Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Железа́ орган, состоящий из секреторных клеток, вырабатывающих специфические вещества различной химической природы. Вещества могут выделяться в выводные протоки (экзокринные железы), либо в качестве гормона прямо в систему кровообращения или в лимфу (эндокринные железы) .
Эндокринные железы вырабатывают высокоактивные вещества - гормоны. Состоят только из железистых клеток и не имеют выводных протоков. Эти железы входят в состав эндокринной системы и выполняют регулирующую функцию.
Экзокринные железы продуцируют секреты, выделяющиеся во внешнюю среду, либо в полости органов, выстланные эпителием. Они бывают одноклеточными (например, бокаловидные клетки) и многоклеточными. Последние состоят из двух частей: секреторных отделов и выводных протоков.
Эндокринные железы (железы внутренней секреции) железы и параганглии, синтезирующие гормоны, которые выделяются в кровеносные (венозные) или лимфатические капилляры. Эндокринные железы не имеют выводных протоков.
К железам внутренней секреции относятся:
1.
Щитови́дная железа́ (лат. glandula thyr(e)oidea) эндокринная железа у позвоночных, хранящая йод и вырабатывающая йодсодержащие гормоны (йодтиронины), участвующие в регуляции обмена веществ и росте отдельных клеток, а также организма в целом тироксин (тетрайодтиронин, T4) и трийодтиронин (T3). Синтез этих гормонов происходит в эпителиальных фолликулярных клетках, называемых тироцитами. Кальцитонин, пептидный гормон, также синтезируется в щитовидной железе: в парафолликулярных или C-клетках. Он компенсирует износ костей путём встраивания кальция и фосфатов в костную ткань, а также предотвращает образованиеостеокластов, которые в активированном состоянии могут привести к разрушению костной ткани, и стимулирует функциональную активность и размножение остеобластов. Тем самым участвует в регуляции деятельности этих двух видах образований, именно благодаря гормону новая костная ткань образуется быстрее.
Щитовидная железа расположена в шее под гортанью перед трахеей. У людей она имеет форму бабочки и находится под щитовидным хрящом.
Заболевания щитовидной железы могут протекать на фоне неизменённой, пониженной (гипотиреоз) или повышенной (гипертиреоз,тиреотоксикоз) эндокринной функции. Встречающийся на определённых территориях дефицит йода может привести к развитиюэндемического зоба и даже кретинизма.
Щитовидная железа железа внутренней секреции, в клетках которой - тироцитах - вырабатыватся два гормона (тироксин, трийодтиронин), контролирующие обмен веществ и энергии, процессы роста, созревания тканей и органов. C-клетки (парафолликулярные), относящиеся к диффузной эндокринной системе, секретируют кальцитонин один из факторов регулирующих обмен кальция в клетках, участник процессов роста и развития костного аппарата (наряду с другими гормонами). Как избыточная (гипертиреоз, тиреотоксикоз), так и недостаточная (гипотиреоз) функциональная активность щитовидной железы является причиной разнообразных заболеваний, некоторые из которых могут вызвать побочные эффекты в виде нежелательной полноты. Следует отметить, что это может являться одним из симптомов болезни.
2.
Паращитови́дные же́лезы (паратиреоидные железы, околощитовидные железы) четыре небольших эндокринных железы, расположенные около щитовидной железы, попарно у её верхушки и основания. Две расположены справа от трахеи, две слева. Вырабатывают паратиреоидный гормон, или паратгормон. Также паращитовидные железы вырабатываюткальцитонин.
Функция паращитовидных желёз
Паращитовидная железа регулирует уровень кальция в организме в узких рамках, так чтобы нервная и двигательная системыфункционировали нормально. Когда уровень кальция в крови падает ниже определённого уровня, рецепторы паращитовидной железы, чувствительные к кальцию, активируются и секретируют гормон в кровь. Паратгормон стимулирует остеокласты, чтобы те выделяли в кровь кальций из костной ткани. Физиологическое значение паращитовидной железы состоит в секреции ими паратгормона и кальцитонина, который является его антагонистом. Эти гормоны вместе с витамином D участвуют в регуляции обмена кальция и фосфора в организме. Врожденное отсутствие или недоразвитие паращитовидных желез, отсутствие их в результате хирургического удаления, нарушения секреции паратгормона, а также нарушение чувствительности к нему рецепторов тканей приводят к патологиям фосфорно-кальциевого обмена в организме и развитию эндокринных заболеваний (гиперпаратиреозу, гипопаратиреозу), заболеваний глаза (катаракты). Удаление ее у животных ведет к смерти при явлениях тетании (судорогах).
Гормон паращитовидной железы
Паратгормон вырабатывается скоплениями секреторных клеток в паренхиме железы.
Регуляция деятельности паращитовидных желез осуществляется по принципу обратной связи, регулирующим фактором является содержание кальция в крови, регулирующим гормоном паратгормон. Основным стимулом к выбросу в кровоток паратгормона служит снижение концентрации кальция в крови (норма 2,252,75 ммоль/л, или 911 мг/100 мл).
Основная функция паратгомона заключается в поддержании постоянного уровня ионизированного кальция в крови и эту функцию он выполняет, влияя на кости, почки и посредством витамина D на кишечник. Как известно, в организме человека содержится около 1 кг кальция, 99 % которого локализуется в костях в форме гидроксиапатита. Около 1 % кальция организма содержится в мягких тканях и во внеклеточном пространстве, где он принимает участие во всех биохимических процессах.
Действие паратгормона на кости. Кость, как известно, состоит из белкового каркаса матрикса и минералов. Постоянный обмен веществ и структура костной ткани обеспечиваются согласованным действием остеобластов и остеокластов. Остеокласты клетки, которые участвуют в процессах резорбции, то есть рассасывания костной ткани; действуют только на минерализованную кость и не изменяют матрикс кости. Остеобласты клетки, участвующие в новообразовании костной ткани и процессах ее минерализации.
