы и выбираются способы их усиления.

Рассмотрим некоторые из них.

Нижний пояс фермы часто усиливается горизонтальной предварительно напряженной стержневой затяжкой из арматуры классом АII, АIII, Ø18-32 мм. Усилие натяжения затяжки обеспечивается торцевыми гайками и стягивающими струбцинами (рис.3.10, а). Так как расстояние между парными тяжами затяжки небольшое, то для обеспечения требуемого натяжения ставятся промежуточные стальные распорки из уголка или швеллера с интервалом 3 м. При натяжении важно производить одновременное стягивание тяжей затяжек с обеих сторон, чтобы не допустить искривления нижнего пояса фермы. Ввиду того, что ферма чаще всего усиливается в полностью нагруженном состоянии, необходимо создавать высокое напряжение в затяжке порядка (0,6-0,8) Rsn.

Верхний пояс фермы, а также сжатые элементы решетки можно усиливать стальной обоймой или распорками, ранее рассмотренными на рис.3.8.

Опорные узлы фермы, имеющие наклонные трещины, усиливаются напряженными хомутами, состоящими из уголков, горизонтальных пластин и стержневой арматуры. Напряжение в стержнях создается натяжными гайками с последующей приваркой стержней к уголкам обвязки (рис.3.10, б). Аналогичным образом усиливаются промежуточные узлы фермы (рис.3.10, в).

После окончания натяжения хомутов и горизонтальных затяжек гайки привариваются к стержням (см.рис.3.10, а, б) или срезаются (см.рис.3.10, в).

Усиленные сжатые элементы фермы проверяются расчетом на прочность, а растянутые - на прочность и трещиностойкость.

Рис. 3.10. Усиление элементов стропильной фермы: а – нижнего пояса; б – опорного узла; в – промежуточного узла; 1 – горизонтальная затяжка; 2 – напрягаемые хомуты; 3 – балка (швеллер) для натяжения хомутов; 4 – стягивающая струбцина; 5 – промежуточная распорка

При дополнительной нагрузке на стропильные фермы и балки часто возникает необходимость усиления конструкций в целом или их отдельных элементов и узлов. Эффективным и достаточно простым способом усиления являются предварительно напряженные шарнирно-стержневые цепи, располагаемые в пределах высоты ферм (при наличии мостовых кранов) или ниже конструкции  (рис. 10.45). При больших пролетах или значительном увеличении нагрузки шарнирно-стержневые цепи усиления располагаются в двух уровнях.

Рис. 10.45. Усиление ферм шарнирно-стержневыми цепями:

а — одноярусное в пределах высоты ферм; б — то же, двухъярусное; в — одноярусное ниже пояса фермы

26 Усиление каменных столбов и простенков.

Простенки и перемычки относятся к наиболее нагруженным участкам стен и поэтому часто подвергаются усилению.

Традиционно для усиления простенков используют стальные и железобетонные обоймы, хотя в некоторых случаях целесообразно оштукатуривание по сетке или обкладывание кирпичом.

При небольших вертикальных и наклонных трещинах простенки усиливают арматурными сетками из проволоки диаметром 3-5 мм с ячейкой 100x100 мм (табл.4.4, п.1). Сетки сваривают, образуя замкнутый контур. Для лучшего прилегания сетки к стене используют штыри (гвозди) длиной 100-150 мм, забиваемые в швы кладки. На усиленный простенок наносят торкрет-бетон или слой штукатурки толщиной 15-20 мм.

При больших вертикальных трещинах простенок усиливают стальной обоймой (табл.4.4, п.2), которую монтируют по предварительно оштукатуренной и выровненной поверхности простенка. Обойма представляет собой конструкцию из продольных уголков 50x50 (45x45) мм и приваренных к ним планок из стальной полосы 50х5 мм с шагом 300-500 мм. При этом шаг планок не должен превышать наименьшего размера простенка. Чтобы создать предварительное напряжение в обойме и улучшить ее совместную работу с кирпичной кладкой, планки перед приваркой иногда нагревают до температуры 150-200°С.

Оштукатуривание по сетке

1-Гвозди l=100-150

2-Сетка из проволоки, кл. Вр1 Ø=3…5 мм; ячейка 100х100

3-Цементно-песчанный раствор М100; δ=15-20

Стальная обойма

4-Уголок 50х50х5

5-Планки 50х5 с шагом 300-500

Железобетонная обойма

6-Продольная арматура Кл. АII, AIII Ø=6..12

7-Поперечная арматура кл. АI Ø=6…8

8-Бетон кл. В15-В20δ=40-60

Замена простенка

9-Стойки

10-Доски δ=30-40

11-Доски δ=50-60

12-Деревянные клинья

13-Новый простенок

Усиление кирпичных столбов производят теми же методами, что и ранее рассмотренные при усилении простенков, т.е. с помощью железобетонных и стальных обойм. Рассматриваемый метод усиления стальной обоймой на ненапрягающем цементе позволяет существенно повысить ее эффективность даже в том случае, если отсутствует непосредственная передача на нее нагрузки.

Рис.4.14. Схема усиления кирпичного простенка стальной обоймой:

1 - уголок; 2 - планка; 3 - резьбовое отверстие 012 мм; 4 - штуцер;

5 -контрольное отверстие 03 мм; 6 - зона зачеканивания

1. К усиливаемому элементу с помощью проволочных хомутов или струбцин крепят уголки.

2. Элемент оштукатуривают заподлицо с наружной поверхностью уголков.

3. К уголкам с заданным шагом приваривают предварительно отрихтованные (спрямленные) поперечные планки, добиваясь плотного их прилегания к оштукатуренной поверхности усиливаемого элемента. После этого струбцины (хомуты) снимают.

4. В торцах на глубину 50-70 мм зачеканивают зазоры между уголками и кирпичной кладкой.

5. В резьбовое отверстие 3 уголка вворачивают штуцер растворо-насоса 4, через который закачивают раствор, приготовленный на расширяющемся цементе.  Наполнение раствором контролируют с помощью специальных выпускных отверстий 5. Последовательно заполняют раствором полости и другие углы усиливаемого элемента.

6. Детали обоймы защищают антикоррозионным покрытием или оштукатуривают по сетке.

Устройство стальной обоймы выше приведенным способом в сравнении с традиционным позволяет дополнительно на 15-20% увеличить несущую способность усиливаемого элемента. Положительный эффект достигается как за счет ощутимого преднапряжения обоймы расширяющимся цементом, так и вследствие хорошего сцепления арматуры (уголков) с раствором наполнения, а через него и с кирпичной кладкой.

27 Общее укрепление стен зданий из каменных материалов.

Усиление стен в зоне местного сжатия

Местное сжатие (смятие) возникает в том случае, когда нагрузка от элементов перекрытия (балок, плит) передается только на часть сечения стены.

При малой площади опирания конструкции или при отсутствии распределительных устройств сжимающие напряжения часто превышают величину расчетного сопротивления кладки на смятие, в результате чего происходит ее разрушение

Характерными признаками разрушения при смятии являются короткие трещины и раздробление отдельных камней в зоне передачи нагрузки.

Усиление кладки при смятии, как правило, осуществляется в результате:

-  увеличения площади опирания конструкции с помощью металлических или железобетонных стоек, усилие от которых передается мл стену вне зоны разрушения;

-  передачи нагрузки от конструкции на стойку, врезанную в стену или пилястру и опирающуюся на фундамент;

-  увеличения площади опирания конструкций на стену посредством стального пояса, закрепленного в зоне разрушения кладки;

-  устройства под концом балки (фермы) распределительной железобетонной подушки.

Усиление короткими стойками

1-Балка покрытия

2-Стойка усиления

3-Стальной пояс [ 18…20

4-Болт Ø12…16

5-Зона смятия

Усиление врезной стойкой

1-Балка покрытия

2-Врезная в стену железобетонная стойка

3-Зона смятия

Усиление поясом

1-Плиты покрытия

2-Стальной пояс [ 18…20

3-Болт Ø12…16

4-Зона смятия

При устройстве распределительной подушки стену разгружают, подводя временную опору под балку. Затем разрушенную часть кладки высотой 2-3 ряда удаляют, на ее месте устанавливают железобетонную подушку, армированную пространственным каркасом или сетками. Временные опоры убирают при достижении бетоном требуемой прочности.

Способы заанкеривания конструкций в зоне местного смятия кладки

Заанкеривание балок

1-Анкерный стержень Ø20…25

2-Арматура балки

3-Швеллер [ 12…14

4-Балка перекрытия

Заанкеривание пустотных плит

1-Анкерный стержень Ø20...25

2-Болт Ø20

3-Пластина 120x8

4-Швеллер [ 12...14

5-Пустотная плита

6-Бетон кл.В25

Заанкеривание ребристых плит

1-Анкерный стержень Ø20...25

2-Болт Ø20

3-Швеллер [ 20

4-Швеллер [ 12…14

5-Ребристая плита

6-Бетон кл.В25

Усиление стен в зоне локальных трещин

Трещины в стенах разделяют на локальные и магистральные. Подобное деление условно, однако существуют некоторые ориентиры, уточняющие эти понятия. Так, к локальным обычно относят трещины, имеющие небольшую протяженность и ширину раскрытия. Они обычно появляются в зонах местной перегрузки стен в углах, у мест сопряжения продольных стен с поперечными, в перегородках и т.п.

