Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
1. Понятие заготовки в машиностроении.
В современном производстве одним из основных направлений развития технологии механической обработки является использование черновых заготовок с экономичными конструктивными формами, обеспечивающими возможность применения наиболее оптимальных способов их обработки с наибольшей производительностью и наименьшими отходами.
Заготовка- это предмет труда из которого путем изменения формы, размеров, свойств поверхности и /или поверхностного слоя изготавливают готовую деталь.
Процесс изготовления детали в цело может идти по двум принципиальным направлениям:
1)Изготовление заготовок, приближающихся по формам и размерам к готовой детали, тогда на заготовительные цехи приходится значительная доля трудоемкости и относительно меньшая доля на механические цеха.
2) наоборот: заготовка грубая, механические цеха выполняют основную долю обработки.
Факторы, влияющие на выбор рациональной заготовки:
1. Материал. Технологические св-ва материала (ковкость, штампуемость, свариваемость, литейные св-ва).
2. Назначение детали в узле, мех-ме и условиях её работы.
3. Конфигурации детали.
4. Тип производства.
5. Влияние сложности тех процесса в изготовлении.
6. Производственные возможности заготовит цехов.
Последовательности выбора заготовки:
1. Устанавливают, какой тех процесс наиболее подходит для изгот детали, кот в свою очередь определ вид заготовки.
2. Одновременно необходимо провер возможность комбинирования тех проыессов (литьё+сварка и т.д.)
3. Выбирают метод формообразования заготовки.
4. Выбор оборудования.
2. Основные факторы, определяющие выбор заготовки.
Основные факторы:
1)Материал, из которого изготавливается деталь и его свойства (литейные, штампуемость, свариваемость).
2)Назначение детали в узле машины, механизме и условия её работы.
3)Конфигурация детали.
4)Тип производства.
5)Влияние сложности ТП по последующей механической обработке.
6)Требуемая точность выполнения заготовки и её поверхности (наклеп, шероховатость).
7)Производственные возможности заготовительных цехов.
8)Время, затрачиваемое на технологическую подготовку в целом.
9) Возможность быстрой переналадки технологической оснастки.
Детали узлов
1. зуб колёса, маховики, блоки, ступицы, корпуса и крышки подшипников, тройники, гычаги, в сер пр-ве целесообразно изгот литьём в том случае, когда нерационально явл изгот штамповкой. В мелкосер пр-ве и единичном пр-ве целесообразно изгот литьём. Для зуб колёс в крупносер и массовом пр-ве целесообр изгот штамповкой с полед накаткой зуба.
2. гладкие и ступенчатые валы с неболшим перепадом ступеней (до 10мм), стаканы, втулки, кольца, как в ед пр-ве, так и в вер пр-ве, рекомендуют изгот из проката (сортового, листового, трубного).
3. балки, кронштейны, плиты, как в ед пр-ве, так и в вер пр-ве, рекомендуют изгот из профильного сортового проката.
4. мелкие и средние детали целесообразно изгот из пластмасс и методами порошковой металлургии.
5. стальные, полые ступенчатые валы, крупные стальные втулки с фланцами, целесообр изгот горячей штамповкой или из труб
6. диски, жаропрочные титановые сплавы, целесообр изгот горячей штамповкой с послед раскаткой.
3. Технологичность заготовок.
ТКИ- представляет совокупность свойств конструкции определяющих её приспособленность достижению оптимальных затрат при производстве, эксплуатации и ремонте, с целью обеспечения заданных показателей качества, объема выпуска и условии выполнения работ. Показатели ТКИ делятся на качественные и количественные:
КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ: оценку осуществляют на основе практического опыта, на стадии эксплуатационного проектирования.
КОЛЛИЧЕСВЕТННЫЕ ПОКАЗАТЕЛИ: дают возможность объективно и достаточно точно оценить технологичность сравниваемых вариантов применительно к заготовкам это трудоемкость изготовления, технологическая себестоимость и коэффициент использования металла.
ТРУДОЕМКОСТЬ ИЗГОТОВЛЕНИЯ ЗАГОТОВКИ: представляет собой суммарные затраты времени на изготовление заготовки, приближенная оценка трудоемкости может проводиться «весовым методом»
, где Т- трудоемкость проектируемой и типовой заготовки, G- масса проектируемой и типовой заготовки.
ТЕХНОЛОГИЧЕСКАЯ СЕБЕСТОИМОСТЬ ЗАГОТОВКИ: Выражается стоимость материалов: , где: М- стоимость расходов основных материалов в рублях, З- зарплата рабочих в рублях на штуку, - затрата на возмещение износа тех. Оснастки в рублях за штуку, - расходы связанные с эксплуатацией и использованием оборудования в рублях за штуку.
КОЭФИЦИЕНТ ИСПОЛЬЗОВАНИЯ МАТЕРИАЛОВ: , где - масса детали, - масса расходных материалов на получение заготовки.
Максимальный обеспечивает более дорогостоящие производство
Общие рекомендации по повышению технологичности заготовки:
1)Желательно чтобы очертания заготовки представляли собой сочетание наиболее простых геометрических форм.
2)формы и размеры отдельных элементов заготовки должны быть унифицированы(т.е. выбираться из рядов)
3)Точность размеров и шероховатость поверхностей заготовки должны быть экономически обоснованны.
4)Желательно максимально использовать способы получения заготовок без дальнейшего снятии стружки.
5)Конструкция детали должна допускать возможность её изготовления из двух и более частей.
4. Методики выбора машиностроительной заготовки.
Общие рекомендации по выбору способа получения заготовок.