Действие паратгормона на кость характеризуется двумя фазами. В период ранней фазы происходит увеличение метаболической активности остеокластов, это проявляется в виде выхода кальция из костей и восстановления его уровня во внеклеточной жидкости. В период поздней фазы происходит синтез белка и наблюдаются процессы образования новых клеток, а также повышается синтез лизосомальных и других ферментов, участвующих в процессах резорбции кости. Гиперкальциемия, вызванная паратгормоном, является результататом проявления обеих фаз.
Механизм действия паратгормона на костную ткань осуществляется через цАМФ, активирование цАМФ-зависимых протеинкиназ, фосфолипазы С, диацилглицерина, инозитолтрифосфата и ионов Са. Паратгормон связывается с рецепторами, расположенными на мембранах остеокластов и остеобластов, и в клетках отмечается повышение цАМФ.
При длительной гиперсекреции паратгормона наблюдается не только деминерализация костной ткани, но и деструкция матрикса. Это сопровождается повышением гидроксипролина в плазме крови и экскреции его с мочой.
Действие паратгормона на почки. Паратгормон угнетает реабсорбцию фосфатов, и в некоторой степени натрия и бикарбонатов в проксимальных канальцах почек. Это ведет к фосфатурии и гипофосфатемии. Так же увеличивается реабсорбция кальция в дистальных отделах канальцев, то есть уменьшает выделение кальция наружу. Однако при длительной гиперсекреции паратгормона развивается такая значительная гиперкальциемия, которая, несмотря на повышение реабсорбции кальция, приводит к гиперкальцийурии.
Рецепторы к паратгормону выявлены в клубочке, в проксимальных и дистальных канальцах, а также восходящей части петли Генле. На молекулярном уровне паратгормон основное действие на почки осуществляет через образование цАМФ. Однако, помимо цАМФ, вторичными мессенджерами паратгормона в почках являются диацилглицерин, ионы кальция и инозитолтрифосфат.
Под влиянием паратгормона в почках стимулируется образование активного метаболита витамина D 1,25-диоксихолекальциферола, который способствует увеличению всасывания кальция из кишечника, посредством активизации специфического кальцийсвязывающего белка. Т.о., действие паратгормона на всасывание кальция из кишечника может быть не прямым, а косвенным. После взаимодействия витамина D с рецепторами клеток слизистой оболочки тонкого кишечника происходит экспрессия гена, ответственного за синтез кальцийсвязывающего белка, получившего название кальбиндина. Кальбиндины представлены в большом количестве в проксимальном отделе кишечника и в почках. Считается, что эти белки ответственны за транспорт кальция через мембрану клеток кишечника и почек соответственно.
Паратгормон уменьшает отложение кальция в хрусталике (при нехватке этого гормона возникает катаракта), оказывает косвенное влияние на все кальцийзависимые ферменты и катализируемые ими реакции, в том числе на реакции, формирующие свертывающую систему крови.
Метаболизируется паратгормон в основном в печени и почках, его экскреция через почки не превышает 1 % от введенного в организм гормона. Время биологической полужизни паратгормона составляет 820 мин.
3.
Ти́мус (ви́лочковая железа) орган лимфопоэза человека и многих видов животных, в котором происходит созревание, дифференцировка и иммунологическое «обучение» T-клеток иммунной системы. Тимус расположен в верхней части грудной клетки, сразу за грудиной (верхняя часть переднего средостения), лежит на сосудистом пучке сердца. Спереди к нему прилежит рукоятка и тело грудины до уровня IV реберного хряща; сзади верхняя часть перикарда, покрывающего начальные отделы аорты и лёгочного ствола, дуга аорты, левая плечеголовная вена; с боков медиастинальная плевра.
Секреция тимических гормонов и функция тимуса регулируется глюкокортикоидами гормонами коры надпочечников, а также растворимыми иммунными факторами интерферонов,лимфокинов, интерлейкинов, которые вырабатываются другими клетками иммунной системы. Глюкокортикоиды угнетают иммунитет, а также многие функции тимуса, и приводят к его атрофии, однако функция уничтожения аутоагрессивных клонов иммунокомпетентных клеток не только не страдает, но даже усиливается под их влиянием.[источник не указан 1107 дней]Целый ряд исследований последних лет опровергают это предположение.[источник не указан 1107 дней]
Пептиды шишковидной железы замедляют инволюцию тимуса.[5] Аналогичным образом действует ее гормон мелатонин, способный даже вызывать «омоложение» органа.
4.
Надпо́чечники парные эндокринные железы позвоночных животных и человека.
У человека расположены в непосредственной близости к верхнему полюсу каждой почки. Играют важную роль в регуляции обмена веществ и вадаптации организма к неблагоприятным условиям (реакция на стрессовые условия).
Надпочечники состоят из двух структур коркового вещества и мозгового вещества, которые регулируются нервной системой.
Мозговое вещество служит основным источником катехоламиновых гормонов в организме адреналина и норадреналина. Некоторые же из клеток коркового вещества принадлежат к системе «гипоталамус гипофиз кора надпочечников» и служат источником кортикостероидов.
Гормоны, продуцируемые в корковом веществе, относятся к кортикостероидам. Сама кора надпочечников морфо-функционально состоит из трёх слоёв:
Корковое вещество надпочечников имеет парасимпатическую иннервацию. Тела первых нейронов находятся в заднем ядре блуждающего нерва. Преганглионарные волокна локализуются в блуждающем нерве, в переднем и заднем стволе блуждающего нерва, печеночных ветвях, чревных ветвях. Они следуют в парасимпатические узлы и во внутренностное сплетение. Постганглионарные волокна: печеночное, селезеночное, поджелудочное железы, подсерозное, подслизистое и подмышечное сплетения желудка, тонкой и толстой кишок и других внутренностных органов трубчатого строения.