Усиливают стены с локальными трещинами с помощью стальных накладок, воспринимающих растягивающие напряжения в кладке

Усиление угла накладками

1-Накладка l=1500…3000

2-Болт Ø14…18

Усиление зоны отрыва поперечной стены стяжными болтами

1-Стяжные болты Ø20

2-Продольные накладки[ 12...16

3-Поперечные накладки[ 12...16

4-Анкерные балочки

5-L100х8

Усиление стен и остова здания при магистральных трещинах и значительных деформациях

Магистральные трещины характерны тем, что распространяются на всю высоту стены, разделяя ее на отдельные части. Причиной образования таких трещин обычно является неравномерная осадка фундаментов или большие температурные деформации здания. С образованием магистральных трещин коробка здания как бы разделяется на отдельные блоки, деформируемые самостоятельно при силовых и температурных воздействиях. Если трещины образуются в углах здания, то возможна потеря устойчивости или отрыв торцевой стены.

Усиление контрфорсами

Железобетонный контрфорс δ=300…500

Усиление поясом отдельной стены

1-Тяж Ø20…30

2-Накладка [ 12...16

3-Бетон кл. В25

Усиление поясом коробки здания

1-Тяж Ø20…30

2-Стяжная муфта Ø20…30

3-Накладка L 100х8 (L 140х10)

18 Усиление стальных конструкций. Общие положения.

При недостаточной несущей способности отдельных элементов, конструкций или зданий и сооружений производится их усиление, при этом, так же как и при конструкциях из других материалов, необходимо предусмотреть минимальные потери из-за остановок технологического цикла.

Элементы сварных конструкций, испытывающие растяжение, сжатие или изгиб, могут быть усилены увеличением сечений путем приварки новых дополнительных деталей. Несущая способность элемента при этом возрастает с увеличением его сечения или жесткости. Однако нагрев элемента в процессе сварки может снижать его несущую способность. Степень снижения зависит от режима сварки, толщины и ширины элемента, направления сварки. Для продольных швов снижение прочности не превышает 15%. для поперечных может достигать 40%. Поэтому наложение швов поперек элемента при его усилении под нагрузкой категорически запрещается.

В связи с некоторой потерей прочности элементов при сварке, а также перераспределением напряжений как по сечению элемента, так и между элементами усиление под нагрузкой производят при напряжениях, не превышающих 0,8Ry, где Ry — расчетное сопротивление для стали, из которой изготовлен элемент.

С целью сокращения объемов работ по усилению, а в некоторых случаях и отказа от усиления необходимо выявлять и использовать резервы несущей способности сохраняемых конструкций путем: - уточнения усилий, действующих в перенапряженных элементах, за счет учета пространственной работы каркаса; фактических условий соединения и закрепления, учета фактических значений нагрузок, воздействий и их сочетаний; - уточнения прочностных характеристик материала конструкций и соединений, фактических размеров сечений и элементов; - включения в работу ограждающих конструкций или других вспомогательных элементов зданий и сооружений.

 Основными способами усиления конструкций являются: - увеличение площади поперечного сечения отдельных элементов конструкции; - изменение конструктивной схемы всего каркаса или отдельных элементов его, в результате чего меняется расчетная схема: - регулирование напряжений.

Каждый из этих способов может применяться самостоятельно или в комбинации с другим. При выборе способа усиления и разработке проекта усиления необходимо учитывать требования монтажной технологичности.

При конструктивном оформлении усиления путем увеличения сечений необходимо: - обеспечить надежную совместную работу элементов усиления и усиливаемой конструкции, в том числе требования по местной устойчивости (размеры свесов, отгибов) и неискажаемости сечения (установка в необходимых случаях ребер, диафрагм и т. п.); - не принимать решений, затрудняющих проведение мероприятий по антикоррозионной защите, в особенности ведущих к щелевой коррозии или образованию замкнутых полостей, применяя в необходимых случаях герметизацию щелей; - назначать места обрыва элементов усиления из условия работы неусиленных сечений при действии расчетных нагрузок в упругой стадии, не допуская резких концентраторов напряжений в указанных местах; - учитывать наличие конструктивного оформления узлов, ребер жесткости, прокладок и т. п., а также допустимость увеличения габаритов строительных конструкций; - обеспечивать технологичность производства работ по усилению, и частности, доступность сварки, возможность сверления отверстий, закручивания болтов и т. п.

При усилении конструкций путем изменения конструктивной схемы требуется: - учитывать перераспределение усилий в конструкциях, элементах. узлах, а также в опорах, включая дополнительные проверки фундаментов; - учитывать разность температур, если существующие и новые конструкции могут эксплуатироваться в разных температурных режимах, а также температурный режим при замыкании статически неопределимых систем; - предусматривать в конструктивных решениях элементов и узлов возможность компенсации несовпадения размеров существующих и новых конструкций.

Способ усиления конструкций, предусматривающий регулирование напряжений, позволяет уменьшить усилия, действующие в конструкции. Преимущество его состоит также в том, что усиление может производиться без разгрузки конструкции и остановки технологического процесса.

Присоединение деталей усиления к конструкциям выполняется с помощью сварки, на болтах класса точности А и В или высокопрочных. В случае опасности возникновения хрупкого или усталостного разрушения присоединение осуществлять на высокопрочных бонах или болтах класса точности А. При соответствующем обосновании допускается применение дюбелей и самонарезающих винтов.

Применяемая для элементов усиления сталь, как правило, не должна уступать по качеству металлу усиливаемых конструкций (по механическим свойствам, вязкости и свариваемости).

При усилении конструкций, эксплуатируемых в агрессивной среде, коррозионная стойкость металла элементов усиления должна быть не ниже стойкости металла усиливаемой конструкции.

29 Усиление стальных балок.

Усиление металлических балок осуществляют увеличением сечения, при этом необходимо выполнить их разгрузку не менее чем на 60 % или установить временные дополнительные опоры.

Рис 11.3. Схемы усиления балок симметричными накладками

Наиболее простой способ усиления — симметричными накладками (рис. 11.3), однако при этом возникает необходимость в большом объеме потолочной сварки. При большой ширине нижней накладки можно избежать потолочных швов, однако ширина ее не должна превышать 506, в противном случае возникает значительная концентрация напряжений по кромкам балки.

Для повышения местной устойчивости локальных участков стенки балки устанавливают на этих участках короткие ребра жесткости, окаймляя их продольными ребрами

Местное усиление балок: 1,2 — ребра жесткости

Эффективным способом усиления сплошных балок являются натяжные устройства, которые обеспечивают стабильную величину предварительного напряжения, не зависящую от податливости анкеров и вытяжки затяжек. Такие способы позволяют регулировать усилие предварительного напряжения в нижнем поясе балки.

Рис. 11.5. Схема распорного устройства:

1усиливаемая балка; 2 —шарнир; 3 — упоры; 4 — сектор; 5 — трос; 6 — груз

При усилении балок путем увеличения сечения (рис. 3) наиболее рациональными по расходу стали являются двусторонние симметричные или близкие к симметричным схемы усиления «а» — «е» с расположением элементов усиления по возможности дальше от центра тяжести неусиленного сечении балки.

Рис. 3. Усиление балок путем увеличения сечений

а — к — схемы усиления

Усиление балок путем изменения конструктивной схемы (рис. 4) мало зависит от места опирания плит настила, однако при усилении по схемам «а» и «б» путем превращения разрезной конструкции в неразрезную требуется возможность доступа к узлам сопряжения.

Рис. 4. Усиление балок путем изменения их конструктивной схемы

а — л — схемы усиления

Практически во всех случаях усиления с изменением конструктивных схем целесообразно Использование методов активного регулирования усилий для включения в работу новых элементов.

Рис. 5. Установка наклонных ребер жесткости

а — д — без пригонки к поясам: б — г, е — с пригонкой

31 Усиление стальных стропильных ферм.

Усиление стальных ферм осуществляют подведением новых конструкций, введением дополнительных элементов решетки, изменением схемы конструкции и увеличением сечений отдельных элементов. Выбор того или иного способа усиления зависит от причин, вызвавших усиление стропильных конструкций.

Подведение новых конструкций осуществляют в том случае, если другие способы усиления не дают требуемого эффекта и если по условиям производства допустима установка дополнительных промежуточных стоек.

Дополнительные элементы решетки вводятся для уменьшения гибкости стержней в плоскости фермы, для усиления верхнего пояса фермы на местный изгиб, а также для увеличения жесткости и несущей способности фермы в целом. Усиление нижнего пояса осуществляют, как правило, увеличением его сечения. Верхний пояс усиливают шпренгельной решеткой. Дополнительную перекрестную решетку устанавливают для повышения несущей способности и жесткости фермы в целом

Наиболее распространенный характер повреждений стропильных ферм — погнутость стержней решетки, которая достигает 50...70 мм. В этом случае увеличивают сечение решетки или устанавливают предварительно напряженные элементы, снижающие искривления элементов решетки.

Одним из способов усиления ферм является надстройка висячих (вантовых) систем, к которым подвешивается усиливаемая конструкция. Этот способ особенно эффективен, если ванты можно подвешивать к рядом стоящим более высоким и устойчивым сооружениям.Усиления ферм можно добиться включением в их работу светоаэрационных фонарей.

Как уже отмечалось, усиления верхнего пояса ферм можно добиться за счет включения в его работу железобетонных плит покрытия.

При усилении стропильных ферм путем увеличения сечений стержней следует стремиться к сохранению центровки в узлах ферм.

Рис. 7. Усиление элементов стропильных ферм  а — м — схемы усиления

При усилении прямолинейных стержней путем увеличения сечений (рис. 7) для сжатых стержней наиболее рациональны схемы «а», «в», «г».

Рис. 8. Усиление узлов крепления стержней стропильных ферм

При усилении стропильных ферм путем изменения конструктивной схемы (рис. 9) обычно требуется и усиление отдельных стержней за счет увеличения их сечений.

Рис. 9. Усиление стропильных ферм путем изменения их конструктивной схемы а — к — схемы усиления

Усиление соединений  При недостаточной прочности сварных швов их усиливают увеличением длины. Наращивание швов следует производить электродами Э42, Э42А или Э46Т диаметром не более 4 мм при силе тока не более 220 А со скоростью, при которой за один проход размер катета не превышает 8 мм.