1)Корпусные детали закрытого типа, на которые монтируются рабочие механизмы и узлы машины (корпуса двигателей, станины, цилиндры, корпуса приспособлений) необходимо изготавливать литьем).
2) Корпусные детали открытого типа, на которые рабочие механизмы (рамы, корпуса) в серийном производстве изготавливают литьем, в единичном и мелкосерийном сварными.
3)Детали узлов машин зубчатые колеса, блоки, маховики, ступицы, корпуса и крышки подшипников, в серийном производстве изготавливают обработкой давлением, в единичном - литьем.
- гладкие ступенчатые валы с необходимыми перепадами диаметров (стаканы, втулки, кольца) необходимо изготавливать из проката.
- стальные полые ступенчатые валы, стальные втулки с фланцами изготавливают из труб.
- диски турбин целесообразно изготавливать горячим прессованием с последующей горячей раскаткой.
5. Основные литейные материалы.
ТАБЛИЦА ИЗ ПРЕЗЕНТАЦИИ
Чугуны это сплавы железа с углеродом, массовая доля углерода которых более 2%, в состав чугонов входит кремний, марганец, фосфор и др.
Серые чугуны(сч10,15,20,25): СЧ-серый чугун, 10- предел прочности на растяжение.
Ковкий чугун(КЧ30-6,КЧ33-8): 30-предел прочности на растяжение, 6- наименьшее относительное удлинение %, обладают хорошими пластическими свойствами в холодном состоянии.
Высокопрочные чугуны(ВЧ35,40): 35-предел прочности, графит(???) имеет шаровидную форму, что повышает прочность.
Антифрикционные чугуны(АЧС-1АЧВ-2,АЧК-2) Они работают при слови контакта трения, износоустойчивые имеют небольшое количество добавок хрома, меди титана, могут быть ковкими, серыми, высокопрочными.
Легированные чугуны(ЧХ1,ЧХ16М2,ЧХ28г): содержат большое количество легирующих элементов: Х- Хромистые, Г- марганцевые, Ю- аммнонивые, С- кремнистые, Н- никелевые, Ш- шаровидные…
Стали сплавы железа с углеродом с массовой долей углерода менее 2%, она обозначается в сотых долях процента.
Легированные стали (15л,20л,30л,45л)- имеют хорошие литейные свойства.
Конструкционно-легированные стали(15ГЛ,30ХНМЛ) цифра после буквы обозначает содержание легирующих элементов, если цифра не стоит , то его содержание не больше 2%. Медные сплавы. Латуни - это сплавы меди с цинком. Бронзы- сплавы меди с оловом (БрС30,БР016С5) Алюминиевые сплавы- это сплав алюминия с медью, марганцем , кремнием и др.
Магниевые сплавы(МЛ5,МЛ12)- литейные (присутствует алюминий)обладают высокой удельной прочностью, хорошо обрабатываются резанием, способны гасить вибрации, плавка только в вакууме, склонны к образованию горячих трещин. Титановые сплавы(ВТ5Л,ВТ6Л)- высокая удельная прочность, высокая жидкотекучесть пониженная свариваемость , химически активны, сварка в вакууме.
6. Литейные свойства сплавов.
1)Жидкотекучесть это способность сплава в жидком состоянии заполнять литейную форму и воспроизводить размеры и формы литейной формы и стержней. Она увеличивается с увеличением температуры перегрева сплава. Углерод и фосфор улучшают жидкотекучесть.
2)Усадка - общее уменьшение объема и размеров отливок при охлаждении и затвердевании. Для предотвращения устанавливаются прибыли, для дополнительной подачи металла при его затвердевании.
3) Внутренние литейные напряжения- при охлаждении и затвердевании металла отливки в следствии усадки возникают внутренние усадочные напряжения если , то возникает деформация. Если то происходит разрыв- образование трещины. Предотвратить это можно увеличением жидкотекучести и медленным охлаждением сплава в области высоких температур.
4)ЛИКВАЦИЯ (???)- это неоднородность сплава по химическому составу, как в отдельных частях отливки(зональная), так и в кристаллоидах(???) стали ликвидируют углерод, фосфор, сера, образуя неоднородность сплава. Предотвращается хорошим перемешиванием сплава при заливке.
5)Поглощение газов? Металлы и сплавы при плавке способны поглощать газы(водород, метан) из ржавчины, влаги, топлива и изменяется качество сплава. Понижение поглощение газов может быть достаточно пропусканием через сплав других газов, не поглощаемых этими сплавами, но убирающие растворенные газы, или применение плавки в вакуумных печах.
Требования предъявляемые к литейным сплавам:
1)Они должны по возможности хорошо заполнять литейную форму т.е. иметь высокую. Жидкотекучесть.
2)Они должны иметь низкую температуру плавления.
3)Они должны обладать незначительной усадкой при охлаждении.
4)Они должны обладать незначительной способностью поглощать газы.
5)Они должны обладать хорошей структурой.
6) Они должны обладать незначительной способностью ликвации, которая в некоторых местах сплав.
7)Они должны иметь наименьшую стоимость.
8)Они должны легко обрабатываться резанием, иметь достаточно хорошую свариваемость.
7-8. Литьё в песчано-глинистые формы: сущность технологического процесса, технологические возможности, область применения и оснастка.
