Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Министерство образования Российской Федерации
Разработка универсального регулятора температуры промышленных устройств
Пояснительная записка
к курсовой работе
по дисциплине "Микропроцессорные системы"
(дата) (подпись)
Консультировал: Мясников В.И.
(дата) (подпись)
Оценка:
Йошкар-Ола 2003г.
Аннотация
В данной курсовой работе произведена разработка цифрового измерителя температуры и давления на основе AVR микроконтроллера AT90S4414 с характеристиками, согласно заданию. Выполнена разработка принципиальной, функциональной и структурной схем. Приведена информация о выбранных элементах структурной схемы.
Содержание
Техническое задание |
4 |
Введение |
5 |
1. Обзор существующих решений |
6 |
2. Разработка схемы |
|
2.1 Разработка структурной схемы |
10 |
2.2 Разработка функциональной схемы |
11 |
2.3 Разработка принципиальной схемы |
12 |
3. Разработка программного обеспечения |
|
3.1 Разработка структуры программного обеспечения |
13 |
3.2 Разработка алгоритма одной из составных частей ПО |
15 |
3.3 Написание программы |
17 |
Заключение |
21 |
Список литературы |
22 |
приложение 1 |
23 |
приложение 2 |
24 |
Техническое задание
Разработка универсального регулятора температуры промышленных устройств на базе МК AVR AT90S4414
- диапазон +50 С° до +400 С°.
Введение
В промышленности и бытовой сфере проблема эффективного использования тепловой энергии - одна из важнейших. Ее решение возможно только при комплексной автоматизации всего теплотехнического оборудования с помощью различных цифровых приборов локального учета, контроля и управления (с возможностью соединения таких приборов в локальную вычислительную сеть для создания систем глобального регулирования всего объекта).
AVR-микроконтроллеры в сочетании с датчиками позволяют создавать эффективные системы контроля в бытовой и промышленной технике. Их главные достоинства - универсальность, программная гибкость, возможность цифровой обработки данных и реализации сложных алгоритмов управления. Интеграция в одном корпусе большого количества периферийных устройств обеспечивает компактность и низкую стоимость приборов в условиях сжатых сроков разработки и постановки изделий на производство.
Однокристальная микро-ЭВМ (микроконтроллер) представляет собой, построенную вокруг микропроцессора вычислительную систему, которая выполнена на одном кристалле вместе с микропроцессором.
В данной работе используется микроконтроллер AT90S4414 фирмы Atmel. Микросхема выполнена в 40-выводном корпусе, что дает безусловный выигрыш. Таким образом, микроконтроллер имеет (4 внешних порта РА,РВ,РС и РD). Прибор обеспечивает производительность, приближающуюся к 1 МГц. Архитектура эффективно поддерживает как языки высокого уровня, так и программы на языке ассемблер. Микроконтроллер AT90S4414 содержит: 4Кбайта загружаемого ПЗУ, 256 байтов СОЗУ дает возможность наращивать память данных, программируемый последовательный UART, программируемый сторожевой таймер и многое, многое другое.
Обзор существующих решений
Была поставлена задача разработать дешевый и компактный цифровой измеритель температуры, где в качестве датчика температуры использовалась бы термопара ТХК.
рис 1 ТХК 9206
Диапазон измеряемых температур с арматурой из стали:
ТХК 9206 -40...+400 °С;
Стандартное решение такой конструкторской задачи - построение схемы, выполняющей следующую последовательность действий:
Сегодня некоторые зарубежные фирмы выпускают АЦП, выполняющие описанную выше цепочку преобразований. Например, фирма Analog Devices производит аналого-цифровые преобразователи AD7710, AD7711 и AD7713 со встроенными операционным усилителем (с программируемым коэффициентом усиления), источниками тока и последовательным интерфейсом. Эти микросхемы адаптированы для применения в измерительных системах (где датчиками могут служить термометр сопротивления, термопара или тензорезистивный мост), и датчики подключаются непосредственно к АЦП при минимуме дополнительных компонентов. Применять такие АЦП в небольших приборах дорого (цена специализированных АЦП превышает стоимость всех остальных компонентов, вместе взятых), а использование обычных АЦП значительно увеличивает число компонентов в схеме (и отрицательно сказывается на стоимости, габаритах и надежности прибора).
Еще один путь решения поставленной задачи - преобразование сопротивления непосредственно в код. Имеется множество различных схем, реализующих такое преобразование. Принцип их действия основан на измерении (электронно-счетным методом) временного интервала, равного постоянной времени цепи разряда конденсатора через измеряемое сопротивление.