Усиление заклепочных соединений осуществляют высокопрочными болтами с предварительным напряжением. Болты устанавливают от середины узла к краям с помощью тарировочных ключей для измерения крутящих моментов. Из-за ослабления старых заклепок при установке новых высокопрочных болтов последние должны быть рассчитаны на воспринятие полной нагрузки.

 

30 Усиление стальных колонн.

Усиление колонн необходимо, как правило, при значительном увеличении нагрузок, в случае существенного коррозионного износа или при значительных локальных повреждениях. Ввиду сложности разгрузки колонн их усиление обычно выполняется под нагрузкой, что в основном определяет выбор способа усиления.

При усилении колонн путем увеличения сечений (рис. 10) используются симметричные и несимметричные схемы усиления.

Рис. 10. Усиление колонн путем увеличения сечений

а — симметричные без смещения центра тяжести; б — несимметричные со смещением центра тяжести

При усилении центрально-сжатых колонн и стоек рекомендуются симметричные схемы усиления или схемы, обеспечивающие минимальное смещение центра тяжести усиленного сечения от линий действия сжимающих усилий.

При усилении внецентренно сжатых колонн с преобладающими моментами одного знака рационально использование несимметричной схемы усиления со смещением центра тяжести усиленного сечения в сторону действия момента.

При выборе способа усиления следует учитывать условия, затрудняющие производство работ:

устройство подмостей для приварки элементов усиления;

разборку стеновых ограждений при усилении колонн крайних рядов.

При усилении колонн и стоек могут быть использованы приемы регулирования усилий с частичной разгрузкой усиливаемого элемента и одновременным увеличением расчетного сечения (рис. 12

Рис. 12. Усиление сплошных колонн

а – в - предварительно изогнутыми элементами с последующим выпрямлением; г — предварительно напряженным элементом

При увеличении усилий в колоннах требуется проверить несущую способность фундаментов и оснований.

Усиление сжатых стоек

Эффективным средством усиления сжатых стальных стержней является применение предварительно напряженных телескопических труб и элементов из других жестких профилей.

Рис. 11.1. Усиление предварительно напряженной

стойкой: 1 — предварительно напряженная стойка; 2 — сварной шов; 3 — накладки

Повышения жесткости продольных и поперечных рам возможно добиться установкой крестовых диагональных жестких связей, а когда это невозможно, — жестких распорок (ригелей) в сочетании с диагональными раскосами.

Усиление стальных стоек ненапряженными элементами осуществляют увеличением их сечения и уменьшением их свободной длины, при этом следует стремиться к максимальному увеличению радиусов инерции сечения (рис. 11.2). При выполнении усиления нагрузка на стойке не должна превышать 60...60 % расчетной.

Рис. 11.2. Схемы усиления стоек ненапряженными элементами

При небольшой гибкости усиливаемого элемента необходимо уменьшать эксцентриситет от смещения, а при гибкости λ > 80 — увеличивать его устойчивость.

Присоединение элементов усиления осуществляют в основном сваркой. Сварочный прогиб для элементов, которые усиливаются под нагрузкой, является нагружающим фактором, поэтому сначала усиливаемый элемент приваривают точечной сваркой, а затем накладывают основной шов. При этом предпочтение следует отдавать шпоночным (прерывистым) швам, которые уменьшают деформации элементов, сокращают сроки сварочных работ и уменьшают массу наплавленного металла.

32 Особенности расчета усиливаемых металлических элементов.

Расчетная схема конструкций должна отражать условия их работы и фактическое состояние, установленные данными обследований. В необходимых случаях следует выполнять расчет с использованием нескольких вариантов расчетных схем и распределения жесткостей, а также учитывать прогнозируемый износ.

Расчет выполняется только для тех частей зданий и сооружений, на которые влияют усиление, изменение режима эксплуатации, дефекты и повреждения.

Для конструкций, не имеющих дефектов и повреждений, расчет допускается ограничивать сопоставлением значений внутренних усилий (моментов, поперечных сил и т. п.) от расчетных нагрузок со значениями усилий, приведенными в первоначальной технической документации, а при изменении только нагрузок без изменения их характера и способа приложения — сопоставлением их значений.

При расчете конструкций, усиление которых выполняется под нагрузкой, необходимо учитывать напряжения, существующие в сохраняемых конструкциях в момент усиления, и последовательность включения в работу дополнительных конструкций, деталей усиления и раскрепления.

При расчете усиливаемых под нагрузкой элементов на устойчивость и деформативность следует учитывать начальные и дополнительные их деформации, возникающие на стадии усиления (в частности, дополнительные прогибы, возникающие при усилении с помощью сварки).

Искривления от сварки при проверке устойчивости сжатых и внецентренно сжатых элементов и элементов, работающих на сжатие с изгибом, допускается учитывать введением дополнительного коэффициента условий работы γс = 0,8

В расчетах на общую устойчивость коэффициент условий работы γс принимается равным 0,9,

для зданий и сооружений III класса ответственности на стадиях А и Б (см. п. 1.6) допускается принимать γп = 0,8 (как для временных зданий и сооружений), если продолжительность пребывания конструкций в этих стадиях не превышает трех лет.

Для стадии А работы конструкции (на период не более трех трех лет) также допускается:

уменьшить значение снеговых, ветровых, гололедных и климатических температурных нагрузок и воздействий в соответствии с указаниями п. 1.3 СНиП 2.01.07—85 как для периода возведения при новом строительстве:

принимать только пониженные нормативные значения нагрузок w тех случаях, когда СНиП 2.01.07—85 определены их два (полное и пониженное) значения:

принимать нормативные значения эквивалентных равномерно распределенных нагрузок от оборудования и складируемых материалов по фактическим величинам, в том числе менее 3 КПа (300 кгс/м2) для плит и второстепенных балок и менее 2 КПа (200 кгс/м2) для ригелей, колонн и фундаментов.

Нормативные значения временных, кратковременных и особых нагрузок для стадии В определяются в соответствии с требованиями СНиП 2.01.07-85.

Статический расчет конструкций, усиливаемых путем увеличения сечений без полной разгрузки, необходимо выполнять:

на нагрузки, действующие на конструкции во время усиления (начальное нагружение);

на нагрузки, которые будут действовать на конструкции после их усиления, с выбором невыгодных вариантов их сочетания.

Уровень начального нагружения элементов ограничивается с целью обеспечения их несущей способности в процессе усиления и зависимости от нормы предельных пластических деформаций соответствии с их классом по п. 4.8

В общем случае сжатия (растяжения) с изгибом значения σо определяются формулой

где No, Мох, Mоy — продольная сила и изгибающие моменты в наиболее нагруженном сечении элемента.

При расчете усиления гибких сжато-изогнутых или внецентренно жатых стержней моменты М0 вычисляются по деформированной схеме с учетом прогибов стержня

где e = M'o/No — начальный эксцентриситет продольной силы: М'о — расчетное значение момента, вычисляемое по недеформированной схеме;

f0 - начальный прогиб элемента.

В случае М'о = 0 необходимо учитывать малые случайные эксцентриситеты произвольного направления, определяемые формулой

е = mо Wo

где mo — случайное значение начального относительного эксцентриситета,

При усилении сжатых элементов увеличением их сечения (см. рис. 11.2) (без предварительного напряжения) расчет осуществляют по следующей схеме.

1. Определяют начальный прогиб усиливаемого стержня в плоскости действия момента:

где еоснх = Мнн — случайный начальный эксцентриситет продольной силы относительно оси х , принимаемый с соответствующим знаком н и Мн — расчетные значения начальной продольной силы и момента); Росэх = n2EJосх/l2x — эйлерова сила для основного стержня (Jосх — момент инерции; — расчетная длина основного стержня).

При усилении центрально сжатого элемента начальный эксцентриситет равен

где mосн — случайный начальный относительный эксцентриситет, определяемый по графику (рис. 11.6); Wос и рос — момент сопротивления и ядровое расстояние для крайних волокон усиливаемого элемента.

2. При заданной внешней нагрузке определяют возможность усиления основного стержня:

где Fоснт, Jосх,нт — характеристики усиливаемого элемента; уос — ординаты наиболее удаленных волокон сечения относительно оси хос; тс — коэффициент условий работы; Roc — расчетное сопротивление материала основного стержня; k = 0,6 — коэффициент ограничения напряжений при усилении ненапряженными элементами с применением сварки.

Для центрально сжатых элементов проверка производится в плоскости максимальной гибкости, для внецентренно сжатых — в плоскости действия момента. Если хотя бы одно из условий не выполняется, необходима полная разгрузка элемента.

3. Определяют прогиб усиленного элемента: при присоединении элементов усиления к плоским поверхностям

при присоединении к вогнутой и выпуклой поверхности

где — сумма моментов инерции элементов усиления относительно их собственных осей, параллельных оси х; Jус — момент инерции усиленного стержня; Nэ = n2EJ/l2 — эйлерова сила усиленного стержня.

4. Выполняют расчет прикрепления элементов усиления.

Расчет швов на сдвигающие усилия

где Qmax — максимальная поперечная сила; Sусх — статистический момент элемента усиления относительно оси х; аωшаг шпоночного шва.

Минимальная длина прерывистых швов

где а — коэффициент, учитывающий распределение усилий между швами элемента усиления; β, Kf, γω, γс — коэффициенты, определяемые по СНиП II - 23—81 (п. 11.2); Rωрасчетное сопротивление углового сварного шва.

Минимальная длина концевых швов

где Nусp = (NNн)·(Ауср/А)    (Nн — расчетное усилие в стержне после усиления; Ауср и А — соответственно площади элемента усиления и всего усиленного элемента).