1,2 рёбра;
3 модель;
4 стержень;
5 форма;
6 стояк;
На долю этого способы приходится до 70% отливок материалов для изготовления литейных форм служат формировочные смеси из песка и глины. С добавлением добавок:
1)отходы целлюлозно-бумажной промышленности не дают осыпаться.2)каменноугольные пыли не дают пригорать смеси.3)отходы мазута не дают пригорать смеси для цветных металлов.Технологический процесс:
1)Приготовление формовочной смеси:-сушка песка и глины в печах
-размалывание глины на мельницах и бегунах до мелкодисперсного состояния
-перемешивание смеси-вылеживание смеси-подача на формовку
2) Формовка (обеспечивает получение литейной формы) Для её обеспечения необходимо следующие: опоки, литейные модели и стрежни. Литейная модель - копия очертаний отливаемой детали с учетом припуска на механическую обработку. Материалом для изготовления литейных форм служит дерево (орех, бук, береза, липа, сосна, ель). Часто модель склеивают из отдельных кусочков с различным направлением волокон (для большей прочности) Она выдерживает 5-500 отливок. Иногда изготавливают из чугуна, латуни.
Для получения полостей и отверстий изготавливают стрежни.
Опоки - это ящики, имеющие только стенки (РИС)
3) Заливка- способ подвода расплава в форме зависит от конфигурации, толщины стенок и металла.При заливке чугуна металл подводится к тонким стенкам , чтобы обеспечить равномерное охлаждение. При заливке стали металл подводится к утолщенным элементам, т.е. характерна большая усадка.
Классы точности отливок:
-размерной до 100 кг 7-13 классы(7 для маленьких отливок в массовом производстве; 13 для крупногабаритных отливок в единичном производстве)
-допуски 9-14 квалитеты-шероховатость 0,2 -40 мкм-припуски 2.5 10 мкм на сторону
Достоинства:- выполнение для различных условий производства
-сложность конфигурации-различные масса и габариты
Недостатки: -высокая трудоемкость-длительность-низкая производительность при ручной формовке- низкое качество-высокие припуски-отрицательное воздействие на окружающую среду
9. Литьё в оболочковые формы: сущность технологического процесса, технологические возможности, область применения и оснастка.
Поскольку прочность литейной формы в песчано-глинистые формы невысока, это требует большое количество формовочной смеси(на 1 т литья используется 4-12 т смеси).Достижения Химии полимеров позволили найти связывающие повышающие прочность смеси в сухом состоянии, т.е. появилась возможность заменить песчано-глинистую форму оболочковой.
Материалы:-кварцевый песок-термореактивная смола
Предел прочности такой смеси повышается в 15-20 раз, и составляет 5 МПа
Процесс литья: начинается с того что на самодельный щиток
устанавливается модель (они металлические) они нагреваются до 200-300градусов, смазываются разграничительной смазкой и выдерживаются 10-30 сек. Засыпается формовочная смесь, смола нагревается и связывает песчинки, образуя оболочку 6-15 мм. После удаления смеси оболочка вместе с модельной плитой помещаются в печь, где при 600-700 выдерживаются 3 мин., при этом смола изменяется переходя в твердое состояние. После этого оболочка выталкивается. Если форма состоит из двух , то их склеивают. При необходимости устанавливается стержень и производится заливка металла. После охлаждения отливки оболочка спокойной разрушается, т.к. часть смолы выгорает. Смесь регенерируется(?) т.е. огнеустойчивый наполнитель может быть использован еще раз.
Особенности:
-Оболочковые формы можно изготовить по горячей металлической оснастке.
-песчано-смолевые смеси обладают высокой сыпучестью, т.е. повышается точность размеров (8 квалитет Rz=40-80 мкм).-масса отливок 0,5-50 кг.
-эффективность способа, припуски снижаются в 2 раза.
-уменьшается объем механической обработки.
-Уменьшается объем формовочной смеси.
-устраняются трудоёмкие операции выбивки.
Этот способ наиболее рационально применять в условиях серийного производства(не меньше 200 отливок в год)
Недостатки:-работа на горячей оснастке.-утрата точности литейной формы при изготовлении тяжелых заготовок.
10. Литьё по выплавляемым моделям: сущность технологического процесса, технологические возможности, область применения и оснастка.
Сущность метода заключается в использовании неразъемной разовой модели.
При этом перед заливкой расплава, модель удаляется их формы вплавлением, выжиманием, растворением.
Технологический процесс:
Модель или звено модели изготавливают в пресс-форме, рабочая плоскость которой имеет конфигурацию отливки с припуском, на механическую обработку модель изготавливают из материалов, имеющего невысокую температуру плавления(воск, парафин), высокую способность растворяться(карбонит), способность выгорать без образования остатков. Собирают в блоки, имеющие модели литниковой системы и прибыли. Далее блок молей с жидкой формовочной смесью (суспензией) для оболочковых форм на поверхности образуется слой менее 1 мм, оболочку наращивают опылением в 3-10 слоёв, каждый слой просушивается на воздухе, либо в аммиаке. После этого модельный состав выплавляется при 100 градусах , дополнительно прокаливают. После охлаждение и затвердевания керамическая форма разрушается.Процесс обеспечивает гладкую чистую поверхность (8-11 квалитет)припуски от 1.4 мм. Этот процесс обеспечивает максимальный КИМ(85-95%) Из-за улучшения формы можно получить отливки 0,8-2 мм.
Достоинства:- возможность получения отливок любых сплавов, любой конфигурации, тонкостенных.-возможность создания сложных конструкций, объединяющих несколько деталей.-возможность организации как в единичном так и в массовом производстве.-уменьшение расходов формовочных материалов.-уменьшение вредных воздействий.
Недостатки:-Трудоемкость и длительность.-Большое количество факторов, оказывающих влияние на качество отливки.-большая номенклатура материалов для получения формы.Повышенный расход металла на литники.
11. Литьё в металлические формы (кокиль): сущность технологического процесса, технологические возможности, область применения и оснастка.