Рассмотрим одну из схем со средними характеристиками точности измерения. Упрощенная структурная схема такого измерителя сопротивления представлена на рис. 2, а временные диаграммы его работы на рис. 3.
рис. 2. Структурная схема измерителя сопротивления
Рис. 3. Временные диаграммы измерителя сопротивления
Перед началом измерения сопротивления RX образцовый конденсатор C контактами реле К1 подключается к источнику U0 и полностью заряжается до этого напряжения. Затем управляющее устройство переключает контакты реле К1, и конденсатор С начинает разряжаться через резистор RX. Одновременно с началом разряда (момент t0) управляющее устройство выдает импульс, которым триггер переводится в состояние 1.
При этом открывается временной селектор, и на вход электронного счетчика начинают поступать импульсы от генератора счетных импульсов.
В момент t1 напряжение U1 на конденсаторе станет равным напряжению U2, сравнивающее устройство выдаст импульс, который вернет триггер в состояние 0, и счет импульсов прекратится. За время δt = t1 - t0 счетчик подсчитывает m импульсов, следовавших с периодом TK.
Так как δt = RX x C = m x TK (при U1 = U2), то измеряемое сопротивление будет вычисляться по формуле:
RX = m x TK/C = kR x m.
Основные недостатки такого прибора: большое количество компонентов и зависимость точности измерения от стабильности значения образцовой емкости.
Появление на рынке электронных компонентов недорогих микроконтроллеров (МК) со встроенным аналоговым компаратором позволило решить поставленную задачу, минимизировав описанную схему измерения.
После анализа существующих микроконтроллеров (имеющих аналоговый компаратор) была выбрана серия AVR, к которой относятся AT89C2313 и AT89C8515. Микросхемы данной серии имеют следующие особенности:
Схема цифрового измерителя температуры (рис. 4) разработана на основе описанной выше схемы измерения (рис. 2) с применением МК серии AVR. Отличие от оригинала в том, что параллельно цепи разряда конденсатора через измеряемое сопротивление RX добавлена цепь разряда на образцовое сопротивление RО. Сравнение происходит в каждом такте измерения. Это позволяет исключить влияние других параметров схемы (например, стабильности характеристик конденсатора) на точность измерения. Применение в схеме электронных ключей с низким сопротивлением в открытом состоянии (например, полевых транзисторов) позволило уменьшить нижний порог измерения сопротивления почти до нуля.
Рис. 4. Структурная схема измерителя температуры на МК типа AT90SXXXX
Для сравнения со схемой измерения на рис. 2 рассмотрим принцип работы полученной схемы цифрового измерителя температуры (рис. 4), временная диаграмма для которого совпадает с диаграммой, приведенной на рис. 3. Перед началом измерения ключевые элементы К1 и К2 находятся в разомкнутом состоянии. Под управлением программы МК (в дальнейшем МК) происходит заряд конденсатора C через резистор R1. Когда напряжение достигает уровня UО, МК включает К2, и начинается разряд конденсатора C через образцовый резистор RО.
Одновременно с началом разряда МК начинает отсчет интервала времени δt = t1 - t0 (рис. 3). В момент времени t2 напряжение U1 на конденсаторе C сравнивается с напряжением U2, и МК заканчивает отсчет времени. Этот процесс повторяется с измеряемым резистором RX. После того, как получены два значения интервалов времени (DtO для образцового резистора RO и DtX для измеряемого резистора RX), величина измеряемого резистора RX МК вычисляется по следующей формуле:
RX = R0 x δtX/ δtO
где RX - измеряемое сопротивление;
RO - образцовое сопротивление;
δtX - интервал времени для измеряемого резистора RX;
δtO - интервал времени для образцового резистора RO.
2. РАЗРАБОТКА СХЕМЫ
2.1 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ
Согласно заданию схема должна содержать следующие блоки:
2.2 РАЗРАБОТКА ФУНКЦИАНАЛЬНОЙ СХЕМЫ
Разработку функциональной схемы начнем с последовательного описания каждого блока схемы.
1) Стабилизатор напряжения. На вход данной микросхемы подается напряжение 220В с выхода получаем постоянное напряжение 5В. Напряжение 5в необходимо для питания микросхем.
Структурная схемы представлена в приложении 1.
2.3 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ
Согласно заданию требуется разработать цифровой измеритель температуры и давления на базе контролера AVR. Был выбран микроконтроллер AT90S4414, потому что он имеет достаточное число выводов, напряжение питания от 2,7 до 6 В, есть программируемый полный дуплексный UART (так как мне необходимо организовать последовательную связь с компьютером) и встроенный аналоговый компаратор. Еще в нем имеется сторожевой таймер и в данном микроконтроллере имеется возможность применить языки высокого уровня для его программирования. Все остальные характеристики приведены в приложении 2.