Минимальная толщина сплошных сварных швов

5. Определяют остаточный сварочный прогиб

где λ = lef/rгибкость усиленного стержня в плоскости изгиба (lefрасчетная длина; rрадиус инерции); υx ≈ 0,04K2fобъемное укорочение при сварке (Kfкатет шва, см); ni = 1—и·1n(1—ζi)/ln2; ζi = σосi/Rосy; σосi =  ±     

(yiрасстояние от центральной оси основного сечения до места наложения i-го шва; u = 0,5 при односторонних швах в сжатой зоне сечения, u = 1,5 — то же, в растянутой зоне; u = 1—при двусторонних швах).

6. Определяют расчетные эксцентриситеты в плоскости действия моментов:

7. Проверяют устойчивость усиленного элемента в плоскости действия момента

где φе принимается по СНиП II-23—81* в зависимости от условной гибкости λ усиленного элемента и приведенного эксцентриситета mef, γс — коэффициент условия работы.

8. Проверяют устойчивость усиленного элемента в процессе сварки.

Площадь сечения элементов усиления центрально сжатых элементов определяют по формуле

где N — усилие в стойке в момент усиления; φос и φycкоэффициенты продольного изгиба старого и нового элементов.

При усилении сжатых элементов телескопическими предварительно напряженными трубами условие устойчивости внутренней сжатой трубы имеет вид

где Abплощадь сечения трубы; φ* = 1/[1+(K0 + K1) x erl]; енаружный радиус трубы; l и riее длина и радиус инерции; K0 = f0/l; K1определяется из выражения λ2 = K+2n(l — N/Nкр)K1-2n(N/Nкp)K0 = 0 (n = Ab/Aн; Aнплощадь растянутой трубы).

33 Усиление оснований реконструируемых зданий.

При проектировании объектов реконструкции необходимо выполнить проверку влияния возводимых сооружений на осадки существующих. При ленточных и столбчатых фундаментах эту проверку можно не производить, если грунты основания в пределах сжимаемой толщи имеют средний модуль деформаций Е ≥ 5 МПа и расстояние между краями новых и существующих фундаментов l 0,25 Нс, где Нс — глубина сжимаемой толщи, определенная в соответствии с требованиями СНиП 2.02.01—83. Если фундамент нового сооружения выполнен из сплошной плиты, расчет дополнительных осадок существующих зданий не производится при Е ≥ 30 МПа и l ≥ 0,5 Нс.

Для исключения влияния вновь возводимых сооружений на существующие рекомендуется выполнять разделительные стенки, консольные фундаменты, рационально размещать новые фундаменты относительно существующих. В этом случае расчет влияния новых сооружений на существующие не производится.

Новые фундаменты необходимо закладывать на одной отметке с существующими. При невозможности соблюдения этих требований до отрывки котлована должны быть выполнены ограждения в виде шпунта, свай, «стена в грунте», которые обеспечивают устойчивость основания существующего фундамента. Закрепление грунтов возможно также с помощью химических методов (силикатизации, смолизации), цементизацией и термическим обжигом.

При выполнении реконструкции сооружений, расположенных на подрабатываемых территориях или на просадочных грунтах, необходимо обратить особое внимание на надежное опирание и крепление плит покрытия и перекрытий, стропильных конструкций, подкрановых балок, стеновых панелей, связей, а также на правильное выполнение деформационных швов.

При увеличении нагрузок на существующие фундаменты рекомендуется также устройство ограждающей конструкции из свай или шпунтов.

Устройство свай (шпунтов) для усиления основания не рекомендуется в слабых грунтах (рыхлых песках, глинистых при показателе текучести Jh=1, илах, торфах и т. п.)..

Укрепление грунтов термическим способом рекомендуется в глинистых грунтах с числом пластичности Jp=0,05...0,20 при условии, если они расположены выше установившегося уровня грунтовых вод.

При устройстве по периметру фундамента ограждающей конструкции из свай или шпунтов несущая способность основания существенно возрастает. Это происходит за счет трения между грунтом и ограждением, в результате часть вертикальной нагрузки от грунтового ядра передается на сваи (шпунты).

Кроме того, часть вертикальной нагрузки от фундамента передается через ограждение на грунты, лежащие ниже свай (шпунтов), которые, как правило, имеют значительно более высокое допускаемое давление, чем грунт под подошвой фундамента. При устройстве ограждения следует стремиться к тому, чтобы расстояние между сваями (шпунтом) и обрезом усиливаемого фундамента было минимальным из условия производства работ

Рис. 8.1. Усиление основания ограждающими сваями: 1 — колонна; 2 — фундамент; 3 — обвязочная балка; 4 — сваи усиления

При ограждении из одиночных свай последние рассчитываются на горизонтальную нагрузку в соответствии с рекомендациями СНиП 11-17—77. В этом случае сваи принимаются идеально упругими, а грунт идеализируется (имитируется) винклеровым основанием с коэффициентом постели, линейно возрастающим по глубине. Несущая способность усиливаемого основания определяется максимальной горизонтальной нагрузкой на ограждающую конструкцию (сваю).

34 Восстановление гидроизоляции и влажностного режима.

Нарушение гидроизоляции и влажностного режима является причиной многочисленных дефектов как отдельных конструкций, так и зданий и сооружений в целом

Отсутствие дренажа или его некачественное выполнение (заиливание, засорение) приводит к затапливанию подвалов, подмыву и просадкам фундаментов.

проникновение грунтовых вод происходит обычно через неплотности в бетоне в местах примыкания стен к днищу, где чаще всего происходят перерывы в бетонировании, в результате которых ухудшается сцепление нового и старого бетона. Протечки могут происходить также в местах расположения закладных деталей, смотровых люков и т. п. В то же время при качественном выполнении монолитный железобетон обеспечивает надежную защиту от проникновения грунтовых вод, о чем может свидетельствовать многолетний опыт эксплуатации тоннелей метрополитена, расположенных под реками и водоемами, морских судов, доков и шлюзов.

Надежность гидроизоляции подземной части сооружений проверяется по наличию влаги, воды внутри подвала, а для емкостей — по падению уровня жидкости от проектной отметки.

Как правило, стены подвалов выполняются из кирпичной кладки или бетонных блоков и имеют большое количество швов, которые не обеспечивают их водонепроницаемость. Оклеечная наружная гидроизоляция служит обычно недолго, разрушаясь под действием грунтовых вод. Особенно опасно нарушение гидроизоляции при воздействии агрессивных грунтовых и техногенных вод.

Борьба с сыростью осуществляется путем улучшения воздухообмена, устройством приточно-вытяжной вентиляции, отвода атмосферных вод, организованного водоотвода с. кровли, соответствующей планировки территории вокруг здания, ремонта отмостки и т. п. При значительных дефектах необходимо заново устраивать гидроизоляцию с внешней стороны стен, предварительно тщательно очистив их от грунта. Эффективным средством гидроизоляции стен является устройство глиняного замка в виде послойно уложенной и уплотненной мятой жирной глины шириной 30...40 см.

Восстановление гидроизоляции возможно также путем инъекции цементного раствора с внешней стороны в местах предполагаемых протечек. Инъецирование производится водоцементным раствором (без песка), чтобы состав не отфильтровывался в порах грунта и мог проникать во все пустоты кладки.

Достаточно эффективным средством гидроизоляции стен подвала, имеющих недостаточную толщину, является устройство утолщенной цементной штукатурки или железобетонной рубашки толщиной 10...15 см. Перед выполнением этой работы с внешней стороны устраивают водопонижение или отводят поступающую воду через специальные трубки.

Восстановление внешней гидроизоляции при реконструкции осуществляется наклейкой 3...4 слоев гидроизола, проклеенных стеклотканью.

Чтобы защитить наклеечную гидроизоляцию от механических повреждений при обратной засыпке грунта, ее обычно защищают кирпичной кладкой в 0,5 керамического кирпича пластичного прессования или асбестоцементными листами.

При реконструкции строительных объектов особое внимание следует уделять надежной гидроизоляции кровли, которая в большей степени, чем остальные элементы здания, подвергается неблагоприятным атмосферным воздействиям. Дефекты кровель приводят к увлажнению всех конструкций здания и снижению их эксплуатационной надежности. Эти дефекты вызывают обрушение карнизов, штукатурки фасадов. Причиной появления дефектов, в частности, в металлических кровлях является их плохое содержание (отсутствие периодической покраски, которую надо производить раз в 3...4 года), неисправности воронок, водосточных труб и т. д.

В рулонных кровлях нарушение гидроизоляции происходит вследствие неровностей основания, некачественных водоразделов и т.п., что приводит к образованию ям, застою воды, льда, вспучиванию и постепенному разрушению покрытия. Под воздействием солнечной радиации часто происходит сползание мастики в местах значительных уклонов (опорные части ферм, места примыканий к стенам, парапетам, вентиляционным шахтам, температурно-осадочным швам и др.).

Значительные дефекты в кровлях возникают в цехах с повышенной влажностью (бетоносмесительных узлах, местах расположения пропарочных камер, банях и т. п.), где конденсируется пар на потолочной поверхности, происходит увлажнение бетона и вследствие капиллярного подсоса увлажняется утеплитель кровли. В результате снижения теплоизоляционных свойств происходит постепенное разрушение плит покрытия, коррозия арматуры, отслоение защитного слоя и даже обрушение конструкции.

Устранение указанных дефектов достигается устройством эффективной принудительной вентиляции, снижением утечек пара, гидрозащитой внутренних поверхностей плит пленочным покрытием, гидрофобизацией и т.п.

33 Усиление фундаментов.

Фундаменты являются важным элементом здания, обеспечивающим его прочность, устойчивость и долговечность, в связи с чем вопросам их усиления придается большое значение.