Кокиль - это металлическая литейная форма, заполняемая расплавом; используется многократно. Состоит из двух полуформ ,плиты и вставок. Полуформы взаимно центрируются штырями и их соединяют замками. Параметры кокиля Превышают величину отливки на величину усадки сплава. Стрежни извлекаются из отливки после её затвердевания и охлаждения. Расплав заливают через литниковую систему, а питание осуществляется через прибыли. Удаление газов осуществляется через стенки кокиля. Конструкция кокиля может быть сложной (неразъемные, с горизонтальным , вертикальным и несколькими плоскими разъемами)
Технологический процесс:1)Подготовка кокиля к работе: поверхность разъема тщательно очищается; проверяется легкость перемещения частей, точность центрования; на плоскость кокиля наносится слой огнеупорного покрытия и краска; кокиля нагревается до рабочей температуры (473-623)
2)Заливка расплава
Особенности взаимодействия кокиля с металлом отливки:
Металлический кокиль обладает большей теплопроводностью, теплоемкость, почти нулевой газопроницаемостью.1)Процесс охлаждения материала отливки идет более интенсивно(получается более мелкозернистая и плотная структура)
2)Гидротекучесть материала уменьшается, т.е. наполняемость формы хуже (не получают более тонкостенные отливки)3) Кокиль практически неподатлив , поэтому возможно обеспечение более высокой точности(12-15 квалитет) но в тоже время это способствует образованию значительных внутренних напряжений(трещины, корабление)4) внутренняя поверхность кокиля покрывается облицовочной смесью, поэтому шероховатость поверхности низкая (8-10 мкм)
Преимущества:-повышение производительности труда (в 2-3 раза).
-снижение расходов на капитальные вложения (увеличение съема отливок 1).-повышение качества отливок.-улучшение саниатрано-гигиенических условий.-возможность полной автоматизации и механизации.
Недостатки:-высокая стоимость кокиля, сложность его изготовления.
-образование внутренних напряжений.-сложность получения отливок сложной конфигурации.Применяют в серийном и массовом производстве: минимальная партия более 20 крупных и 400 мелких отливок в год (чугун) 400-700 отливок в год (алюминий).
12. Центробежное литьё: сущность технологического процесса, технологические возможности, область применения и оснастка.
Это способ изготовления отливок, при котором залитый в форму металл подвергается воздействию центровых сил. Применяется вращающие литейные формы, т.е. отливки, только тела вращения. По материалу литейной формы, ограничений нет. Поскольку форма вращается, то используют приводы (чаще всего электрической) такие машины называются центробежными; с горизонтальной и вертикальной осью вращения.
В машинах с горизонтальной осью в основном получают трубы, с вертикальной осью невысокие отливки (диаметр намного больше высоты)
А)ковкиБ)форма со шпинделем ЭД.Расплав (3) под действием центр. сил отбрасывается к стенкам литейных форм и затвердевает.Дает 100% водного выхода.Условия формирования отливки, обусловлены материалом отливки. Число оборотов 1500 со стороны наружной поверхности припуски могут быть меньше, а со стороны внутренней больше.
Преимущества:-отливки обладают большой плотностью в следствии малого наличия пустот.-меньший расход металла из-за отсутствия литниковой системы.-исключение затрат на изготовление стрежней.-Исключение влияния жидкотекучести на заполняемость литейной формы.-возможность изготовления отливок из двух различных сплавов: армированные, наварка расплава, последовательная заливка различных сплавов.
Недостатки: неточность диаметра со стороны свободной поверхности(разностенность по выосте)При армировании в литейную форму вначале устанавливается арматура, которая заливается сплавом другого состава, что понижает износ.При наварке сначала устанавливается металлическая втулка, затем заливается сплав.При последовательной заливке сначала заливается один металла, потом когда он затвердевает, остается только не на внутренних поверхностях, заливается другой металл.
Минимальные припуски на отливки устанавливаются для серого чугуна, далее припуски увеличиваются.
13.Литье под давлением.
Расплавленный металл заливают в камеру спец. манины, а затем под давлением перемещается в этой камере. Через литниковые каналы заполняет с высокой скоростью полость формы, затвердевает под избыточным давлением образуя отливку, после раскрытия литейной формы отливку вынимают.
Особенности:
Соскальзыв. метал. формы и избыточное давление на жидкий металл позволяет получить отливки высокого качества, точности и низкой шероховатости.Схема работы машины с вертикальной холодной камерой прессования:
Расплав подается в камеру прессования (2) и поршнем (1) через !!!... в пресс форму состоящую из подвижной половины (7) и из подвижной (6), остаток металла выталкивается камеры (2) поршнем (3) с пружиной (4). Готовая отливка (8) вместе с литниками извлекается из подвижной половины (7) пресс формы.
Давление равно 30-177 МПа. Скорость выпуска жидкого металла в пресс-форму от 0,5-120 м/с.
Литейная форма заполняется 0,1-0,01 сек.
Высокая пластическая энергия движ. металла позволяет получать и хорошую частоту поверхности. Использ. лит. формы так же действие давления при затвердевании отливки способствует получению 7-9 квалитета точности. Rz 20-10 мкм Ra 1,25-0,63
Получают отливки из Al, Cu, Zn-сплавов.
Масса отливок при литье под давлением зависит от мощности машины и фактически может составлять от нескольких грамм до кг.
Прочность на 10-15% увеличивается отливок, получаемых литьем в землю.
Структура ухудшается, т.к. в процессе заполнения формы воздух и газы образуются от сгорания смазки образуют газавоздушную пористость.