В клубочковой зоне образуются гормоны, называемые минералкортикоидами. К ним относятся:
Минералкортикоиды повышают реабсорбцию Na+ и выделение K+ в почках.
В пучковой зоне образуются глюкокортикоиды, к которым относятся:
Глюкокортикоиды оказывают важное действие почти на все процессы обмена веществ. Они стимулируют образование глюкозы из жиров и аминокислот (глюконеогенез), угнетаютвоспалительные, иммунные и аллергические реакции, уменьшают разрастание соединительной ткани, а также повышают чувствительность органов чувств и возбудимость нервной системы.
В сетчатой зоне производятся половые гормоны (андрогены, являющиеся веществами предшественниками эстрогенов). Данные половые гормоны играют роль несколько иную, чем гормоны, выделяемые половыми железами. Они активны до полового созревания и после созревания половых желёз; в том числе они влияют на развитие вторичных половых признаков.
Недостаток этих половых гормонов вызывает выпадение волос; избыток ведёт к вирилизации появлению у женщин черт, характерных для противоположного пола.
Клетки мозгового вещества надпочечников вырабатывают катехоламины адреналин и норадреналин. Эти гормоны повышают артериальное давление, усиливают работу сердца, расширяют просветы бронхов, увеличивают уровень сахара в крови. В состоянии покоя они постоянно выделяют небольшие количества катехоламинов. Под влиянием стрессовой ситуации секреция адреналина и норадреналина клетками мозгового слоя надпочечников резко повышается.
Помимо адреналина и норадреналина клетки мозгового слоя вырабатывают пептиды, выполняющие регуляторную функцию в центральной нервной системе и желудочно-кишечном тракте. Среди этих веществ:
5.
Гона́ды органы животных, продуцирующие половые клетки гаметы.
Женские гонады называются яичниками, мужские семенниками.
Гонады также обладают эндокринной активностью, вырабатывая половые гормоны андрогены и эстрогены. Половые железы семенники и яичники
Для них характерна смешанная секреция. Яичники выделяют во внешнюю среду яйцеклетки, а во внутреннюю гормоны эстрогены и прогестины. Семенники выделяют во внешнюю среду сперматозоиды, а во внутреннюю гормоны андрогены. Образование и секреция этих гормонов регулируется гонадотропными гормонами гипофиза ФСГ и ЛГ, которые, в свою очередь, находятся под контролем гипоталамуса. Семенники парные органы, расположенные у человека не в полости тела, а в мошонке. Основной мужской гормон тестостерон. Он стимулирует образование сперматозоидов и секрецию компонентов спермы, обеспечивающих их жизнеспособность, отвечает за развитие организма по мужскому типу, формирует и поддерживает половое влечение, а также обеспечивает половое поведение. Избыток гормонов приводит к гипергонадизму, недостаток к гипогонадизму. Яичники располагаются в брюшной полости. Основные гормоны эстрадиол, прогестерон и релаксин. Они контролируют менструальный цикл и роды, отвечают за развитие вторичных половых признаков, формирование скелета и ОВ по женскому типу. Эстрогены обладают также анаболическими эффектами, снижают уровень холестерина в крови, способствуют свертыванию крови. Нарушения в гормональной регуляции приводят к аменорее, опухолям, бесплодию.
6.
Островки Лангерганса скопления гормон-продуцирующих (эндокринных) клеток, преимущественно в хвосте поджелудочной железы. Открыты в 1869 году немецким патологоанатомом Паулем Лангергансом (18491888). Островки составляют приблизительно 1…2 % массы поджелудочной железы. Поджелудочная железа взрослого здорового человека насчитывает около 1 миллиона островков (общей массой от одного до полутора граммов), которые объединяют понятием орган эндокринной системы.
7.
Гипоталамо-гипофизарная система объединение структур гипофиза и гипоталамуса, выполняющее функции как нервной системы, так и эндокринной. Этот нейроэндокринный комплекс является примером того, насколько тесно связаны в организме млекопитающих нервный и гуморальный способы регуляции.
Гипоталамо-гипофизарная система состоит из ножки гипофиза, начинающейся в вентромедиальной области гипоталамуса, и трёх долей гипофиза: аденогипофиз (передняя доля), нейрогипофиз (задняя доля) и вставочная доля гипофиза. Работа всех трёх долей управляется гипоталамусом с помощью особых нейросекреторных клеток. Эти клетки выделяют специальные гормоны рилизинг-гормоны. Релизинг-факторы попадают в гипофиз, а точнее в аденогипофиз через воротную вену гипофиза
Существует два типа рилизинг-факторов.
На нейрогипофиз и вставочную долю гипоталамус влияет с помощью специальных нервных волокон, а не нейросекреторных клеток.
Под влиянием того или иного типа воздействия гипоталамуса, доли гипофиза выделяют различные гормоны, управляющие работой почти всейэндокринной системы человека. Исключение составляет поджелудочная железа и мозговая часть надпочечников. У них есть своя собственная система регуляции.
Соматотропин
Основная статья: Гормон роста
Обладает анаболическим воздействием, следовательно, как любой анаболик, СТ усиливает процессы синтеза (в особенности белкового). Поэтому соматотропин называют часто «гормоном роста».
При нарушении секреции соматотропина возникает три типа патологий.
Тиреотропин
Мишенью тиреотропина является щитовидная железа. Он регулирует рост щитовидной железы и выработку её основного гормона тироксина. Пример действия релизинг-фактора: Тироксин необходим для повышения эффективности кислородного дыхания, для тироксина нужен тиреотропин, а для тиреотропина нужен тиреолиберин, который является релизинг-фактором тиреотропина.