Понятие "усиление фундаментов" включает в себя несколько моментов: усиление грунтового основания, увеличение площади подошвы фундамента и его разгрузка за счет устройства дополнительных опор. Особенно неблагоприятна для большинства зданий неравномерная осадка фундаментов, обусловленная неоднородностью грунтового основания и ухудшением его свойств при замачивании. Поэтому при усилении фундаментов часто оказывается достаточным улучшить физико-механические характеристики грунтового основания.Наибольшее распространение получили цементация и силикатизация грунтов.

При усилении бутобетонных фундаментов старых зданий хорошо зарекомендовал себя метод железобетонной обоймы, который позволяет увеличить площадь подошвы фундамента и одновременно повысить его прочность. Для этого в фундаменте пробиваются сквозные отверстия, через которые пропускаются стальные или железобетонные балки с шагом 2-3 м. После укладки арматурных сеток или каркасов заливается бетонная смесь. Совместная работа обоймы и фундамента обеспечивается балками и силами трения по поверхности контакта.

С целью повышения эффективности обоймы перед ее устройством производится обжатие грунта основания бетонными блоками (банкетами) при помощи домкрата (табл.4.11, п.2).

Усиление осуществляется следующим образом: в предварительно пробитые в фундаменте отверстия вставляются балки (поз.1) и замоноличиваются бетоном класса В15-В20. Затем укладываются банкеты и на них - домкрат в распор с балкой. Усилие обжатия грунта домкратом фиксируется с помощью распорок, а затем - отвердевшим бетоном обоймы. Работы по усилению производятся; последовательно, участками по всей длине фундамента.

Если прочность материала фундамента низкая и не позволяет выполнить обжатие грунта выше упомянутым способом, то фундамент предварительно усиливают продольными балками, укладываемыми на растворе в специально устроенные ниши (табл.4.11, п.3).

Усиление фундаментов сваями получило в последнее время широкое развитие при реконструкции зданий. В табл.4.12, п.1 показан способ усиления набивными сваями, скважины под которые делаются посредством пневмопробойника импульсно-упорного действия. При сравнительно небольшой мощности воздействующего механизма пробойник позволяет получать в  пылевато-глинистых грунтах скважины диаметром 12-20 см без выемки грунта, что очень удобно в стесненных условиях реконструкции. Кроме того, вокруг скважины создается зона уплотненного грунта, обеспечивающая благоприятные условия для работы сваи.

В табл.4.12 представлены способы усиления фундамента сваями, состоящими из последовательно вдавливаемых в грунт секций. Сваи могут быть из стальных труб или железобетонными. Задавливание секций, имеющих длину 0,5-1,5 м, осуществляется с помощью домкрата, установленного под фундаментом в специально вырытой нише или же по обе стороны от фундамента. Наращивание секций сваи производится до тех пор, пока сопротивление вдавливанию не достигнет заданного проектом предельного значения. Затем давление в гидродомкрате сбрасывается до величины, при которой определяется контрольное погружение. Величина контрольного погружения должна быть не более 0,1 мм за 30 минут наблюдений. Установки для вдавливания УБПС-640, 660, 3000 рассчитаны соответственно на усилия 640, 660 и 3000 кН, минимальный шаг свай составляет 450-600 мм.

Эффективность усилия в каждом конкретном случае определяется в зависимости от технического состояния существующего фундамента и ожидаемого после реконструкции увеличения нагрузки.

Таблица 4.11 Усиление фундамента наращиванием

1 Усиление без обжатия грунта основания

 

1 Балка I 16...24

2 Бетон наращивания кл. В12,5...В20

3 Арматурная сетка из стержней кл. А1Ø10... 12 с шагом 200

2 Усиление с обжатием грунта основания

1 Балка I 16...24

2 Бетон наращивания кл. В12,5...В20

3 Домкрат

4 Бетонный блок (сборный)

3 Усиление стальной обвязкой и обжатием грунта основания

1 Балка I 16...2

2 Бетон наращивания кл. В12,5...В2

3 Домкрат

4 Бетонный блок

5 Балка [ 20...26

Таблица 4.12    Усиление фундамента сваями

1 Усиление буронабивными сваями

1 Балка 16...24

2 Бетон кл. В12,5...В20

5 Буронабивная свая Ø120...200

6 Арматурный каркас

2 Усиление вдавливанием свай вне фундамента

7 Железобетонная балка (ростверк)

8 Стальные тяжи Ø20...25

9 Домкрат

10 Элемент свай

3 Усиление вдавливанием свай под фундаментом

9  Домкрат

10 Элемент сваи

11 Распределительная плита

12 Направляющая стойка

Усиление жестких фундаментов может осуществляться путем увеличения их подошвы или с помощью свай различного типа. При проектировании усиления необходимо максимально использовать существующий фундамент, обеспечив его совместную работу с элементами усиления.

Несущую способность фундаментов реконструируемого объекта определяют с учетом фактических прочностных и деформативных характеристик материала фундамента и грунтов основания, а при свайных фундаментах используют также результаты полевых испытаний (зондирование, статические испытания и др.).

Увеличение размеров подошвы фундаментов необходимо при росте нагрузок, недостаточной несущей способности грунтов основания, а также при существенном повреждении фундаментов в процессе эксплуатации. Эффективными средствами увеличения подошвы фундаментов являются железобетонные «рубашки», наращивание, частичная или полная подводка новых фундаментов.

Железобетонная «рубашка» представляет собой монолитную оболочку,   которая охватывает существующий фундамент со всех сторон. Арматура оболочки образует пространственный каркас, и для обеспечения совместной  работы старого фундамента с конструкцией усиления обязательно стыкуется на сварке с предварительно обнаженной арматурой усиливаемого фундамента. Рабочую арматуру «рубашки» устанавливают вдоль граней усиливаемого фундамента (рис. 10.1).

 Рис. 10.1. Усиление фундаментов железобетонной «рубашкой»:

1усиливаемый фундамент; 2 — железобетонная «рубашка»; 3арматура усиления; 4 — усиливаемая колонна; 5 — обойма колонны

 Рис. 10.2. Усиление ленточного фундамента подводкой:

1усиливаемый фундамент; 2 — разгружающая балка; 3 — подставка; 4 — распределительный ростверк; 5 — домкрат

Если, кроме усиления фундаментов требуется также усиление колонны, то бетонирование обоймы для колонны и «рубашки» следует выполнять одновременно. Если колонна не требует усиления, «рубашку» фундамента заводят выше нижней части колонны на величину не менее большей стороны колонны и не менее пяти толщин «рубашки».

При усилении фундамента наращиванием увеличение его подошвы осуществляется с одной, двух или трех сторон. При наращивании, так же как и при устройстве «рубашек», необходимо обеспечивать стыковку на сварке оголенной арматуры старого фундамента с новой арматурой усиления.

Одним из вариантов наращивания является передача части нагрузки с существующего фундамента на отдельные плиты с помощью металлических или железобетонных балок, пропущенных через отверстия в усиливаемом фундаменте (рис. 10.2). В этом случае опорные плиты предварительно обжимаются с помощью домкратов или гравитационной нагрузкой до расчетной.

Ленточные неармированные фундаменты могут наращиваться с помощью арматуры, заанкеренной в тело фундамента и обетонированной на расчетную ширину усиления (рис. 10.3).

Рис. 10.3. Усиление ленточных фундаментов наращиванием:

1усиливаемый фундамент; 2 — арматурный каркас наращивания; 3 — металлические трубы; 4 — шпуры

Подводка новых частей фундамента может осуществляться рядом с существующим (рис. 10.4). В этом случае нагрузка от несущего элемента передается на фундамент усиления через подкосы и металлическую (железобетонную) обойму.

При подводке новых фундаментов следует обеспечить плотное прилегание подошвы существующего фундамента с новым. При подводке под ленточные фундаменты конструкции усиления рекомендуется размещать на прямых участках с максимальными нагрузками, так как подводка новых фундаментов в углах и пересечениях вызывает серьезные трудности.

Усиление фундаментов с помощью свай осуществляется путем устройства свай по контуру существующего фундамента или под ним. Такое усиление применяется при значительных и неравномерных осадках грунтов основания, при существенном увеличении нагрузок на фундаменты, для повышения устойчивости основания в случае приложения к фундаментам значительных горизонтальных сил и т. д.

Цельные сборные железобетонные сваи могут применяться, когда габариты цеха позволяют разместить крупногабаритную сваебойную технику и когда динамические нагрузки при забивке свай не приводят к повреждениям окружающих конструкций. При наличии вблизи зоны забивки свай несущих конструкций, неспособных выдержать значительные динамические нагрузки, возможно осуществить вдавливание цельных свай в грунт с помощью гидродомкратов.

 Рис. 10.4. Усиление фундаментов подводкой:

1усиливаемый фундамент; 2 — дополнительные фундаменты; 3 колонка; 4 — металлическая обойма; 5 — металлические подкосы; 6 — элемент усиления

Эффективным средством усиления фундаментов, особенно при неравномерных деформациях сооружения, являются составные сборные сваи «Мега», которые не требуют больших габаритов помещения и включаются в работу сразу после вдавливания. Недостатком этих свай является достаточно высокая трудоемкость работ по их устройству, а также необходимость выполнения временного котлована под подошвой фундамента, что снижает его несущую способность в процессе усиления (рис. 10.5).

Для воспринятия значительных растягивающих усилий применяют винтовые сваи. При усилении фундаментов используют также монолитные сваи различных типов: буронабивные сваи требуют громоздкого оборудования, однако могут применяться в любых грунтовых условиях, в том числе и тех, где забивные сваи неприменимы; пневмонабивные, виброштампованные сваи и сваи Страуса могут применяться в помещениях с ограниченной высотой и не требует сложного технологического оборудования.