«+» 1. Получение отливок с малой толщиной стенки менее 1 мм и развитой поверхности большой площади; 2. Повышение качества; 3. Полное исключение трудоемких операций изготовления, сборки и выбивки форм, т.к. метал. пресс форма используется многократно, процесс извлечения осуществляется машиной. 4. Значительное улучшение санитарно гигиенических условий труда.
«-» 1. Ограничения отливок по габаритам и массе; 2. Высокая стоимость пресс формы; 3. Трудоемкость изготовления, ограниченная стойкость пресс формы, особенно при литье черных металлов; 4. Газовые усадки и пористость.
14.Электрошлаковое литье. РИС
Процесс плавления и зам-вания проходит одновременно.
В начале процесса водоохлаждаемый медный кристаллизатор 6 заливают предварит. расплавленный шлак 4. Электрический ток подводится к переплавляемым электродам 7 и затравке 1, находящейся в нижней части кристализ. Шлаковая ванна обладает малой электропроводностью, поэтому при прохождении через нее эл.тока выделяется большое количество теплоты. Шлаковая ванна нагревается до температуры 1973 С благодаря чему через погруженные в нее концы электродов оплавляются. Капли расплавленного металла проходят через ванну, собираются в зоне кристаллизации, образуя над слоем шлака металлич.ванну расплава 3 , кот. непрерывно пополняется в верхней части расплавом от плавящихся электродов и последовательно затверд. в нижней части кристаллизатора.
При получении отливки 2, электроды 7 по мере их плавления поднимают вверх. Для образования в отливки внутренней полости устанавливают металлический стержень 5, который поднимается вверх. Сущность процесса заключается в том, что плавка по времени и месту совмещены заполнением литейной формы. Отливка постепенно направляется к литейной форме. Литейная форма выполняет 2 функции, служит для формирования отливки. Используется для получения фасонных отливок из специальных сталей и сплавов и отливки ответственного назначения, к которым предъявляются высокие требования технологических свойств и качества.
Отливки типа цилиндров, трубы круглого и овального сечения, корпуса задвижек, тепловых и атомных ЭС. Сосуды сверхвысокого давления, шатуны и др.
15.Непрерывное литье
Жидкий металл равномерно и непрерывно в охлаждаемую форму кристаллизатор (2) с одного конца и в виде затвердевшего прутка вытягивают спец. мех-мом с другого конца вследствии чего создаются условия для непрерывного затвердевания отливки. Отливки плотные без усадочных раковин с высокими мех. св-ми.
Поддон (4) с затравкой (5) устанавл. в нижней части кристаллизатора.
Подается из ковша (1) в литейную полость (6).
Толщина 10-16 мм. Скорость 0,75-1 м/мин.
В процессе литья - непрерывное извлечение трубы из кристаллизатора что обеспечивает высокую прочность. Качество отливок соответствует литью в металлические формы. Трубы Ф до 0,8 м и до l = 10м.
«+»1. Получение отливок различного поперечного сечения неограниченной длины, увеличение выхода годного, меньше расходов на изготовление литейных форм. 2. Автоматизация процессов разливки металлов, полное исключение трудоемкости операций. Санитарные нормы.
«-» Увеличивается интенсивность охлаждения расплава, что приводит к внутренним напряжениям.
16.Литье выжиманием
Сущность в том, что для улучшения заполняемости литейной формы и повышения качества отливки, процесс осуществляется таким образом, что геом. размеры и форма отливки изменяются по мере заполнения литейной формы расплавом. Это позволяет уменьшать потери теплоты расплавом и наилучшим образом осуществлять заполнение литейной формы для получения тонкостенных и крупногабаритных отливок.
Процесс может осуществляться 2я способами:
1. Поворотом половины литейной формы относительно неподвижной оси.
2. Плоскопараллельным перемещением одной из 2х полуформ.
После подготовки и сборки формы осуществляют заливку расплава нижнюю часть метало-приемника литейной установки 1 этап, затем эту форму поворачивают 2 этап и расплав поднимается в установке, заполняя полость между полуформами и боковыми стенками, закрывающих установку с торцов .В наст. момент сближ. полуформ конфигурация объема расплава такова, что потери теплоты их в форме мин. В момент же окончания сближения полуформ этап 3 расстояние между ними соответствует толщине стенки отливки, а излишки металла сливаются в приемный тигель. После затвердевания отливки подвижная полуформа возвращается в исходное состояние, а отливка извлекается из установки, т.о. получают отливки с малой толщиной стенки до 2 мм и значительной площадью 1000х3000 (панели, детали сателлитов)(Al 2, Al4, Al 6, Mn 5).Отливки имеют хорошую структуру, механические свойства. Благодаря тому что формировании отливки процесс одновременно с заполнением лит. форм и заканчивается в момент ее заполнения. Выход годного не велик 8-10%. Процесс имеет малую трудоемкость. Позволяет произвести замену клепанных и сварных изделий.
17. Штамповка жидкого металла
Штамповка жидкого металла является одним из прогрессивных технологических процессов, позволяющих получать плотные заготовки с уменьшенными пропусками на механическую обработку, с высокими физико-механическими и эксплуатационными свойствами.
Технологический процесс штамповки жидкого металла объединяет в себе процессы литья и горячей объемной штамповки.
Процесс заключается в том, что расплав, залитый в матрицу пресс-формы, уплотняют пуансоном, закрепленным на ползуне гидравлического пресса, до окончания затвердевания.
Сопряжение пуансона и матрицы образует закрытую фасонную полость. Наружные контуры заготовки получают разъемной формой, если деталь имеет наружные выступы, или неразъемной формой при отсутствии выступов. Внутренние полости образуются внедрением пуансона в жидкий металл.