Гонадотропины
Название гонадотропины (ГТ) обозначает два разным гормона фолликулостимулирующий гормон и лютеинизирующий гормон. Они регулируют деятельность половых желез гонад. Как и другие тропные гормоны, гонадотропины в первую очередь влияют на эндокринные клетки гонад, регулируя выработку половых гормонов. Кроме того, они оказывают влияние на созревание гамет, менструальный цикл и связанные с ним физиологические процессы.
Кортикотропные гормоны
Мишень КТ кора надпочечников.Следует отметить, что паращитовидная железа регулирует минеральный обмен (с помощью парат-гормона), как и кора надпочечников, так что можно поставить регуляцию только на кору надпочечников, а паращитовидная железа автоматически будет работать в соответствии с корой надпочечников.
Вазопрессин - гормон гипоталамуса, который накапливается в задней доле гипофиза (внейрогипофизе) и оттуда секретируется в кровь. Секреция увеличивается при повышении осмолярности плазмы крови и при уменьшении объёма внеклеточной жидкости. Вазопрессин увеличивает реабсорбцию воды почкой, таким образом повышая концентрацию мочи и уменьшая её объём. Имеет также ряд эффектов на кровеносные сосуды и головной мозг.
Регулирует кровяное давление
Антидиуретический гормон
Основная его задача уменьшение выделения мочи при следующих условиях:
Окситоцин
Этот гормон регулирует размер и функционирование молочных желез, а также сокращение мускулатуры матки при родах.
8.
Эпифи́з, пинеальная железа, или шишкови́дное тело (corpus pineale, epiphysis cerebri) небольшой орган, выполняющий эндокринную функцию, считающийся составной частью фотоэндокринной системы; прикреплён поводками к обоим зрительным буграм промежуточного мозга. Непарное образование серовато-красного цвета, расположенное в центре мозга между полушариями в месте межталамического сращения. Снаружи эпифиз покрыт соединительнотканной капсулой, от которой внутрь железы отходят трабекулы, разделяющие её на дольки. Вырабатывает гормоны мелатонин, серотонин и адреногломерулотропин.
Анатомически принадлежит к надталамической области, или эпиталамусу. Эпифиз относится к диффузной эндокринной системе[1], однако часто его называют железой внутренней секреции (приписывая его принадлежность к гландулярной эндокринной системе). На основании морфологических признаков эпифиз причисляют к органам, находящимся за пределом гематоэнцефалического барьера.
Функции эпифиза
До сих пор функциональная значимость эпифиза для человека недостаточно изучена. Секреторные клетки эпифиза выделяют в кровь гормон мелатонин, синтезируемый из серотонина, который участвует в синхронизации циркадных ритмов (биоритмы «сон бодрствование») и, возможно, влияет на все гипоталамо-гипофизарные гормоны, а также иммунную систему.Адреногломерулотропин (Farell 1959) стимулирует выработку альдостерона, биосинтез осуществляется путём восстановления серотонина.
К известным общим функциям эпифиза относят:
Согласно последним исследованиям[источник не указан 70 дней], эпифиз человека и многих типов животных является существенной составной частью фотонейроэндокринной системы.Свет оказывает тормозящее влияние на активность эпифиза, тогда как темнота стимулирующее. Свет не проникает напрямую к эпифизу у млекопитающих, в отличие, например, отземноводных. Для светового воздействия на эпифиз существуют три особых нервных пути: ретиногипоталамический, геникулогипоталамический и серотонинэргический от ядер шва. Все три пути начинаются от особых светочувствительных ганглионарных (ганглиозных) клеток сетчатки глаза и несут нервное возбуждение к супрахиазмальному ядру (СХЯ)гипоталамуса. Эти афферентные входы из сетчатки модулируют активность нейронов-пейсмекеров СХЯ, вырабатывающих вазопрессин (ВП) и вазоактивный интестинальный пептид(ВИП). Возбуждение из СХЯ проходит в паравентрикулярное ядро (ПВЯ) гипоталамуса, а затем направляется оттуда в интермедиолатеральные клетки верхнего грудного отделаспинного мозга. И, наконец, оттуда через верхний шейный ганглий норадренергические волокна иннервируют эпифиз (шишковидную железу). Важно отметить, что возбуждение СХЯ, вызванное светом, вызывает не возбуждение, а торможение нейронов верхнего шейного узла. Соответственно, они снижают выброс норадреналина в эпифизе, который в ответ на это снижает производство и секрецию своего гормона мелатонина. Поскольку сетчатка активирует СХЯ на свету, то на свету снижается секреция мелатонина эпифизом. Соответственно, в темноте ночью секреция мелатонина усиливается. Стимулирующее действие на эпифиз оказывает норадреналин, служащий, как и во всех случаях с симпатической иннервацией,нейромедиатором.
Гипоталамус (лат. Hypothalamus) или подбугорье отдел головного мозга, расположенный ниже таламуса, или «зрительных бугров», за что и получил своё название.
Гипоталамус располагается спереди от ножек мозга и включает в себя ряд структур: расположенную спереди зрительную и обонятельную части. К последней относится собственно подбугорье, или гипоталамус, в котором расположены центры вегетативной части нервной системы. В гипоталамусе имеются нейроны обычного типа и нейросекреторные клетки. И те и другие вырабатывают белковые секреты имедиаторы, однако в нейросекреторных клетках преобладает белковый синтез, а нейросекрет выделяется в лимфу и кровь. Эти клетки трансформируют нервный импульс в нейрогормональный.
Гипоталамус контролирует деятельности эндокринной системы человека благодаря тому, что его нейроны способны выделять нейроэндокринные трансмиттеры (либерины и статины), стимулирующие или угнетающие выработку гормонов гипофизом. Иными словами, гипоталамус, масса которого не превышает 5% мозга, является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, второй эффекторную роль.