 Рис. 10.5. Усиление фундамента с помощью свай Мега:

1  усиливаемый фундамент; 2  распределительный элемент; 3 — домкрат; 4 — подпорка; 5 — головной элемент; 6 — рядовой элемент; 7 — нижний элемент сваи

При передаче на фундамент дополнительных горизонтальных и вертикальных нагрузок эффективны буроинъекционные (корневидные) сваи, которые могут также просверливаться через существующий фундамент, используемый в этом случае как ростверк (рис. 10.6).

 Рис. 10.6. Усиление фундамента с помощью корневидных свай:

1усиливаемый фундамент; 2 — корневидные сваи

Вместо свай типа «Мега» могут применяться комбинированные металлические трубчатые сваи, погружаемые посекционно в грунт гидродомкратами. Их затем заполняют монолитным бетоном.

Включение в работу существующего фундамента свай усиления выполняется с помощью монолитного плитного ростверка или распределительных балок, которые образуют со сваями рамную систему.

 Рис. 10.7. Усиление фундамента ростверком, расположенным в пределах высоты фундамента:

1усиливаемый фундамент; 2 — ростверк  усиления; 3 — существующие сваи; 4 — сваи усиления

Плитный ростверк возможно устраивать в пределах высоты существующего фундамента (рис. 10.7) и путем подводки под него (рис. 10.8) Подводка нового ростверка под существующий фундамент достаточно трудоемка и применяется в случае невозможности уширения фундамента в пределах его высоты, при его повреждениях, а также слабых грунтах под его подошвой или при повреждении головок существующих свай.

Примеры объединения усиливаемых фундаментов с дополнительными сваями с помощью плитного ростверка приведены на рис. 10.7, 10.8.

 Рис. 10.8. Усиление ленточного фундамента сваями с подводкой нового ростверка: 1 — усиливаемый фундамент; 2 — существующие сваи; 3 — ростверк усиления; 4 — сваи усиления; 5  арматурные сетки; 6 — отогнутые стержни

Расчет усиления фундаментов выполняется по двум группам предельных состояний с учетом требований соответствующих нормативных документов СНиП

По первой группе выполняется расчет прочности конструкций фундамента и несущей способности грунта основания, по второй — расчет оснований по деформациям, который требует учета совместной работы здания с основанием.

Несущая способность существующего фундамента определяется с учетом его фактического состояния (степени износа), прочностных характеристик материалов и грунтов основания.

 Рис. 10.9. Схемы усиления фундаментов на свайном (а) и естественном (б) основаниях:

1усиливаемый фундамент; 2 — ростверк усиления; 3 — сваи усиления

 

Рис. 10.10. Усиление ленточного фундамента на естественном основании сваями с устройством рамной системы:

1усиливаемый фундамент; 2 — сваи усиления; 3 — железобетонный ригель; 4 — железобетонная подушка; 5 — омоноличивание пробитого под ригель отверстия

Расчет свайного усиления выполняется в зависимости от конструктивного решения существующего фундамента и его состояния. При плохом состоянии свайного фундамента, а также при опирании фундамента на естественное основание количество свай усиления определяется из расчета воспринятия всей нагрузки. При хорошем состоянии существующего свайного фундамента количество свай усиления определяют из расчета передачи на них только дополнительной нагрузки.

Несущая  способность  трубобетонных  вдавливаемых свай определяется по формуле

Fd = Eи x,                              (10.1)

где Fи — усилие вдавливания; у, — переходный коэффициент, принимаемый равным 0,9 для глинистых грунтов, 0,85 — для песчаных.

Расчет каждого отдельного элемента составной сваи типа «Мега» осуществляется как для сжатого элемента с учетом продольного изгиба и случайного эксцентриситета, определяемого в соответствии с требованиями СНиП 2.03.01—84. Учитывая возможную несоосность при стыковке отдельных элементов, несущая способность всей сваи определяется умножением на поправочный коэффициент, который принимается при длине сваи до 4 м — 0,75; от 4 до 6 м — 0,6 и свыше 6 м — 0,5.

 Рис. 10.11. Усиление ленточного фундамента на естественном основании сваями с устройством рамной системы: 1 — усиливаемый фундамент; 2 — сваи усиления; 3 — металлические балки; 4 — стена

 Рис. 10.12. Усиление столбчатого фундамента на естественном основании с устройством ростверка, армированного металлическими балками: 1 — усиливаемый фундамент; 2 — ростверк усиления; 3 — металлические балки; 4 — сваи усиления

26. Замена и усиление крыш, перегородок и других элементов.

При реконструкции старых жилых, общественных и промышленных зданий часто возникает необходимость в усилении или полной замене кровли, которая может быть односкатной, двускатной, вальмовой, полувальмовой, мансардной и других типов. Несущие конструкции таких кровель, как правило, выполняют из дерева, а ограждающие — из листовой стали, асбестоцементных волнистых листов, плоских плиток, черепицы. Угол наклона кровли зависит от вида покрытия, архитектурных и климатических требований.

При большом износе кровли и ее полной замене рекомендуется применять железобетонные конструкции — стропила, прогоны, крупноразмерные плиты; при частичной замене и ремонте только несущих конструкций крыш — деревянные дощатые стропила индустриального изготовления. Сборные конструкции деревянных стропил применяют для угла наклона ската 22...30° при расстоянии между несущими стенами от 4 до 8 м, шаг стропил — 1,5 м. Стропильные ноги выполняют из двух досок сечением 5×18 см, скрепленных гвоздями диаметром 5 мм, длиной 150 мм. Стропильная нога упирается в мауэрлат из доски сечением 5×18 см, длиной 70 см. Железобетонные конструкции кровли обеспечивают ее максимальную долговечность, поэтому их следует рекомендовать при полной замене покрытия. В качестве несущих элементов кровли могут применяться железобетонные тавровые стропила, которые укладывают одним концом на наружную стену, а другим — на коньковый железобетонный прогон, расположенный на кирпичных столбах средней продольной стены здания. При отсутствии продольных стен железобетонные стропила опираются на наружные стены и соединяются затяжкой из круглой стали. Шаг стропил — 1,5...2 м, по ним располагаются деревянные бруски обрешетки сечением 60×60 мм, которые крепятся к стропилам хомутами.

В качестве несущих элементов из железобетона применяют тавровые панели пролетом 6...8 м, шириной 600 мм с высотой ребра от 200 до 240 мм или железобетонные ребристые укрупненные панели шириной 1,5 м, пролетом 5...8 м.

В качестве стропильных конструкций для вновь проектируемых или реконструируемых кровель Харьковским инженерно-строительным институтом разработаны «Скелетные» плиты покрытий со сниженной материалоемкостью (рис. 8.2). Эффективным материалом для несущих и ограждающих конструкций при реконструкции кровель являются армоцементные тонкостенные пространственные конструкции или элементы из мелкозернистого бетона. Разработаны и применяются армоцементные панели таврового сечения пролетом до 8,85 м, шириной 1500 мм. Имеется положительный опыт (более 20 лет) эксплуатации покрытий из стеклопластиковых панелей, обладающих светопрозрачностью, долговечностью, малой массой, удобных для транспортировки, укладки и крепления.

Нормальная эксплуатация кровель из рулонных материалов возможна при периодическом восстановлении эластичности. Ремонт рулонных кровель при реконструкции сводится к окраске их теми же смолистыми материалами, которые входят в состав пропитанного картона, восстановлению покрытия в местах разрушения, отслоения или механического повреждения. Отслоившиеся участки кровли приклеивают к очищенному от грязи основанию на соответствующей мастике, при вспучивании рулонное покрытие крестообразно разрезают до основания, затем все слои отгибают, очищают, тщательно приклеивают мастикой, а сверху заклеивают разрез рубероидом. Наклейка рубероида производится при температуре мастики не ниже 160 °С.

Рис. 8.2. Стропильные конструкции из «скелетных» плит

При реконструкции зданий различного назначения часто возникает необходимость в перепланировке помещений, что связано с устройством новых перегородок. При этом применяют как мелкоразмерные конструкции перегородок из гипсо- и шлакобетонных блоков, так и каркасные перегородки из гипсо- и древесноволокнистых плит, а также гипсобетонные и железобетонные панели на комнату. Каркасные перегородки выполняют из деревянных стоек сечением 5×5 см, верхней и нижней обвязок из брусков 4х8 см и гипсоволокнистых плит размером 120×300×40 мм. Такие перегородки имеют хорошую гвоздимость и звукоизоляцию. Гипсобетонные перегородки имеют высоту до 3 м и длину до 6 м. Их изготавливают из гипсобетона с плотностью до 1,25 т/м3 и из бетона класса В2,5. Для обеспечения жесткости и прочности перегородки армируют брусками сечением 40×25 мм по контуру и ромбической решеткой из брусков сечением 25×15 мм. Перегородки между комнатами устанавливают непосредственно на железобетонные плиты перекрытия, а междуквартирные, которые состоят из двух рядов панелей с зазором 40 мм, — на специальные железобетонные балки.

Нередки случаи появления трещин, деформаций или полного разрушения перегородок из мелкозернистых элементов, возведенных в подвальных помещениях. Причиной таких дефектов, как правило, является возведение таких перегородок прямо на бетонной подготовке или чистому полу, на насыпных грунтах, которые при затоплении подвалов техногенными водами дают дополнительную просадку. Аналогичные дефекты вызывает устройство перегородок на смерзшихся грунтах, которые оседают при оттаивании.

Для устранения небольших дефектов рекомендуется выполнять местное уплотнение грунта с втрамбовкой в него щебня и крупнозернистого песка. Для этой цели в грунт рядом с перегородкой забивают обрезки стержней или труб диаметром 30...50 мм, поверх которых втрамбовывают щебень или тощий бетон. Затем перегородки крепят цементным раствором. При значительных дефектах перегородки полностью разбирают и выполняют новые по уплотненному основанию.

27 Замена лестниц и балконов.

