У вас вопросы?
У нас ответы:) SamZan.net

климат специфическое свойство атмосферы которое зависит от непрерывного совместного действия подвижной

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.12.2024

115.Как формировался климат на Земле и каковы перспективы его изменения?

Понятие климата возникло еще в Древней Греции . Термин был введен древнегреческим астрономом Гиппархом. Люди уже тогда понимали, что погодные условия зависят от наклона земной поверхности к солнечным лучам. А.Гумбольдт (1845) определил, что «климат — специфическое свойство атмосферы, которое зависит от непрерывного совместного действия подвижной поверхности моря, изборожденной течениями противоположных температур, излучающей тепло сушей, которая определяет громадное разнообразие в отношении своей орографии, окраски и состояния покрова». К климату относится то, что не может быть выражено в терминах погоды.

Погода — это совокупность значений метеорологических параметров в любой момент времени в данной точке пространства. Существует предел предсказуемости погоды в 2 — 3 недели.

Вековые изменения приписывают изменению климата. На протяжении человеческой жизни (в среднем 75 лет) климат почти не меняется, поэтому погода рассматривается как нечто колеблющееся около постоянной синусоиды времен года, и заметить изменчивость климата удалось только науке.   В 1967 г. была начата подготовка международной научной Программы исследования глобальных атмосферных процессов при поддержке ООН. Она должна была обеспечить долгосрочные прогнозы погоды на 3 — 5 дней и на средние сроки (2 — 3 недели). К началу 80-х гг. была принята Всемирная климатическая программа, которая предусматривала три составляющих: сбор данных о климате и использование этих данных на практике, исследование влияния климата на деятельность человека; изучение изменений климата под влиянием природных и антропогенных факторов. Несмотря на важность изучения климата только в середине XX в. наука начала переходить от описания климата к объяснению его.

Для климата важна величина солнечной энергии, приходящаяся на единицу поверхности Земли за сутки.Из-за большой теплоемкости земной поверхности, особенно покрытых водой участков, остывание за ночь не очень велико, и солнечная энергия, поступающая за сутки, — важнейшая характеристика климата данной широты. Тепловые характеристики — важные параметры климатической системы. Отражательные свойства поверхности фиксируются таким параметром, как альбедо поверхности; важны тепловые свойства поверхности, теплообмен атмосферы с подстилающей поверхностью суши и океана, уровень океана, положение ледников и т.д. Математические модели общей циркуляции атмосферы позволяют восстановить режим климатической системы с учетом этих факторов в различные времена года. Изотопный анализ позволил выделить в истории Земли несколько крупных ледниковых эпох; последний был около 650 млн лет назад. Были периодические похолодания и потепления, менялся состав атмосферы. Более надежные данные о климате есть лишь за последние 2 млн лет, когда формировалась биосфера  Тогда температура Земли была порядка 15 °С и колебалась при переходе от ледниковых эпох к межледниковым в пределах 5—10 °С. За этот период были и длительные оледенения (по 70 — 120 тыс. лет), и более короткие межледниковые периоды (по 15 — 20 тыс. лет). Данные термины вовсе не означают, что Земля была в этот период полностью покрыта льдом или свободна от него.

Начало истории цивилизации приходится на последний межледниковый период, начавшийся около 10—15 тыс. лет назад, — голоцен. За этот период климат неоднократно менялся. Около 7 — 8 тыс. лет назад, когда наступило потепление после ледникового периода, растаял сначала скандинавский ледяной покров, затем — льды в Северной Америке, а 4,5 тыс. лет назад — лабрадорские льды. Отступила на север граница зоны вечной мерзлоты. Озеро Чад имело размеры Каспийского моря, а уровень воды в нем превышал уровень воды Каспия на 40 м. Около 4 тыс. лет назад стало холоднее и суше, и многие субтропические зоны стали превращаться в пустыни (в Сахаре, Аравии,). Ряд цивилизаций переместились на возвышенности и долины рек Тигра, Евфрата и др. Потепление отмечалось в VIIIXII вв., потом в XIVXIX вв. — похолодание, а сейчас — потепление. Деятельность человека вносит все большие коррективы в ход этих процессов.

116.Порядок и хаос в больших системах. Понятие фрактала.