Супервизор напряжения: выбрана микросхема ADM705 так как она обладает следующими характеристиками:
По характеристикам эта схема подходит для данного устройства.
В задании оговорено, что нужно для связи с компьютером использовать интерфейс RS485. Была выбрана микросхема МАХ481, с напряжением питания 5 В.
Использовался датчик температуры на основе термопары ТХК (по заданию).
Необходим жидко кристаллический индикатор со следующими характеристиками
Данными свойствами обладает модуль PG1602.
Для обеспечения питания микросхем используем интегральном стабилизатор напряжения, в котором используются: понижающий трансформатор выпрямитель, построенный по мостовой схеме, что обеспечивает двухполупериодное выпрямление и уменьшает пульсации выходного напряжения и фильтр на выходе выпрямителя (ёмкостной). В качестве стабилизатора чаще всего применяются интегральные стабилизаторы непрерывного действия. В данную схему подается напряжение питания 220В на выходе имеем 5 В.
3. РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
3.1 РАЗРАБОТКА СТРУКТУРЫ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
На рис.6 представлена структура программного обеспечения
USR,RxC=1 |
Возврат и сброс флага |
Flagdan=1 и flagpr=1 |
Сброс флагов, если пустой буфер |
Рис.6.
В блоке инициализация делаем следующие действия. Для контроллера настройка портов, программирование таймеров, настройка UART, устанавливаем стек и т. д. Для ЖКИ устанавливаем разрядность шины данных=8,количество строк =2, шрифт 5х7 точек, направление сдвига курсор в право, запрещаем сдвиг дисплея вместе со сдвигом курсора и т.д.
Блок опроса флагов: происходит постоянный опрос флагов, если какой-либо флаг установлен, то переходим на соответствующую подпрограмму обработки, которая после окончания своей работы возвращается в то место, откуда была вызвана и сбрасывает соответствующий флаг.
Программа опроса клавиатуры: постоянно опрашивает клавиатуру, и записывает ее состояние в заданный регистр1, как только в этом регистре1 появляется указанное число, она устанавливает Flagklav=1.
Подпрограмма обработки сканкода активизируется, когда установлен Flagklav=1. Сначала проверяем, если действительно в регистре1 число (т.е. устраняем дребезг контактов), анализируем содержание регистра1 и в
зависимости от того какое число там записано переходим на ту или иную подпрограмму обработки. В конце подпрограммы сбрасываем Flagklav.
Подпрограмма выдачи на дисплей результата измерения активизируется когда установлен флаг Flagvyvod=1. В зависимости от содержания регистра1, выводим данные из той или иной ячейки памяти.
Подпрограмма записи данных активизируется когда установлен флаг Flagszap=1, и в зависимости от содержания регистра1, записываем данные в ту или иную ячейку памяти.
Подпрограмма приема данных активизируется когда установлен флаг USR,RxC, его устанавливает компьютор приславший данные, выполняем прием даных и конце подпрограммы сбрасываем флаг USR,RxC.
Подпрограмма выдачи данных на компьютер начинает выполнятся когда Flagdan=1 и flagpr=1, далее выполняется выдача данных на компьютер и сброс флагов происходит в том случае, если буфер с данными пуст.
3.2 РАЗРАБОТКА АЛГОРИТМА ОДНОГО ИЗ СОСТАВНЫХ ЧАСТЕЙ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
Алгоритм инициализации ЖКИ представлен на рис.7.
рис.7.