Наиболее часто требуют замены деревянные лестницы, существующие в старых кирпичных жилых и общественных зданиях. Встречаются одно-, двух- и трехмаршевые лестницы, причем наиболее распространены двухмаршевые. Для замены лестниц применяют металлические или железобетонные косоуры и железобетонные ступени, а также крупноразмерные железобетонные марши и площадки.

Предпочтение следует отдавать лестницам из мелко- или крупноразмерных железобетонных элементов. Сборные конструкции лестниц из мелкоразмерных элементов состоят из косоуров пролетом до 4 м, подкосоурных балок длиной до 3 м и ступеней длиной до 1,35 м, что позволяет устраивать лестницу в зданиях с высотой этажа от 2,85 до 3,9 м. Допустимая нагрузка на конструкции лестниц — 30 кПа, максимальный вес сборного элемента 4,6 кН. Ограждения в таких зданиях — типовые, как в новых объектах.

При ограниченных по грузоподъемности подъемно-монтажных механизмах применяют не массивные сплошные, а облегченные железобетонные ступени уголкового типа, масса которых в 2 раза ниже.

Крупноразмерные элементы для замены лестниц состоят из двухкосоурных маршей высотой 1,35...1,95 м, шириной 1,05...1,15 м и площадок с выпускными ребрами. Конструкции выполняют из бетона класса В20 и арматуры класса A-III и B-I.

С целью снижения массы конструкций лестниц разработаны и применяются аналогичные конструкции складчатого типа с толщиной плиты 45 мм, которые изготовляют из мелкозернистого бетона класса В25.

В старых жилых и общественных зданиях устраивали балконы в виде открытых площадок на уровне этажей здания. Эти балконы имели прямоугольные, полукруглые, овальные и другие формы в плане. Старые балконы, как правило, выполнены из металлических балок различного профиля и уложенных на них железобетонных плит или консольных железобетонных плит, заделанных в стены.

При хорошей гидроизоляции балконы предохраняют стены от увлажнения и служат достаточно продолжительное время. Однако, находясь в условиях постоянного атмосферного воздействия, увлажнения, попеременного замораживания и оттаивания, балконы раньше других частей зданий выходят из строя и грозят разрушением. Кроме того, в большинстве случаев в старых зданиях заполнителем для бетона служил щебень из кирпичного боя, что не обеспечивало требуемую плотность и морозостойкость конструкций балконов. Из-за низкой коррозионной стойкости не оправдали себя также конструкции балконов с металлическими балками. Натурные наблюдения позволили разработать ряд практических рекомендаций, обеспечивающих длительную безопасную эксплуатацию балконов: содержание их в чистоте, очистка от снега, грязи, громоздких и тяжелых вещей, систематический ремонт гидроизоляции и т. д. Особенно подвержены разрушению края балконной плиты, которые промерзают с трех сторон и в большей степени подвержены воздействию влаги и коррозионного процесса.

При незначительных (поверхностных) разрушениях балконных плит их ремонтируют путем очистки от отслоившегося бетона, заделки поврежденных мест мелкозернистым бетоном классов В20...В25 с последующей гидроизоляцией мастикой, сохраняющей в течение длительного времени эластичность.

При значительных разрушениях старых балконов их полностью разбирают и заменяют новыми. Замена балконов — трудоемкий процесс, вызванный невозможностью укладки балконов одновременно с кладкой стен, как это обычно делается при новом строительстве, а также невозможностью их заделки на всю толщину стены.

Рекомендуются два конструктивных решения при замене балконов. При первом — плитном — железобетонные балконные плиты длиной от 2 до 3,2 м, шириной 1,19 м заделывают в стену на глубину 390 мм и крепят дополнительно кронштейном из уголковой стали к железобетонным перекрытиям. При втором варианте — балочном две балки сечением 100X150 мм, длиной 1,2 м заделывают консольно в стену и на них опирают железобетонные плиты балконов. Балки могут заделываться в уровне опирания плит перекрытия и тогда их следует страховать сверху металлическими кронштейнами, приваренными к существующим плитам перекрытия, или могут подводиться под плиты. При балочном варианте возможна также приварка к консольным балкам обвязочной балки. В этом случае балконная плита опирается и на обвязочную балку.

28. Принципы усиления деревянных конструкций.

Деревянные конструкции широко применялись в старых жилых, общественных и реже в промышленных зданиях с нормальным температурно-влажностным режимом. Основная область применения конструкций из дерева — покрытия с наружным отводом атмосферных вод и междуэтажные перекрытия. Многолетний опыт их эксплуатации показал, что при отсутствии увлажнения, проветривания, систематической защите от гниения деревянные конструкции обеспечивают длительный (несколько десятков лет) срок безопасной работы.

Для конструкций из дерева применяют преимущественно хвойные породы, а для ответственных деталей соединений (шпонок, нагелей, вкладышей) — твердые лиственные породы.

При поражении гнилью опорных частей отдельных балок перекрытий взамен обрезанного сгнившего конца устанавливают две накладки из досок, сечение которых определяется расчетом и должно быть несколько больше, чем сечение существующей балки (рис. 11.8).

Рис. 11.8. Усиление опорной части балки перекрытия:

1 — накладки; 2 — усиливаемая балка; 3 — вкладыш; 4 — соединительные элементы

При большом объеме повреждений применяют прутковые протезы, которые изготовляют заранее в мастерских.

Длину протезов принимают на 10 % больше двойной длины обрезанного конца балки. Опорные части выполняют из швеллеров (№ 20 — 30 — для балок междуэтажных перекрытий, № 12 — 16 — для чердачных перекрытий).

Для установки прутковых протезов под дефектные балки подводят временные опоры, разбирают деревянное перекрытие по ширине на 75 см снизу и на 1,5 м сверху от стены, спиливают поврежденный участок балки по длине примерно на 0,5 м, заводят протез в опорную нишу и скрепляют его с балкой гвоздями (рис.11.9).

Рис. 11.9. Усиление балок перекрытия прутковыми протезами: 1 - прутковый протез; 2 — усиливаемая балка

Пораженную грибком древесину необходимо немедленно сжечь; новую древесину должны применять в воздушно-сухом состоянии, а также обрабатывать огнезащитными составами и антисептиками.

При повышенных нагрузках на перекрытие в деревянных балках появляются продольные трещины в средней зоне. Аналогичные трещины могут возникнуть и при усушке древесины. При незначительных дефектах деревянных перекрытий их ремонт осуществляют протезированием, наращиванием сечения балок, частичной заменой черного или чистого пола. Протезирование применяют при поражении гнилью или жучками небольших участков балок, оно заключается в аккуратном вырезании дефектного участка и установкой на гвоздях (болтах) новой древесины. Места усиления должны быть соответствующим образом антисептированы. При усилении наращиванием сечение балки увеличивается накладками расчетного сечения по всей длине или на части пролета. Усиливаемые элементы крепят к существующей балке гвоздями или болтами.

При достаточной толщине перекрытия усиление деревянных балок может быть осуществлено с помощью надбалок или подбалок, которые крепят к усиливаемой балке с помощью вертикальных болтов. Усиленные концы балок междуэтажных перекрытий антисептируют и заделывают в стены наглухо, в чердачных перекрытиях балки оставляют открытыми сверху, утепляя их эффективным материалом. Элементы усиления должны быть изолированы от каменной кладки (бетона) прокладкой из толя или рубероида.

При значительных дефектах деревянных балок рекомендуются преобразование их в шпренгельные фермы, в балки составного сечения или полная замена путем установки рядом с поврежденной балкой новой.

Ремонт деревянных покрытий, как правило, связан с расстройством узловых соединений (появлением трещин в местах концентрации напряжений), обнаружением продольных трещин в стропильных конструкциях из-за усушки древесины или перегрузки кровли, гниением деревянных конструкций из-за плохого проветривания, замачивания, некачественного антисептирования и т. п.

Усиление стропил при незначительных повреждениях гнилью осуществляют протезированием или наращиванием. При необходимости увеличения уклона устанавливают новые стропила, которые соединяют с существующими стойками и подкосами (рис. 11.10). При наличии средней стены увеличения несущей способности стропил можно добиться установкой дополнительных подкосов, а в случае ее отсутствия — второй по высоте затяжкой или шпренгелем.

Рис. 11.10. Усиление деревянных стропил: 1 — усиливаемые стропила; 2 — новые стропила; 3 — подкос; 4 — шпренгель

29 Надстройка жилых и общественных зданий.

Надстройка старых жилых и общественных зданий со стенами из каменных материалов высотой 2...5 этажей осуществляется в основном в крупных городах для обеспечения более высокой плотности застройки, улучшения внутренней планировки помещений и архитектурного ансамбля города. Наружное обследование фундаментов и стен многих старых зданий свидетельствует об определенном резерве их несущей способности, что создает принципиальную возможность увеличения их высоты без ущерба для эксплуатационной надежности. Принятию решения по надстройке должно предшествовать детальное обследование оснований, фундаментов, размеров и прочностных характеристик кладки стен.

Надстройка осуществляется, как правило, в пределах 1...3 этажей и сопровождается капитальным ремонтом существующего здания: заменой деревянных перекрытий на более долговечные железобетонные, перепланировкой помещений, заменой перегородок и т. п.

Наиболее экономична надстройка зданий с использованием существующих стен и фундаментов без их усиления. Ее осуществляют после тщательной технико-экономической, социальной и архитектурной оценки целесообразности проведения работ. Изучив гидрогеологические условия грунтов основания, допускаемое давление под подошвой фундаментов и прочностные характеристики кладки наружных и внутренних стен, принимают конструктивное решение надстраиваемых этажей и их количество. Учитывая жесткие ограничения по дополнительной нагрузке на существующие стены и фундаменты, следует стремиться к максимальному снижению массы несущих и самонесущих конструкций надстраиваемых этажей.