Сложные системы состоят не только из большого числа элементов, но и большого числа разнообразных связей между ними. Для таких систем все труднее, а то и невозможно, вывести механизмы функционирования — у такой системы появляются свойства, которых не было у ее частей или элементов. Эволюцию динамических систем во времени оказалось удобным анализировать с помощью фазового пространства — абстрактного пространства с числом измерений, равным числу переменных, характеризующих состояние системы. Примером фазового пространства может служить пространство, имеющее в качестве своих координат координаты и скорости всех частиц системы. Для линейного гармонического осциллятора (одна степень свободы) размерность фазового пространства равна двум

В случае затухания фазовые траектории при любых начальных значениях оканчиваются в одной точке, соответствующей точке покоя в положении равновесия. Эта точка, или аттрактор, как бы притягивает к себе со временем все фазовые траектории. Это понятие является обобщением понятия равновесия: например, маятник из-за трения сначала замедляет колебания, а затем останавливается. На его фазовой диаграмме по одной оси откладывают угол отклонения маятника от вертикали, а по другой — скорость изменения этого угла. Получается фазовый портрет в виде точки, движущейся вокруг начала отсчета. Начало отсчета и есть аттрактор, поскольку как бы притягивает точку, редставляющую движение маятника по фазовой диаграмме.

При хаотическом движении фазовые траектории с близкими начальными параметрами быстро расходятся, а потом хаотически перемешиваются, так как они могут удаляться только до какого-то предела из-за ограниченности области изменений координат и импульсов. Так фазовые траектории оказываются расположенными достаточно близко друг к другу, создавая складки внутри фазового пространства.  Хаотические движения в фазовом пространстве порождают случайность, связанную с появлением сложных траекторий в результате растяжения и складывания в фазовом пространстве. Важнейшее свойство странных аттракторов — фрактальность. Фракталы — это объекты, проявляющие по мере увеличения все большее число деталей.

Фракталы ( дробный) имеют дробную размерность. Геометрию объектов, содержащих элемент случайности, описывают в рамках своеобразной дробной размерности. Термин «фрактал» был введен Б. Мандельбротом в 1977 г. в книге «Форма, случайность и размерность». Он считал, что введение фрактальных множеств позволяет объяснить и предсказать многие явления в самых различных областях. Пример — медленное впрыскивание подкрашенной краской воды в тонкий прозрачный слой вязкой жидкости между двумя близко расположенными пластмассовыми пластинками. Вода распространяется от места впрыскивания, образуя ветвящиеся радиальные узоры. Измеренная площадь прожилок растет по степенному закону как функция радиуса с показателем 1,7 (расчетная модель дает 1,68). При пробое диэлектрика тоже возникают разветвленные структуры разряда, связанные с фрактальными размерностями.

Хаос порождает фракталы, а фазовая траектория фракталов обладает самоподобием, т. е. при выделении двух близких точек на фазовой траектории фрактала и последующем увеличении масштаба траектория между этими точками окажется столь же хаотичной, как и вся в целом.  Множество Мандельброта воплощает достаточно общий принцип перехода от порядка к хаосу. Идея его состояла в том, чтобы вместо действительных чисел рассмотреть комплексные и наблюдать развитие процесса не на прямой, а на плоскости, т.е. увеличить и размерность от 1 до 2. Оказалось, что при переходе к хаосу важны границы между областями, и каждая точка стремится или к своему центру области (аттрактору), или остается на границе и не может принимать определенные значения. С изменением параметров меняются области аттракторов и их границы. Если же граница превращается в пыль, взрываются и множества Мандельброта.

117.Синергетика - новый научный метод

Аналогию процессов, происходящих в сложных нелинейных системах, с фазовыми переходами отметили несколько ученых, работавших в квантовой электронике: немецкие ученые Грэхем и Хакен и итальянские — де Джиржио и Скулли в 1970 г. Если рассматривать излучение лазера и лампы накачки, то можно сказать, что оно претерпело фазовый переход и изменило свои свойства — свет стал когерентным, более узким в спектральном отношении и усиленным по направлению испускания. Сначала такая аналогия казалась поверхностной, но с каждым параметром фазового перехода в парамагнетике удалось сопоставить соответствующий параметр квантовой генерации.

Коллективные процессы Г. Хакен выделил во всех самоорганизующихся системах: коллективно организуются молекулы в узлах кристаллической решетки, элементарные магнитные моменты (спины) в ферромагнетике, вихри внутри жидкости, порождая видимую на макроскопическом уровне структуру. Возбуждаясь в рабочем веществе лазера, атомы самосогласованно и коллективно испускают когерентное излучение. Итак, кооперативность — общая черта процессов самоорганизации. Кроме того, инверсная населенность, как и неравновесное состояние в жидкостях, должна поддерживаться внешней средой, только в этом случае возникающие структуры будут устойчивы. Система должна быть открытой. Устойчивые структуры возникают при обмене с внешней средой энергией (или веществом — для биологических систем), которые могут поддержать отклонение от равновесия. Этот внешний поток не только гасит рост энтропии, но может привести к ее понижению.