После извлечения из пресс-формы заготовку подвергают различным видам обработки или используют без последующей обработки.
Под действием высокого давления и быстрого охлаждения газы, растворенные в расплаве, остаются в твердом растворе. Все усадочные пустоты заполняются не затвердевшим расплавом, в результате чего заготовки получаются плотными, с мелкокристаллическим строением, что позволяет изготавливать детали, работающие под гидравлическим давлением.
Этим способом можно получить сложные заготовки с различными фасонными приливами на наружной поверхности, значительно выходящими за пределы основных габаритных размеров детали. В заготовках могут быть получены отверстия, расположенные не только вдоль движения пуансона, но и в перпендикулярном направлении.
Возможно, запрессовывать в заготовки металлическую и неметаллическую арматуру.
Процесс используется для получения фасонных заготовок из чистых металлов и сплавов на основе магния, алюминия, меди, цинка, а также из черных металлов.
18.Проектирование литых заготовок
Требования, предъявляемые к конструкции отливок:
Необходимо выполнить след. требования:
1) Отливки по возможности должны иметь простое внешнее очертание с минимальным числом ребер, выступов и внутренних полостей.2) Конструкция отливки должна обеспечивать высокий уровень ее служебных характеристик, прочность, жесткость, герметичность.3) Конструкция отливки должна учитывать взаимодействие ее с литейной формой.4) Конструкция отливки должна быть достаточно технологичной с точки зрения выбранного литья.
5) Базовые поверхности отливки должны иметь расположение, удобное для обработки резанием.6) Конструкция отливки при данных условиях должны предусматривать min расход материалов.7) Отливка должна быть компактной, изделия крупные нужно разделить на несколько частей. Разработка чертежа отливки. Исходные данные:1.Чертеж детали2.Сведения о программе выпуска3.Материал4.Назначение детали в узле. Вначале при разработке отливки, прежде всего, следует оценить ее технологичность. Внимательно изучить конструкцию детали и по возможности упругость. Необходимо оценить возможность получения внутр. поверхностей, отверстий, помня, что количество стержней существенно повышает трудоемкость изготовления и сборки формы. Увеличивают вероятность получения брака. Обеспечение удобства формовки отливок. Разработка технологического процесса изготовления отливок начинается с рассмотрения возможных вариантов расположения ее в литейной форме.1.Выбор поверхности разъединения.
Поверхность, по которой при сборке формы соединяются ее части нижняя и верхняя, называется поверхностью разъема. а) Конструкция отливки должна допускать возможность расположения ее в одной полуформе или иметь лишь один небольшой разъем (в металлические формы).б) Если деталь располагается в обеих частях формы, то поверхность разъема должна совпадать с поверхностью разъема модели. Для определения возможности свободного удаления моделей из формы используют метод теней. При просвете ванны отливки параллельными лучами, по всем сечениям нигде не возникает затемненных участков. в) Внутренние поверхности отливки должны иметь достаточное количество окон или отверстий, размеры и расположения которых должно обеспечивать правильное и устойчивое расположение частей в литейной форме. Обеспечение кач-ва отливок Качество слоев отливки в различных частях формы будет не одинаковым при заполнении литейной формы жидким металлом, расплавом, возможны загрязнения самого металла собираются и поднимаются вверх. Растворенные в металле газы поднимаются в верхние части отливки, так же создаются осадочные раковины. Наилучшее качество отливки формируется в нижней части литейной формы.
Назначение толщины стенок отливок Назначение минимальной толщины стенки. Если толщина стенок завышена, то это может привести к появлению осадочных раковин, пористости и т.д. В конечном итоге уменьшается прочность стенок и увеличивается расход металла. Если толщина стенок занижена, то в этом случае технологичной сложно получить отливку: незаконченные металлические формы, пустоты, трещины.
Минимальная толщина может быть выбрана из зависимости от габаритов детали: N=(2*l+b+h)/3. Для отливок, получаемых литьем в песчаные формы, существуют специальные графики, по которым выбирается эта толщина. Если N>8, то толщину стенки для стальных и чугунных отливок принимают не меньше 40-30 мм?. N<0,1 для алюминиевых сплавов минимальная толщина стенки 2мм, медь, олово - 2.5 мм. -4 мм.
Если полученная минимальная толщина стенки окажется > указанной на чертеже, то необходимо произвести корректировку по согласованию с конструктором. Назначение напусков на отливки
Напуском называется технологический участок отливки, где отверстия, впадины полости, способами литья получить затруднительно или невозможно.
19.Правило выбора баз и простановка размеров
База - поверхность, сочетание поверхностей, ось, точка = заготовки. Используется для базирования при механической обработке. Базы: чистовая, черновая мех.обработка.При выборе баз черновой обработки необходимо учитывать следующие рекомендации:1. Размеры черновой базы по возможности должны быть минимальны, в этом случае ее коробления и отклонения будут минимальны.2. Лучше всего, если базовые поверхности располагаются в нижней части литейной формы и образуются в ней за счет отпечатка модели и не стержней.3. В качестве базовых поверхностей не желательно применять поверхности совпадающие с разъемом металлической формы или пересекающие его.4. Черновые технологические базы должны обеспечивать устойчивое положение отливки в приспособлении для механической обработки.
Основные правила расстановки размеров литых деталей.
1. Необработанные поверхности необходимо привязывать к черновой литейной базе непосредственно или с помощью уравнений размеров.
Г-необрабатываемый, привязан с помощью В
2. Исходную чистовую базу следует привязывать к черновой базе А.
3. Все остальные размеры механической обработки поверхностей должны быть привязаны к базе механической обработки Б.