В гипоталамусе залегают также нейроны, которые воспринимают все изменения, происходящие в крови и спинномозговой жидкости (температуру, состав, содержание гормонов и т.д.). Гипоталамус связан с корой большого мозга и лимбической системой. В гипоталамус поступает информация из центров, регулирующих деятельность дыхательной и сердечно-сосудистой систем. В гипоталамусе расположены центры жажды, голода, центры, регулирующие эмоции и поведение человека, сон и бодрствование, температуру тела и т.д. Центры коры большого мозга корректируют реакции гипоталамуса, которые возникают в ответ на изменение внутренней среды организма. В последние годы из гипоталамуса выделены обладающие морфиноподобным действием энкефалины и эндорфины. Считают, что они влияют на поведение (оборонительные, пищевые, половые реакции) и вегетативные процессы, обеспечивающие выживание человека. Таким образом, гипоталамус регулирует все функции организма, кроме ритма сердца, кровяного давления и спонтанных дыхательных движений.
Гипо́физ (лат. hypophysis отросток; синонимы: ни́жний мозгово́й прида́ток, питуита́рная железа́) мозговой придаток в форме округлого образования, расположенного на нижней поверхности головного мозга в костном кармане, называемом турецким седлом[1], вырабатывает гормоны, влияющие на рост, обмен веществ и репродуктивную функцию[2]. Является центральным органом эндокринной системы; тесно взаимодействует с гипоталамусом.
Гипофиз или эндокринная железа располагается на основании головного мозга (нижней поверхности) в гипофизарной ямке турецкого седла клиновидной кости черепа. Турецкое седло прикрыто отростком твёрдой оболочки головного мозга диафрагмой седла, с отверстием в центре, через которое гипофиз соединён с воронкой гипоталамуса промежуточного мозга; посредством её гипофиз связан с серым бугром, расположенным на нижней стенке III желудочка. По бокам гипофиз окружён пещеристыми венозными синусами.
Гипофиз состоит из двух крупных различных по происхождению и структуре долей: передней аденогипофиза (составляет 7080 % массы органа) и задней нейрогипофиза. Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз.
Нейрогипо́физ, neurohypophysis, состоит из нервной доли и воронки, infundibulum, соединяющей нервную долю со срединным возвышением. Нервная доля образована клетками эпендимы (питуицитами) и окончаниями аксонов нейросекреторных клеток паравентрикулярного и супраоптического ядер гипоталамуса промежуточного мозга, в которых и синтезируются вазопрессин (антидиуретический гормон) и окситоцин, транспортируемые по нервным волокнам, составляющим гипоталамо-гипофизарный тракт, в нейрогипофиз. В задней доле гипофиза эти гормоны депонируются и оттуда поступают в кровь. Воронка гипофиза, соединяясь с воронкой гипоталамуса, образует ножку гипофиза. Вазопрессин выполняет в организме две функции: 1) Усиление реабсорбции воды в собирательных трубочках почек (это антидиуретическая функция вазопрессина); 2) влияние на гладкую мускулатуру артериол, однако название «вазопрессин» не совсем соответствует свойству этого гормона суживать сосуды. Дело в том, что в нормальных физиологических концентрациях он сосудосуживающим эффектом не обладает. Сужение сосудов может происходить при экзогенном внедрении гормона в больших количествах или же при кровопотере, когда гипофиз интенсивно выделяет этот гормон. При недостаточности нейрогипофиза развивается синдром несахарного диабета, при котором с мочой в день может теряться значительное количество воды (15л/сутки), так как снижается её реабсорбция в собирательных трубочках. Окситоцин во время беременности не действует на матку, так как под воздействием прогестерона, выделяемого жёлтым телом, она становится нечувствительной к данному гормону. Окситоцин способствует сокращению миоэпителиальных клеток, способствующих выделению молока из молочных желез.
Аденогипо́физ или фиговая почва, adenohypophysis, состоит из железистых эндокринных клеток различных типов, каждый из которых, как правило, секретирует один из гормонов. Анатомически в нём выделяются pars distalis (бо́льшая часть аденогипофиза), pars tuberalis (листовидный вырост, окружающий ножку гипофиза, функции которого не ясны) и pars intermedia, которую правильнее обозначать как промежуточную долю гипофиза. Передний гипофиз вырабатывает девять гормонов. Органами-мишенями четырех гормонов передней доли гипофиза служат эндокринные железы, поэтому их называют тропными гормонами. Гипофизарные гормоны стимулируют определенную железу, а повышение уровня в крови выделяемых ею гормонов подавляет секрецию гормона гипофиза по принципу обратной связи. Тиреотропный гормон главный регулятор биосинтеза и секреции гормонов щитовидной железы. Кору надпочечников стимулирует адренокортикотропный гормон. Два остальных гормона называются гонадотропными: фолликулостимулирующий гормон способствует созреванию фолликулов в яичниках, а лютеинизирующий гормон вызывает овуляцию и образование желтого тела. Кроме того, передняя доля гипофиза вырабатывает еще два гормона, которые действуют на системы органов и весь организм в целом. Соматотропный гормон важнейший стимулятор синтеза белка в клетках, образования глюкозы и распада жиров, а также роста организма. Лютеотропный гормон (пролактин) регулирует лактацию, дифференцировку различных тканей, ростовые и обменные процессы, инстинкты заботы о потомстве.
У многих животных хорошо развита промежуточная доля гипофиза, расположенная между передней и задней долями. По происхождению она относится к аденогипофизу. У человека она представляет тонкую прослойку клеток между передней и задней долями, довольно глубоко заходящую в ножку гипофиза. Эти клетки синтезируют свои специфические гормоны меланоцитстимулирующие и ряд других.