Программа инициализации ЖКИ составленная по данному алгоритму и написанная на языке Ассемблер будет выглядеть так:
initlcd:
rcall del
ldi r25,30h
rcall icom
rcall del
ldi r25,30h
rcall icom
rcall del
ldi r25,30h
rcall icom
ldi r25,38h ; устанавливаем разрядность шины данных=8,
количество строк =2, шрифт 5х7 точек
rcall icom
ldi r25,08h ; включить дисплей, зажечь курсор
rcall icom
ldi r25,01h ; очистить дисплей и установить курсор в нулевую позицию
rcall icom
ldi r25,06h; устанавливаем направление сдвига курсор в право, запретить
сдвиг дисплея вместе со сдвигом курсора
rcall icom
ret
del:
ldi r17,150 ;задержка ~15 ms при кварце 4 МГц
l: ldi r18,200 ;
l1: dec r18 ;
brne l1 ;
dec r17 ;
brne l ;
ret
icom:
in r0,portA
sbi r0,2 ; установит RS в 1
out portA,r0
in r0,portA
сbi r0,1 ; установит W/R в 0
out portA,r0
in r0,portA
sbi r0,0 ; установит Е в 1
out portC,r0
out portB,r25 ;записать в ЖКИ команду из регистра r25
in r0,portA
cbi r0,0 ;сбросить Е в 0
out portA,r0
in r0,portA
sbi r0,1 ; установит W/R в 1
out portA,r0
ret
3.3 НАПИСАНИЕ ПРОГРАММЫ
Текст программы составленный по структурной схеме на рис.6 приведен ниже
.include "4414def.inc"
.def flag=r1
.def flagszap =0
.def flagklav =1
.def flagsbr =2
.def flagvyvod =3
.def flagdan =4
.def flagpr =54
.def tmp=r20
.cseg
.org 0H
rjmp main
main:
rcall init ; инициализация контроллера
rcall initlcd ; инициализация ЖКИ
rcall priglashenie ;программа выдачи начального приглашения
m1:
in r30,PinC ; программа опроса клавиатуры и флагов
ldi r31,FEh
cp r30,r31 ;если равно, то переходим на подпрограмму ввода
rcall vvod
ldi r31,FDh
cp r30,r31 ;если равно, то переходим на подпрограмму вывода
rcall vyvod
ldi r31,7Fh
cp r30,r31 ;если равно, то переходим на подпрограмму сброса
rcall sbros
sbrc USR,RxC ; проверяем если бит USR,RxC=1, то переходим на
подпрограмму приема данных от компьютера, если не
равен то пропускаем следующую команду
rcall priem ; подпрограмма приема данных, после своего окончания
работы она скидывает флаг USR,RxC
sbrs flagdan ; проверяем если 0, то переход на m2, если нет, то
пропускаем следующую команду
rjmp m2
sbrs flagpr
rjmp m2
rcall outdan ; подпрограмма выдачи данных на компьютер, после
выполнения выдачи данных сбрасывает флаг данных и
приемника
m2:
rjmp m1
init:
ldi r31,ramend ; указываем стек
out SPL,r31
ldi r31,ffh ; порт B настроить на вывод
out ddrb,r31
ldi r31, 00h ; Port С to ввод
out DDRС, r31
ldi r31,FFh ; подключаем резисторы
out PortС, r31
ldi tmp,00011101 ; инициализация UART
out UCR,tmp ;
ldi tmp,25 ;9600 бит/сек при fclk=4МГц
out UBBR,tmp ;
ret
icom:
in r0,portA
sbi r0,2 ; установит RS в 1
out portA,r0
in r0,portA
сbi r0,1 ; установит W/R в 0
out portA,r0
in r0,portA
sbi r0,0 ; установит Е в 1
out portC,r0
out portB,r25 ;записать в ЖКИ команду из регистра r25
in r0,portA
cbi r0,0 ;сбросить Е в 0
out portA,r0
in r0,portA
sbi r0,1 ; установит W/R в 1
out portA,r0
ret
initlcd:
rcall del
ldi r25,30h
rcall icom ; осуществляем запись команды в регистр ЖКИ
rcall del
ldi r25,30h
rcall icom ; осуществляем запись команды в регистр ЖКИ
rcall del
ldi r25,30h
rcall icom
ldi r25,38h ; устанавливаем разрядность шины данных=8,
количество строк =2, шрифт 5х7 точек
rcall icom ; осуществляем запись команды в регистр ЖКИ
ldi r25,08h ; включить дисплей, зажечь курсор
rcall icom
ldi r25,01h ; очистить дисплей и установить курсор в нулевую позицию
rcall icom
ldi r25,06h ;устанавливаем направление сдвига курсор в право,
запретить сдвиг дисплея вместе со сдвигом курсора
rcall icom
ret
del:
ldi r17,150 ;задержка ~15 ms при кварце 4 МГц
l: ldi r18,200 ;
l1: dec r18 ;
brne l1 ;
dec r17 ;
brne l ;
ret
vvod:
rcall del ;делаем задержку
ldi r31,FEh ;проверяем есть ли действительно в регистре r30
указанные числа(таким образом устраняем дребезг
контактов)
cp r30,r31 ;если равно, то выполняем следующую программу
in r29,PinC ; программа опроса клавиатуры и флагов
ldi r31,FBh
cp r29,r31 ;если равно, то в r28 записываем адрес ячейки памяти
ldi r28,0060h
ldi r31,F7h
cp r29,r31
ldi r28,0070h
