Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

тема имеет эктодермальное происхождение т

Работа добавлена на сайт samzan.net: 2016-06-20

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 18.5.2024

              Основные этапы развития нервной системы

Нервная система имеет эктодермальное происхождение, т. е. развивается из внешнего зачаточного листка толщиной в одноклеточный слой вследствие образования и деления медуллярной трубки. В эволюции нервной системы схематично можно выделить такие этапы.

1. Сетевидная, диффузная, или асинаптическая, нервная система. Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединением отростчатых клеток и равномерно распределяется по всему телу, сгущаясь вокруг ротовых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная система проводит возбуждения диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальнейших этапах развития многоклеточных животных она теряет значение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбаховского сплетений пищеварительного тракта.

2. Ганглиозная нервная система (в червеобразных) синап-тическая, проводит возбуждение в одном направлении и обеспечивает дифференцированные приспособительные реакции. Этому отвечает высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные органы, в сетке возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство распадаться во время возбуждения клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией располагаются группами или узлами ганглиями, поэтому получили название ганглиозных. Итак, на втором этапе развития нервная система из сетевидной превратилась в ганглиозно-сетевидную. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которые имеют вегетативные функции.

3. Трубчатая нервная система (в позвоночных) отличается от нервной системы червеобразных тем, что в позвоночных возникли скелетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие центральной нервной системы, отдельные части и структуры которой формируются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозговой трубки вследствие кефализации (от греч. kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последовательно развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhombencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментиру-ется на два: задний (metencephalon) и продолговатый (myelencephalon). Таким образом, стадия трех пузырей сменяется стадией образования пяти пузырей, из которых формируются разные отделы центральной нервной системы: из telencephalon большие полушария мозга, diencephalon промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг (рис. см. 1).

Эволюция нервной системы позвоночных обусловила развитие новой системы, способной образовывать временные соединения функционирующих элементов, которые обеспечиваются расчленением центральных нервных аппаратов на отдельные функциональные единицы нейроны. Следовательно, с возникновением скелетной моторики в позвоночных развилась нейронная цереброспинальная нервная система, которой подчинены более древние образования, что сохранились. Дальнейшее развитие центральной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или соподчинения. Суть принципа субординации состоит в том, что эволюционно новые нервные образования не только регулируют функции более древних, низших нервных структур, а и соподчиняют их себе путем торможения или возбуждения. Причем субординация существует не только между новыми и древними функциями, между головным и спинным мозгом, но и наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в определенной степени даже между шейным и поясничным утолщениями спинного мозга. С появлением новых функций нервной системы древние не исчезают. При выпадении новых функций появляются древние формы реакции, обусловленные функционированием более древних структур. Примером может служить появление субкортикальных или стопных патологических рефлексов при поражении коры большого мозга.

Таким образом, в процессе эволюции нервной системы можно выделить несколько основных этапов, которые являются основными в ее морфологическом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию -в хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны с принципом субординации и возрастающей специализацией центров и корковых структур. Функциональной эволюции соответствует эволюция морфологическая. При этом филогенетически более молодые структуры мозга являются более ранимыми и в меньшей степени обладают способностью к восстановлению.

Нервная система имеет нейронный тип строения, т. е. состоит из нервных клеток - нейронов, которые развиваются из нейробластов.

Нейрон является основной морфологической, генетической и функциональной единицей нервной системы. Он имеет тело (перикарион) и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всегда в клетке лишь один. Дендриты - это большое количество коротких древообразных разветвленных отростков. Они передают нервные импульсы по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нервных клеток являются хроматофильная субстанция и нейрофибриллы. Хро-матофильная субстанция имеет вид разных по размерам комочков и зерен, содержится в теле и дендритах нейронов и никогда не выявляется в аксонах и начальных сегментах последних. Она является показателем функционального состояния нейрона: исчезает в случае истощения нервной клетки и восстанавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в теле клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Голь-джи), митохондрии и другие органоиды. Сосредоточение тел нервных клеток формируют нервные центры, или так называемое серое вещество.

Нервные волокна - это отростки нейронов. В границах центральной нервной системы они образуют проводящие пути - белое вещество мозга. Нервные волокна состоят из осевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). В зависимости от строения оболочки, нервные волокна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна входят в состав головного и спинного мозга, а также периферических нервов. Они состоят из осевого цилиндра, миелиновой оболочки, нейролемы (шван-новской оболочки) и базальной мембраны. Мембрана аксона служит для проведения электрического импульса и в участке аксональных окончании выделяет медиатор, а мембрана дендритов - реагирует на медиатор. Кроме того, она обеспечивает распознавание других клеток в процессе эмбрионального развития. Поэтому каждая клетка отыскивает определенное ей место в сети нейронов. Миелиновые оболочки нервных волокон не сплошные, а прерываются промежутками сужений - узлами (узловые перехваты Ранвье). Ионы могут проникать в аксон только в области перехватов Ранвье и в участке начального сегмента. Безмиелиновые нервные волокна типичны для автономной (вегетативной) нервной системы. Они имеют простое строение: состоят из осевого цилиндра, нейролеммы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем немиелиновыми (1-2 м/с).