20.Оформление чертежа литой заготовки
Чертежи оформляются в соответствии с правилами УСКД. Чугунные отливки должны содержать все необходимые данные для изготовления, контроля и приемки. Исходный документ - чертеж детали. В начале - тонкими линиями чертеж детали, затем на все обрабатываемые поверхности называющиеся припуски, напуски. После определения положения отливки в литейной форме и линии разъема формы устанавливают литейные уклоны и назначают радиусы скруглений.С учетом размеров и положения стержней определяется конструкция и размеры внутренних поверхностей, отверстий, после чего устанавливают систему простановки размеров.
Назначение технических условий1.Указывают вид термообработки, установленные пределы твердости,
методы и место замер поверхности.2. Указывается класс точности размеров, масс, степень коробления и ряд припусков на механическую обработку в соответствии с ГОСТом 26845-85.Для разных размеров одной и той же отливки допускается применение разных классов точности.3.Неуказанные на чертеже радиусы закруглений и формовочные уклоны4. Допускаемые смещения опок.
5. Сведения о материале с указанием ГОСТа6. Сведения о виде, количестве и местах расположения допускаемых литейных дефектов (пористость, раковины, трещины).
21. Технологические возможности обработки металлов давлением
На предприятиях машиностроительной и металлургической промышленности применяются различные методы обработки металлов давлением. Так, например, на машиностроительных предприятиях широко применяется свободная ковка, объемная и листовая штамповка, на металлургических заводах прокатка, волочение и прессование (выдавливание).Свободная ковка осуществляется на молотах, либо прессах. Разнообразие форм поковок, получаемых в результате свободной ковки, достигается использованием одного и того же универсального инструмента бойков, прошивней, раскаток и других. В процессе свободной ковки под действием усилия развиваемого молотом или прессом, происходит осаживание металла по высоте с увеличением его размеров в длину и ширину. Таким образом, форма изделия образуется за счет обжатия заготовки и неодинаковой деформации в различных направлениях. Объемная штамповка является разновидностью ковки и представляет собой технологический процесс, при котором штампованная поковка получается путем принудительного заполнения металлом полости штампа. Деформация металла при объемной штамповке осуществляется посредством специального инструмента штампа, рабочая полость которого представляет собой оттиск формы изделия, которое необходимо получить. Поэтому форма и размеры полости штампа должны соответствовать виду требуемого изделия. Применяя методы точной объемной, преимущественно холодной штамповки, можно получить детали машин, которые не требуют выполнения последующей механической обработки резанием.
Прокатка является одним из распространенных методов обработки металлов давлением. В начале прокатывали олово для изготовления посуды, золото и серебро для чеканки монет, свинцовые листы для труб. В настоящее время методы прокатки металла получили широкое практическое применение в производстве различных видов изделий.В зависимости от расположения валков и их относительного движения методы прокатки бывают: продольная, поперечная и винтовая (геликоидальная).Все процессы обработки металлов давлением основаны на способности металлических материалов в твердом состоянии изменять форму и размеры под действием приложенных внешних сил, т.е. пластически деформироваться. Несмотря на большое многообразие процессов обработки давлением, их можно объединить в две основные группы процессы металлургического и машиностроительного производства.К первой группе относятся: прокатка, прессование и волочение, т. е. процессы, в основе которых лежит принцип непрерывности технологического процесса. Продукцию металлургического производства (листы, полосы, ленты, периодический и профильный прокат, трубы, профили, проволоку и т.п.) используют как заготовку в кузнечно-штамповочных и механических цехах и как готовую продукцию для создания различного рода конструкций. Во вторую группу входят такие процессы, как ковка, объемная штамповка (горячая и холодная), листовая штамповка. Эти процессы обеспечивают получение заготовок изделий (деталей) и готовых деталей, не требующих последующей механической обработки .Обработке давлением могут подвергаться те металлы и сплавы, которые обладают необходимым запасом пластичности, обеспечивающим деформирование без нарушения сплошности материала, т.е. без его разрушения. Пластичность не является неизменным, наперед заданным свойством материала - на нее оказывает влияние ряд факторов: химический состав материала, температура и скорость деформации, форма очага деформации и т.п. Создавая соответствующие условия деформирования, можно получить требуемую технологическую пластичность. К зависимости от температуры и скорости деформации различают холодную и горячую деформации.
Холодная деформация происходит при таких температурно-скоростных условиях, когда в материале протекает только один процесс упрочнение (или наклеп) металла. Горячая деформация осуществляется при таких температурно-скоростных условиях обработки, когда в материале протекают одновременно два процесса: наклеп и рекристаллизация (упрочнение и разупрочнение), причем скорость разупрочнения равна или выше скорости упрочнения. При горячей деформации улучшаются все механические свойства материала: и прочностные, и пластические, особенно повышается ударная вязкость. После горячей деформации, как правило, микроструктура, мелкозернистая, макроструктура волокнистая. Образование волокнистой макроструктуры при горячей деформации полезное явление, особенно при изготовлении ответственных деталей (турбинных дисков, валов, роторов и т.п.).При выборе технологического процесса обработки металлов давлением следует учитывать технологические свойства сплавов. Чем ниже пластичность материала, тем сложнее получить качественную заготовку, тем сложнее технологический процесс и выше себестоимость детали.
22. Основные методы получения заготовок пластическим деформированием
Поверхностным пластическим деформированием (ППД) называется обработка заготовок давлением, при которой пластически деформируется только поверхностный слой материала.
Обработка методами ППД осуществляется на металлорежущих станках специальными инструментами. Эти методы обработки заготовки заключаются в пластическом деформировании их материала без образования стружки.