ldi r31,EFh
cp r29,r31
ldi r28,0080h
ldi r31,DFh
cp r29,r31
ldi r28,0090h
ldi r31,BFh
cp r29,r31
ldi r28,00A0h
rcall zapis
ret
vyvod:
rcall del ;делаем задержку
ldi r31,FDh ;проверяем есть ли действительно в регистре r30
указанные числа(таким образом устраняем дребезг
контактов)
cp r30,r31 ;если равно, то выполняем следующую программу
in r29,PinC ; программа опроса клавиатуры и флагов
ldi r31,FBh
cp r29,r31 ;если равно, то переходим на подпрограмму вывода1
ldi r28,0060h
ldi r31,F7h
cp r29,r31 ;если равно, то переходим на подпрограмму вывода2
ldi r28,0060h
ldi r31,ЕFh
cp r29,r31 ;если равно, то переходим на подпрограмму вывода3
ldi r28,0060h
ldi r31,DFh
cp r29,r31 ;если равно, то переходим на подпрограмму вывода4
ldi r28,0060h
ldi r31,BFh
cp r29,r31 ;если равно, то переходим на подпрограмму вывода5
ldi r28,0060h
RCALL VYVOD1
ret
zapis:
nop ;задержка
nop
nop
nop
mov eearh,00h ;старший байт адреса ячейки
mov eearl,r28 ;младший байт адреса ячейки
set eerc,2 ;разрешение записи
set eerc,1 ;запись
ret
ЗАКЛЮЧЕНИЕ
В данной курсовой работе был разработан цифровой измеритель температуры. Использовался датчик температуры на основе термопары ТХК Данная схема имеет возможность подключения и других датчиков температуры. Устройство построено на контроллере AVR (АТ90S4414), содержащем встроенный аналоговый компаратор.
СПИСОК ЛИТЕРАТУРЫ
приложение 1
приложение 2
В данном приложении приведено описание микроконтроллера АТ90S4414.
8-ми разрядный КМОП микроконтроллер с загружаемой Flash ПЗУ
КМОП микроконтроллер AT90S4414 реализован по AVR RISC архитектуре (Гарвардская архитектура с разделенной памятью и разделенными шинами для памяти программ и данных) и совместим по исходным кодам и тактированию с 8-разрядными микроконтроллерами семейства AVR (AT90SXXX). Выполняя команды за один тактовый цикл, прибор обеспечивает производительность, приближающуюся к 1 МГц. AVR ядро объединяет мощную систему команд с 32 8 разрядными регистрами общего назначения и конвеерного обращения к памяти программ. Шесть из 32 регистров могут использоваться как три 16 разрядных регистра указателя при косвенной адресации пространства памяти. Выполнение относительных переходов и команд вызова реализуются с прямой адресацией всех 2К адресного пространства. Адреса периферийных функций содержатся в пространстве памяти ввода/вывода. Архитектура эффективно поддерживает как языки высокого уровня, так и программы на языках ассемблера.
Микроконтроллер AT90S4414 содержит: 4Кбайта загружаемого ПЗУ(2К*16), 256 байтов СОЗУ и 256 байтов ЭСППЗУ, с возможностью наращивания памяти данных до 64К за счет внешних ИС СОЗУ, 32 линии ввода/вывода общего назначения, 8-ми разрядный таймер/счетчик и 16 разрядный таймер/счетчик с режимом захвата и сравнения, систему внутренних и внешних прерываний, программируемый последовательный UART, программируемый сторожевой таймер с внутренним генератором, последовательный порт с интерфейсом SPI для внутри системной загрузки и для связи с внешними устройствами. Программно управляются два режима энергоснабжения. В пассивном режиме ЦПУ останавливается, но СОЗУ, таймеры/счетчики, порт SPI, сторожевой таймер и система прерываний остаются активными. В стоповом режиме останавливается тактовый генератор и, следовательно останавливаются все функции, пока не поступит сигнал внешнего прерывания или аппаратного сброса, но сохраняется содержимое регистров.
Встроенная загружаемая Flash память обеспечивает внутрисистемное программирование с использование интерфейса SPI или с использование стандартных программаторов энергонезависимой памяти.
Потребление прибора в активном режиме составляет 3,5 мА и в пассивном режиме 1мА. В стоповом режиме, при работающем сторожевом таймере, микроконтроллер потребляет 50 мкА.
Объединение на одном кристалле усовершенствованного 8-ми разрядного RISC ЦПУ с загружаемой Flash ПЗУ позволило фирме создать мощный микроконтроллер, обеспечивающий высокую гибкость и экономичность в использовании прибора в качестве встраиваемого контроллера.
- 29 -