Основными функциями нейрона являются восприятие и переработка информации, проведение ее к другим клеткам. Нейроны выполняют также трофическую функцию, влияя на обмен веществ в аксонах и дендритах. Различают следующие виды нейронов: афферентные, или чувствительные, которые воспринимают раздражение и трансформируют его в нервный импульс; ассоциативные, промежуточные, или интернейроны, которые передают нервный импульс между нейронами; эфферентные, или моторные, которые обеспечивают передачу нервного импульса на рабочую структуру. Эта классификация нейронов основывается на положении нервной клетки в составе рефлекторной дуги. Нервное возбуждение по ней передается лишь в одном направлении. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делятся на пирамидные и непирамидные.

Нервные клетки контактируют между собой через синапсы специализированные структуры, где нервный импульс переходит из нейрона на нейрон. Большей частью синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксоаксональные, дендродентритные. Итак, любая часть нейрона может образовывать синапс с разными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать информацию от 1000 других нейронов. В составе синапса различают две части -пресинаптическую и постсинаптическую, между которыми находится синап-тическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. Большей частью она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмит-терами, являются разные биологически активные вещества. В частности, медиатором холинергических синапсов является ацетилхолин, адренергиче-ских - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропеп-тиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов - возбуждающие, которые способствуют генерации импульсов (деполяризация), и тормозные, которые могут тормозить действие сигналов (гиперполяризация). Нервным клеткам присущ низкий уровень возбуждения.

Испанский нейрогистолог Рамон-и-Кахаль (1852-1934) и итальянский гистолог Камилло Гольджи (1844-1926) за разработку учения о нейроне как о морфологической единице нервной системы были удостоены Нобелевской премии в области медицины и физиологии (1906 г.). Суть разработанной ими нейронной доктрины заключается в следующем.

1.  Нейрон является анатомической единицей нервной системы; он состоит из тела нервной клетки (перикарион), ядра нейрона и аксона / дендритов. Тело нейрона и его отростки покрыты цитоплазматической частично проницаемой мембраной, которая выполняет барьерную функцию.

2.  Каждый нейрон является генетической единицей, развивается из независимой эмбриональной клетки-нейробласта; генетический код нейрона точно определяет его структуру, метаболизм, связи, которые генетически запрограммированы.

3.  Нейрон является функциональной единицей, способной воспринимать стимул, генерировать его и передавать нервный импульс. Нейрон функционирует как единица лишь в коммуникационном звене; в изолированном состоянии нейрон не функционирует. Нервный импульс передается на другую клетку через терминальную структуру - синапс, с помощью нейротранс-миттера, который может тормозить (гиперполяризация) или возбуждать (деполяризация) последующие нейроны на линии. Нейрон генерирует или не генерирует нервный импульс в соответствии с законом «все или ничего».

4.  Каждый нейрон проводит нервный импульс лишь в одном направлении: от дендрита к телу нейрона, аксону, синаптическому соединению (динамическая поляризация нейронов).

5.  Нейрон является патологической единицей, т. е. реагирует на повреждение как единица; при сильных повреждениях нейрон гибнет как клеточная единица. Процесс дегенерации аксона или миелиновой оболочки дистальнее места повреждения называется валлеровской дегенерацией (перерождением).

6.  Каждый нейрон является регенеративной единицей: у человека регенерируют нейроны периферической нервной системы; проводящие пути в пределах центральной нервной системы эффективно не регенерируют.

Таким образом, в соответствии с нейронной доктриной нейрон является анатомической, генетической, функциональной, поляризованной, патологической и регенеративной единицей нервной системы.

Кроме нейронов, которые образовывают паренхиму нервной ткани, важным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество которых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секреторная, защитная. Глиальные клетки принимают участие в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиаторов центральной нервной системы. Нейроглия играет важную роль также в синаптической передаче. Она обеспечивает структурную и метаболическую защиту для сетки нейронов. Итак, между нейронами и глиальными клетками существуют разнообразные морфофункциональные связи.




1. Тема 4- Социальноэтичный маркетинг
2. Анатомия человека
3. преследователи. Да мало ли чего ещё
4. Курсовая работа- Сеть
5. Тема- Целевые аудитории связей с общественностью Выполнила студентка- 306з группы 3 курса очного отде
6. Хіміяrdquo; для студентів І курсу всіх спеціальностей ІІ семестр Одеса 2011 Виконавець- Д
7. Иностранные слова в нашей речи
8. тема древнерусского города; Теории возникновения древнерусских городов
9. Статья- Греческая классика
10. Реферат- Рекомбинантные(химерные) ДНК
11. правовых документах
12. Казахские ханства переживали глубокие потрясения вызванные дальнейшим обострением внешнеполитического п
13. Реферат- Речевое общение детей младшего дошкольного возраста
14. Содоку
15. Особенности древнеегипетской культуры. Теория локальных цивилизаций О. Шпенглера
16. Реферат Основные экономические проблемы и способы их решения Выполнил-студент 2 курса 209г
17. Тэффи
18. Методы убеждения и аргументирования
19. конкурента как по степени соответствия конкретной общественной потребности так и по затратам на ее удовлет
20. Продувка производится для удаления конденсата из пневматической системы тепловоза накопление конденсата