Задняя доля гипофиза (лат. pars posterior) эндокринный орган, аккумулирующий и секретирующий гормоны, которые синтезирутся в крупноклеточных ядрах переднего гипоталамуса и переходят по аксонам в заднюю долю гипофиза. К нейрогипофизарным гормонам у млекопитающих относятся: вазопрессин (или антидиуретический гормон, АДГ), регулирующий водный обмен и тонус артериол, а также выполняющий херовую функцию в некоторых синапсах гипоталамических нейронов; окситоцин (или оцитоцин), регулирующий родовой акт и секрецию молока грудными железами. У представителей других классов позвоночных задней долей гипофиза секретируются другие гормоны, незначительно отличающиеся по химической структуре и биологическим свойствам от вазопрессина и окситоцина: вазотоцин, мезотоцин, глумитоцин, изотоцин, валитоцин, аспаротоцин.
Функционирование всех отделов гипофиза тесно связано с гипоталамусом. Это положение распространяется не только на заднюю долю „приемник“ и депо гипоталамических гормонов, но и на передний и средний отделы гипофиза, работа которых контролируется гипоталамическими гипофизотропными гормонами рилизинг-гормонами[3].
Гормоны задней доли гипофиза
В передней доле гипофиза соматотропоциты вырабатывают соматотропин, активирующий митотическую активность соматических клеток и биосинтез белка; лактотропоциты вырабатывают пролактин, стимулирующий развитие и функции молочных желез и жёлтого тела; гонадотропоциты фолликулостимулирующий гормон (стимуляция роста фолликулов яичника, регуляция стероидогенеза) и лютеинизирующий гормон (стимуляция овуляции, образования жёлтого тела, регуляция стероидогенеза); тиротропоциты тиреотропный гормон(стимуляция секреции йодсодержащих гормонов тироцитами); кортикотропоциты адренокортикотропный гормон (стимуляция секреции кортикостероидов в коре надпочечников). В средней доле гипофиза меланотропоциты вырабатывают меланоцитстимулирующий гормон (регуляция обмена меланина); липотропоциты липотропин (регуляция жирового обмена). В задней доле гипофиза питуициты активируют вазопрессин и окситоцин в накопительных тельцах. При гипофункции передней доли гипофиза в детстве наблюдается карликовость. При гиперфункции передней доли гипофиза в детстве развивается гигантизм.
Нейросекреция (от нейро... и лат. secretio отделение), свойство некоторых нервных клеток (так называемых нейросекреторных) вырабатывать и выделять особые активные продукты нейросекреты, или нейрогормоны. Способность к синтезу и секреции физиологически активных веществ присуща всем нервным клеткам. У нервных клеток обычного типа она проявляется выработкой медиаторов, оказывающих локальный эффект в месте их выделения в синапсах. Нейрогормоны же, вырабатываемые нейросекреторными клетками, обладают дистантным действием, разносясь (подобно гормонамэндокринных желёз) по организму с током крови и влияя на деятельность др. органов и систем.
Нейросекреторные клетки появляются в нервной системе уже у плоских червей; наиболее развиты у членистоногих и позвоночных. У ракообразных и насекомых нейросекреторные клетки обнаруживаются в надглоточном ганглии и нервной цепочке; у позвоночных они концентрируются в гипоталамусе (у рыб, кроме того, также в каудальной части спинного мозга, так называемом урофизе). Характерное отличие нейросекреторных клеток от нейронов обычного типа состоит в образовании гранул секрета в перикарионе, т. е. вокруг клеточного ядра (рис. 1, А). Синтез нейросекрета начинается в эндоплазматической сети перикариона, а завершается в пластинчатом комплексе (см. Гольджи комплекс),где окончательно формируются и накопляются гранулы нейросекрета. Затем гранулы перемещаются вдоль отростков (аксонов), аккумулируясь в терминалях последних. Как правило, аксоны нейросекреторных клеток контактируют с капиллярами, и в этих аксоно-вазальных контактах происходит переход нейрогормонов в ток крови (рис. 1, Б). У низших беспозвоночных, не имеющих развитой циркуляторной системы, транспорт нейросекретов возможен путём диффузии.
У млекопитающих и человека к нейрогормонам относятся вазопрессин и окситоцин, а также ряд аденогипофизотропных, или "высвобождающих", гормонов (releasing factors). Последние по так называемой воротной системе гипофизарных кровеносных сосудов проникают в паренхиму передней доли гипофиза, где возбуждают или угнетают выделение аденогипофизарных гормонов (в том числе различных тройных гормонов), через посредство которых начальный импульс, прошедший через соответствующую нейросекреторную клетку гипоталамуса, достигает периферических желёз эффекторов, например, щитовидной железы (рис. 2). Т. о., гипофиз, деятельность которого контролируется гипоталамусом, составляет с последним целостный комплекс гипоталамо-гипофизарную систему. (У насекомых ей эквивалентен комплекс: интерцеребральная часть кардиальные тела, у ракообразных Х-орган синусная железа.) Нейросекреторные клетки, как и обычные нервные клетки, воспринимают афферентные сигналы, поступающие к ним от др. отделов нервной системы, но далее передают полученную информацию уже гуморальным путём посредством нейрогормонов. Т. о., совмещая свойства нервных и эндокринных клеток, нейросекреторные клетки объединяют нервные и эндокринные регуляторные механизмы в единую нейроэндокринную систему. Этим обеспечиваются полнота интеграции организма, точность координации его функций и адаптация его состояния к изменяющимся условиям внешней среды.