Актуальной проблемой для нашей страны является модернизация малоэтажных крупнопанельных жилых домов первых массовых серий, построенных в конце 1950—1960 гг. Общая площадь этих зданий составляет свыше 500 млн. м2, их внешний облик и внутренняя планировка не отвечают возросшим эстетическим и социальным требованиям. Наряду с предложениями о постепенной (по мере решения жилищной проблемы) разборке первых индустриальных жилых домов и строительстве на их месте более современных жилых зданий разработаны более экономичные предложения по их реконструкции и надстройке. К наиболее перспективным из этих решений относятся:

надстройка над существующими зданиями 2...4 этажей, опирающихся на автономные опоры, в которых размещаются лифты, лестницы, санузлы, коммуникации, инженерное оборудование и т. п.;

пристройка эркеров-ризалитов.

Оба варианта предусматривают повышение комфортности жилых помещений, увеличение полезной площади жилых комнат, кухонь, подсобных помещений, а также улучшение архитектурного облика зданий.

35 Надстройка промышленных зданий.

Надстройка промышленных зданий старой постройки производится в связи с несоответствием их габаритных размеров новым условиям эксплуатации (невозможностью установки нового технологического оборудования, отсутствием подъемно-транспортных механизмов, плохой освещенностью, загазованностью и т.п.). Надстройка промышленных зданий — сложный и дорогостоящий процесс, который, как правило, осуществляется без остановки или с минимально допустимой остановкой основного производства. Поэтому принятию решения о надстройке должен предшествовать тщательный технико-экономический анализ ее целесообразности.

Одним из наиболее удачных примеров надстройки промышленного предприятия без остановки производства является разработанное НИИЖБ Госстроя СССР новое покрытие над шестипролетным зданием московского завода «Компрессор». Старое одноэтажное каркасное здание главного корпуса завода имело высоту около 10 м, ширину 81 м, пролеты 13,5 м и не удовлетворяло требованиям новой технологии производства. По периметру корпуса было осуществлено наращивание колонн до высоты 16 м, по ним устроен опорный контур из металлической трубы большого диаметра, заполненной бетоном. К опорному контуру подвешено новое покрытие из металлической мембраны пролетом 80 м (рис. 12.1).

Рис. 12.1. Реконструкция главного корпуса завода «Компрессор»:

1 существующее покрытие; 2 — мембрана; 3 — временный анкер

После устройства новой кровли существующее покрытие было поэлементно разобрано.

Харьковским ИСИ разработан проект реконструкции одноэтажного главного корпуса одного из московских заводов приборостроения. Главный корпус построен в 30-х годах и имеет размеры в плане около 120×220 м. Основные несущие конструкции каркаса—Т-образные железобетонные колонны высотой около 4,5 м, на которые опираются трапециевидные металлические фонари. Шаг колонн в продольном направлении — 7 м, расстояния между ними в поперечном сечении — 10 м. С трех сторон к главному корпусу примыкают многоэтажные производственные корпуса. Необходимость реконструкции главного корпуса вызвана его недостаточной высотой, отсутствием подъемно-транспортного оборудования, необходимостью увеличения пролетов.

Проект реконструкции предусматривал наращивание железобетонных колонн металлическими стойками высотой 4,5 м, по которым должны устанавливаться металлические продольные балки пролетом 7 м. По балкам надвигаются с одного торца блоки из спаренных облегченных металлических ферм с прогонами и настилом покрытия. В результате высота корпуса увеличивается на 4 м, к стропильным металлическим конструкциям подвешиваются кран-балки грузоподъемностью 3,2 т, которые используются как в последующем технологическом процессе, так и в демонтаже существующего покрытия после устройства новой кровли. Одновременно реконструкция позволила в 2 раза увеличить пролеты здания (рис. 12.2).

Рис. 12.2. Надстройка главного корпуса завода

Из приведенных примеров видно, что надстройка старых производственных зданий осуществляется, как правило, в пределах городской черты в том случае, когда перенос производства на новую площадку невозможен из-за плотности застройки городской территории и по социально-экономическим причинам. Осуществление надстройки производственных зданий сопряжено с необходимостью усиления основания, фундаментов, колонн и других несущих элементов. Для сведения к минимуму этих дорогостоящих и трудоемких работ необходимо применять облегченные несущие и ограждающие конструкции со сниженной материалоемкостью.

36 Сопряжение пристраиваемых и существующих зданий.

Пристройки к существующим зданиям выполняют в случае необходимости расширения помещений, устройства зданий — вставок при реконструкции городской застройки и т.п. Пристройка может осуществляться с новой параллельной стеной и без нее. В первом случае пристраиваемое здание, как правило, выше существующего, во втором случае они имеют одинаковую высоту. При пристройке новых зданий возникает сложный комплекс вопросов по обеспечению деформационного шва между ними и существующим сооружением с целью исключения дополнительных деформаций последнего.

При симметричном фундаменте под старым зданием и совпадении подошвы нового и существующего фундаментов деформационный шов выполняют путем забивки деревянного шпунта по грани старого фундамента и устройстве вплотную к нему нового. Зазор между новой и существующей стеной принимают не менее 20 мм и тщательно герметизируют.

При небольшой ширине нового фундамента край стены пристройки выполняют за счет ступенчатого смещения кладки, при большой ширине нового или старого фундаментов — на консольных участках балок или плиты, вылет которых определяется размерами фундаментов. Аналогичное решение применяют при наличии новой стены, параллельной существующей.

При заглублении нового здания ниже существующего край фундамента под него располагают под углом не более 30° от края старого фундамента. Примыкание новых стен, как и в предыдущих случаях, выполняют на консольных балках (плитах), опирающихся на новые фундаменты.

Для исключения дополнительных просадок существующих зданий при отрыве котлованов под столбчатые и ленточные фундаменты рекомендуется применять вместо них свайные фундаменты из буронабивных или винтовых свай.

При невозможности устройства новых фундаментов рядом с существующими допускается располагать их на некотором расстоянии, а пространство между новым и существующим зданием заполнять с помощью балок-вставок, опирающихся на старые и новые несущие конструкции. В этом случае узлы опирания балок должны обеспечить устойчивость конструкций вставки к возможным неравномерным осадкам фундаментов существующего и пристраиваемого зданий.

32. Передвижка и подъем зданий

Передвижка зданий, представляющих историческую архитектурную ценность, осуществляется при необходимости расширения проезжей части дорог и улучшении городской планировки. В нашей стране, в частности в Москве, накоплен опыт осуществления передвижки зданий массой до 20 тыс. т.

Передвижка зданий — сложный и трудоемкий процесс, требующий высокого инженерного искусства, осуществляется по следующей схеме:

отрываются фундаменты под несущие стены здания;

под стены подводят систему металлических балок и с помощью домкратов передают на них нагрузку от массы здания;

по шпальной клетке и металлическим балкам перемещают здание с помощью гидравлических домкратов на требуемое расстояние.

Скорость перемещения составляет 10...20 м/ч. При необходимости здание может быть не только передвинуто, но и развернуто на требуемый угол.

Подъем зданий выполняют в случае изменения вертикальной планировки городской застройки по аналогии с их передвижкой. После отрыва котлована и оголения фундаментов под стены подводят систему несущих балок, которые заменяют собой фундаменты во время подъема здания. Подъем производят гидравлическими домкратами на требуемую высоту и затем осуществляют наращивание фундаментов.

2 Основные положения реконструкции жилой застройки

В настоящее время существует следующее определение реконструкции:

Реконструкция жилого дома — переустройство жилого дома с целью совершенствования его объемно-планировочных решений и архитектурных качеств (с осуществлением перепланировки квартир, секций, этажей или нежилых помещений, в том числе с изменением их функционального назначения), а также конструктивно-технических и инженерно-технических решений с учетом современных требований при изменении объема жилого дома — путем пристройки новых объемно-планировочных элементов, в том числе квартир или их помещений, лестнично-лифтовых узлов, помещений нежилого назначения, а также надстройки (в том числе мансардным этажом) или разборки частей жилого дома.

Физический износ здания — снижение технических и эксплуатационных показателей конструктивных элементов и инженерных систем в результате накопления неисправностей и потери их работоспособности.

Моральный износ здания — снижение основных эксплуатационных качеств и внешней привлекательности в результате повышения социальных, нормативных и потребительских требований.

Реконструкция здания — изменение объемно-планировочной структуры здания, а также его конструктивно-технических решений с целью устранения физического и морального износа.

Реконструкция застройки — изменение планировочной структуры территорий с целью повышения эффективности ее функционирования.

Капитальный ремонт здания — комплекс мероприятий по устранению физического и морального износа конструктивных элементов и инженерных систем.

Модернизация здания — усовершенствование архитектурно-планировочных и инженерно-технических решений с целью повышения комфортности нахождения (проживания) людей без изменения его объема и функционального назначения.

Реновация — частичный или полный снос жилищного фонда (здания) с последующей подготовкой территории (участка) для нового строительства на высвобождаемой территории.

Техническая эксплуатация здания — содержание здания в работоспособном состоянии, его техническое обслуживание, обследование, аварийный и текущий ремонты.




1. Э0~е~бек ресурстары; ~аржылы~ ~орлар; е~бекпен жасал~ан ~ндіріс ~~ралдары; А1аІрі айма~тык шаруашыл
2. Российское законодательство эмитировать конвертируемые облигации- а разрешает; 2В РФ могут выпуска
3. Тревожность как фактор в психосоматических проявлениях у студентов
4. Изомерывещ Имеющие одинаковый качественный и колличественный составно разное строение и свойства
5. Культу~ра мо~влення це дотримання сталих мовних норм усної і писемної літературної мови а також св
6. Право землепользования
7. Сферофиза солонцовая
8. Оренбургэнергосбыт
9. 091 1 2 3 4 5 6 К и ПАТ Бирюкова Т
10. Бухгалтерский учет в туризме