Эти самоорганизующиеся системы и процесс самоорганизации математически оформили следующим образом: сначала просто записали связь эффекта с его причиной в зависимости от времени, а потом исключили внешнее воздействие, предоставив систему самой себе. Хакен расширил систему так, чтобы включенные в уравнения внешние силы стали силами внутренними, и описал механизм нарастания внутренних флуктуаций с помощью введения стохастического члена. Так самоорганизация определяется характером взаимодействия случайных и необходимых факторов системы и ее среды. В дальнейшем он разработал теорию лазерной генерации как фазового перехода, а потом теорию гидродинамических неустойчивостей как фазовых переходов. Для них удалось получить не только теоретическое подтверждение факта существования ячеек Бенара, но и описание положения шестиугольных цилиндров и их диаметров. И каждый раз в этой аналогии открывались более глубинные черты. Развиваемый метод дал интересные результаты при рассмотрении фазового перехода — разрушения упругой конструкции (моста, ). Так стал работать новый метод — синергетический, основанный на идее синтеза.

Самоорганизация происходит при генерации в атомной системе. В кристалле твердотельного лазера имеются активные, возбужденные накачкой от внешнего источника атомы, которые работают как антенна и испускают цуг волн. При малой мощности накачки световые цуги испускаются независимо друг от друга, и лазер работает как обычная лампа, испуская некогерентный свет. Начиная с некоторого значения мощности накачки (порогового) все антенны начинают работать согласованно, атомы испускают свет в одной фазе, возникает гигантский цуг когерентного лазерного излучения, интенсивность излучения резко возрастает  

Открытость системы обеспечивается непрерывным потоком вещества, энергии или информации, получаемым из внешней среды на поддержание определенного состояния. В таких системах флуктуации играют определяющую роль, могут привести к необратимому макроскопическому изменению состояния системы, разрушить созданный в ней порядок.

На нелинейные системы не распространяется принцип суперпозиции, т.е. возможно, чтобы совместные действия двух причин привели к результату, совершенно отличному от того, который был бы, если эти причины действовали по отдельности. Процессы в нелинейных системах носят пороговый характер — в состояниях, далеких от равновесия, слабые возмущения могут усиливаться и радикально перестроить систему. Нелинейные системы, открытые и неравновесные, сами создают в среде неоднородности. Между средой и системой может установиться положительная обратная связь . Важно найти эту петлю положительной обратной связи, и в системе начнется режим самоорганизации. В химии — это автокатализ, в молекулярной биологии — основа жизни. Системы неравновесные необычно и «чутко» реагируют на внешнее воздействие и «учитывают» их в своем функционировании. Поэтому некоторые слабые воздействия могут оказать на эволюцию системы большее влияние, чем сильные, но не адекватные собственным тенденциям системы.




1. прислушаемся к разговорам взглянем в книги и журнальные статьи заведем речь о ней мы тотчас же убедимся чт
2. задание Составьте кроссворд сканворд по основным понятиям уголовнопроцессуального права не менее 8
3. Добровольное страхование в Узбекистане
4. Новая восточная политика ФРГ в контексте европейскойбезопасности 6070е годы XX века Предпосылки формиров
5. Реферат на тему- Сім~я і здоров~я Одним із факторів які впливають на тривалість і повноцінність життя л
6. Философское понятие материи Мир является материальным
7. тематику работ предприятия
8. Оперативные переключения на ТЭС
9. Присвоение квалификационных категорий и оплата сверхурочных работ
10. путь Приложение
11. Башкирский государственный университет Утверждено на заседании кафедры теории и истории государств
12. на тему- Потребительская информация.
13. Матрицы графов
14. Статистический анализ данных
15. Терморегуляция при мышечной работе
16. Pinnacle Studio
17. Теория и практика сестринского дела
18. В США закон о запрете использования гормонов в косметических средствах вышел в 1949году
19. а If YOU wnt to find Cherry Tree Lne если вы хотите найти Вишневую улицу; cherry вишня; tree дерево ll you hve to do is to sk the Po
20. протолкнуть его к потребителю сделать его более доступным к покупателю донести информацию о нем наиболее.html