Координированные сокращения дыхательных мышц обеспечиваются ритмической активностью нейронов дыхательного центра. Такие нейроны сгруппированы в целом ряде структур мозгового ствола (см. разд. 3.4.2), поэтому в настоящее время термин дыхательный центр заменяют выражением центральный дыхательный механизм. Неотъемлемым звеном аппарата регуляции дыхания являются также хеморецепторные имеханорецепторные системы, обеспечивающие нормальную работу центрального дыхательного механизма в соответствии с потребностями организма в обмене газов.
- регуляторные механизмы дыхательной системы для удобства изложения целесообразно подразделить на две группы:
- механизмы регуляции просвета воздухоносных путей
= в основе нервной регуляции просвета бронхов лежит рефлекторный принцип; при этом важная роль принадлежит рефлексам, рецепторы которых залегают в слизистой носа, гортани и трахеи (по этой причине врачи уделяют большое внимание свободному носовому дыханию)
= материальным субстратом реализации данных рефлексов является гладкая мускулатура конечных (терминальных) бронхиол; следует особо отметить, что клетки этой ткани имеют рецепторы не только к нейромедиаторам, но и к другим биологически активным веществам - гормонам и др.; некоторые из них также принимают участие в регуляции сократительных реакций бронхиол
= активация парасимпатических нервных элементов вызывает сужение просвета бронхов, симпатических - расширение
- механизмы регуляции дыхания
= ключевое положение в системе нервной регуляции дыхания занимают:
а) дыхательный центр группа ядер продолговатого мозга и ретикулярной формации, включающих в себя инспираторные и экспираторные нейроны; аксоны этих нейронов направляются в спинной мозг и заканчиваются на мотонейронах шейных, грудных и поясничных сегментов спинного мозга, откуда берут начало нервные волокна, иннервирующие диафрагму и межреберные мышцы; на вышеперечисленных нейронах продолговатого и спинного мозга замыкаются многочисленные афферентные пути, начинающиеся от хеморецепторов продолговатого мозга и кровеносных сосудов, механорецепторов легких (локализованы в стенке бронхов, реагируют на растяжение), проприорецепторов дыхательных мышц и др.
б) пневмотаксический центр - специальная группа нейронов моста продолговатого мозга, обеспечивающихпереключение фаз дыхательного цикла
= необходимо отметить, что дыхательный центр функционирует в автоматическом режиме благодаря тому, что составляющие его инспираторные (центр вдоха) и экспираторные (центр выдоха) нейроны попеременно переходят (путем взаимной индукции) из состояния возбуждения в состояние торможения
= из гуморальных факторов в регуляции дыхания ведущую роль играет диоксид углерода; повышение его концентрации регистрируется хеморецепторами продолговатого мозга и крупных сосудов (сонных артерий и др.); определенную роль также играют такие факторы как снижение концентрации кислорода и увеличение содержание ионов Н+ в крови.
Центральный дыхательный механизм входит в состав ретикулярной формации ствола мозга. Подавляющая масса дыхательных нейронов сосредоточена в двух группах ядер: дорсальной и вентральной (рис. 10.33). Большая часть нейронов дорсальной группы инспираторные, бульбоспинальные. Их аксоны направляются в шейные сегменты спинного мозга и образуют синапсы с мотонейронами ядра диафрагмального нерва. Эти нейроны непосредственно управляют сокращением диафрагмы.
Ядра вентральной дыхательной группы содержат инспираторные и экспираторные нейроны. Последние связаны преимущественно с мотонейронами межреберных и брюшных мышц, расположенными в грудных и поясничных сегментах спинного мозга, частично с мотонейронами диафрагмы, обеспечивая дыхательную активность указанных мышц.
Активность центрального дыхательного механизма, в свою очередь, управляется стимулами, исходящими от хеморецепторов и механорецепторов дыхательной системы (о них речь пойдет ниже). Главная особенность работы этого механизма линейное нарастание активности инспираторных нейронов на протяжении вдоха и резкий обрыв инспираторной активности, знаменующий окончание вдоха и переход к выдоху. Полагают, что этот обрыв осуществляется благодаря тормозному влиянию со стороны особой группы нейронов, возбуждение которых происходит одновременно с инспираторными и усиливается под влиянием афферентной импульсации от рецепторов растяжения легких.
Чем сильнее импульсация от хеморецепторов, тем круче нарастает инспираторная активность и быстрее развивается вдох, но так как при этом резче растягиваются легкие, то вдох быстрее сменяется выдохом. В итоге увеличивается и глубина, и частота дыхания.
Обнаружено, что полному расслаблению инспираторных мышц предшествует плавное снижение их активности, обусловленное, как полагают, включением особой группы нейронов, которые оказывают тормозящее («запирающее») влияние на инспираторную и экспираторную активность. Эту фазу назвали постинспираторной. Повидимому, постинспираторная фаза обеспечивает интервалы, необходимые для опорожнения легких после очередного вдоха. Таким образом, центральный паттерн дыхания включает три фазы: инспираторную, постинспираторную и экспираторную.
Нейроны, связанные с регуляцией дыхания, имеются и в мосту. Здесь выделяют так называемый пневмотаксический центр, который участвует в переключении фаз дыхательного цикла; при разрушении этого центра вдохи становятся затянутыми, необычно глубокими.
Центральный дыхательный механизм продолговатого мозга обладает автоматизмом, т. е. постоянной ритмической активностью. Однако это его свойство у высших позвоночных полностью отлично от автоматии, свойственной, например, узлам проводящей системы сердца, возбуждение которых происходит в силу их внутренних свойств. Дыхательные нейроны функционируют нормально лишь при двух условиях. Первым условием является сохранность связей между их различными группами (хотя пока не установлено, какие именно нейроны являются водителями ритма, пейсмекерами, и существуют ли среди них такие пейсмекеры вообще), вторым условием наличие афферентной стимуляции. В этом плане важнейшую роль играет импульсация, поступающая от хеморецепторов.
Хеморецепторы и хеморецепторные стимулы дыхания
Основной регулятор активности центрального дыхательного механизма афферентная сигнализация о газовом составе внутренней среды организма. Эта сигнализация исходит от центральных (бульбарных) и периферических (артериальных) хеморецепторов (рис. 10.34).
Бульбарные хемочувствительные зоны. На вентролатеральной поверхности продолговатого мозга расположены нейрональные структуры, чувствительные к напряжению С02 и концентрации ионов H+ во внеклеточной жидкости мозга. Локальное воздействие этих факторов вызывает увеличение дыхательного объема и легочной вентиляции. Напротив, снижение Pco2 и подщелачивание внеклеточной жидкости мозга, а также блокирование холодом или разрушение этих структур ведет к полному или частичному исчезновению реакции дыхания на избыток С02 (гиперкапнию) и ацидоз, а также к резкому угнетению инспираторной активности вплоть до остановки дыхания. Так как морфофункциональная организация данных образований и их связи с центральным дыхательным механизмом изучены недостаточно, существует сомнение в том, являются ли они рецепторами в обычном смысле слова или служат своего рода трансформаторами афферентных стимулов дыхания. Поэтому термин бульбарные хеморецепторы следует понимать пока как условный.
Артериальные хеморецепторы. В области бифуркации сонной артерии расположен так называемый сонный, или каротидный, гломус (клубок, тельце). Он обильно снабжается кровью и содержит сложно устроенный рецепторный аппарат, реагирующий на изменения газового состава артериальной крови: повышение напряжения СО2 (гиперкапнию), увеличение концентрации ионов Н+ (ацидоз) и меньше на снижение напряжения О2 (гипоксемию).
Все три фактора, вызывая возбуждение каротидных хеморецепторов, усиливают активность центрального дыхательного механизма. Особенно важна чувствительность этих рецепторов к гипоксемии, ибо они являются единственными в организме сигнализаторами о недостатке кислорода. Афферентные пути от каротидного гломуса идут через синусную ветвь (языкоглоточного нерва) и достигают дорсальной дыхательной группы нейронов продолговатого мозга.
Аналогичные хеморецепторы имеются в очень мелких гломусных тельцах находящихся в различных участках стенки дуги аорты, а также у некоторых животных (крысы) в брюшной полости (рис. 10.35). Значение их в регуляции дыхания, однако, невелико; повидимому, они играют роль резервных механизмов.
Хеморецепторные стимулы дыхания. Установлено, что нейроны центрального дыхательного механизма прямой чувствительностью к химизму среды не обладают, а их активность определяется главным образом импульсами от хеморецепторов, прежде всего бульбарных. Главным стимулом, управляющим дыханием, служит гиперкапнический:
чем выше напряжение СО2 (а с этим параметром связана и концентрация ионов Н+) в артериальной крови и внеклеточной жидкости мозга, тем сильнее
Рис. 10.34 Важнейшие звенья системы, регуляции дыхания 1 центральный дыхательный механизм (показана проекция нейронов вентральной дыхательной группы на нижнюю поверхность продолговатого мозга), 2 артериальные хеморецепторы (каротидный гломус), 3 бульбарные хемочувствительные зоны, 4 легочные механорецепторы, 5 легкие, 6 диафрагма, 7 межреберные мышцы. |
Рис. 10.35 Расположение хеморецепторов каротидных и аортальных е телец, барорецепторов каротидных синусов и дуги аорты собаки (А), а также расположение участка каротидного тельца крысы (Б) |
Рис. 10.36 Зависимость легочной вентиляции от хеморецепторных стимулов: гиперкапнического (А) и гипоксического в условиях стабилизации гиперкапнического стимула (Б) |
возбуждение бульбарных хемочувствительных структур и артериальных хеморецепторов и тем выше вентиляция. Так, если человек (или животное) дышит из того же мешка, куда выдыхает (возвратное дыхание), то по мере роста Рсо2 в дыхательной среде увеличивается легочная вентиляция (рис. 10.36). Напротив, если усиленно провентилировать легкие животного, резко снизив таким образом артериальное Рсо2 т. е. вызвав гипокапнию, дыхательные движения прекращаются, пока в крови не восстановится нормальный уровень напряжения С02. У бодрствующего человека такое постгипервентиляционное апноэ обычно не наступает (объяснение этому факту будет дано ниже).
Меньшее значение в регуляции дыхания имеет гипоксический стимул. Его выключение с помощью дыхания кислородом либо денервации каротидных клубочков лишь немного (и то не всегда) снижает легочную вентиляцию. Во время дыхания газовыми смесями с пониженным содержанием О2 благодаря росту активности артериальных хеморецепторов вентиляция нарастает, однако зависимость ее от Ро2 нелинейна (рис. 10.36). Эта особенность связана с тем, что в соответствии с формой кривой диссоциации оксигемоглобина крутое падение содержания О2 в крови наступает лишь тогда, когда Роз опускается ниже 8070 мм рт. ст. в этот момент и происходит значительный подъем легочной вентиляции. Особенно сильным стимулом для центрального дыхательного механизма является сочетание гиперкапнии с гипоксемией (и связанным с ней ацидозом), и это вполне естественно: интенсификация окислительных процессов в организме сопряжена не только с увеличением поглощения из крови 02, но и с обогащением ее С02 и кислыми продуктами обмена. Эти сдвиги требуют увеличения объема вентиляции легких.
Функция центральных и артериальных хеморецепторов заключается в поддержании газового и кислотноосновного гомеостаза организма и прежде всего наиболее требовательной к постоянству химизма среды ткани мозга. Недаром рецепторы каротидного тела контролируют химизм крови, снабжающей головной мозг, а бульбарные хемочувствительные структуры химизм внеклеточной жидкости самого мозга.
PAGE \* MERGEFORMAT 15