Различают два вида ППД. Объемное пластическое деформирование (ОПД), которое используется для образования новых элементов заготовки: рифлений, резьб, шлицев, зубчатых поверхностей и т. д. Поверхностное пластическое деформирование (ППД) отделка поверхностей путем сглаживания неровностей и упрочнения поверхностного слоя заготовки: обкатывание роликами и шариками, алмазное выглаживание, дорнование и калибрование отверстий шариком, обработка металлическими щетками, обдувка дробью, чеканка и т. д.
Методы ППД производительны и обеспечивают высокое качество поверхности (повышенную твердость, остаточные напряжения сжатия, низкую шероховатость поверхности) и необходимую точность.Обычно ППД производится на универсальном оборудовании и легко автоматизируется. Ей предшествует чистовая обработка (чистовое точение и растачивание, развертывание и др.).
К этим методам относятся: осадка, обжатие, раздача, вдавливание, вытяжка, растяжка, правка, накатка. Восстановление размеров деталей производят перемещением части металла с нерабочих ее участков к изношенным поверхностям. Необходимость изготовления специальных приспособлений и штампов делает большинство способов этого вида ремонта экономически оправданным только при восстановлении многих однотипных деталей. Осадка применяется для увеличения наружного диаметра сплошных деталей или для уменьшения внутреннего и увеличения наружного диаметров полых деталей за счет уменьшения их высоты. Этим способом восстанавливают различные втулки при износе по внутреннему или наружному диаметру, цапфы валов и осей, зубья зубчатых колес и другие детали. Обжатие применяется для уменьшения внутреннего диаметра полых деталей за счет уменьшения наружного. Этим способом восстанавливают втулки из цветных металлов, проушины рычагов с гладкими или шлицевыми отверстиями, корпуса гидронасосов, сепараторы роликовых подшипников и др. После обжатия деталь наращивают по наружному диаметру (например, электролитическим способом), а по внутреннему диаметру развертывают до требуемого размера. Раздача применяется для увеличения наружного диаметра за счет увеличения внутреннего. Этим, способом восстанавливают пальцы, втулки (в том числе шлицевые), пустотелые валы и прочие тела вращения. Раздачу чаще проводят в холодном состоянии деталей, закаленные детали предварительно подвергают отпуску или отжигу. Вместо пуансона иногда используют стальные шарики нужного диаметра. После обжатия деталь по наружному диаметру, как правило, подвергают механической обработке. Вдавливание применяется для увеличения размеров изношенных частей детали посредством перераспределения металла с ее нерабочих поверхностей. Этим способом восстанавливают изношенные боковые поверхности шлицев, зубьев шестерен, шаровых пальцев и др. Закаленные детали предварительно подвергают отпуску. После вдавливания следует механическая обработка восстанавливаемых поверхностей детали, термообработка и шлифование. Вытяжка применяется для увеличения длины деталей (рычаги, тяги, штанги, стержни и др.) за счет местного сужения их поперечного сечения на небольшом участке путем приложения силы, перпендикулярной направлению удлинения. Вытяжку выполняют в горячем состоянии детали с местным нагревом до 800850 °С. Растяжка, как и вытяжка, служит для увеличения длины детали, но направление удлинения совпадает с направлением действующей силы. Правка применяется для устранения изгиба, скручивания и коробления деталей. Этим способом восстанавливают валы, ходовые винты, оси, шатуны, тяги, кронштейны, балки, рамы и корпуса. Правку выполняют с использованием прессов, домкратов, скоб, специальных приспособлений, кувалд и молотков. В зависимости от степени деформации и размеров детали правку производят в холодном состоянии детали или с предварительным ее нагревом. Накатка применяется для восстановления неподвижных посадок на шейках валов. Деталь, закрепленную в центрах токарного станка, обкатывают роликом с насечкой из стали У12А или ШХ15 с углом заострения 6070° и твердостью HRC 5558, закрепленным в суппорте. Этим способом диаметр детали может быть увеличен до 0,4 мм. При твердости детали HRC<30 накатку производят в холодном состоянии при обильном охлаждении машинным маслом. После накатки деталь шлифуют или накатывают гладким роликом до получения требуемого размера.
23.Основные кузнечные операции
Осадка, высадка, протяжка, прошивка, раскатка и д.р.
Осадка операция ковки, связанная с увеличением попер. Сечения исходной заготовки и уменьшением ее высоты
Коэф-т укова
Высадка операция, кая осущ-ся путем осадки, но производимая на некоторой части заг-ки. Протяжка операция ковки, связанная с уменьшением поперечного сечения заг-ки и увеличения ее длины. Прошивка- получение отверстий в поковке (чаще круглой формы)Раскатка на оправке кузнечная
Операция, связанная с увеличением наруж и внутр ДИАМЕТРА кольцевой заготовки и уменьшения толщины её стенки.
Оборудование для ковки. Ковка выполняется на ковочных молотах. Устр-во молота основано на принципе ударного действия, энергия удара молота опред-ся массой падающих частей и их падения к моменту удара о заг-ку.
По применяемому типу молоты:-паровоздушные (1);-пневматические (2);-механические.(1) могут работать на паре или сжатом воздухе. Теплота пара и энергия сжатого воздуха в молоте превращ-ся в работу движ-ия падающих частей.Они делятся на: простого действия (а), двойного действия
(а) энергонаситель используется только для подъема падающих частей
(б) энергия использ. и для давления на поршень молота сверху во время его рабочего хода(2) энергоноситель-воздух. Масса падающих частей до 75 кг(простого действия), до 1000 кг.(2-го действия)Исп-ся ковочные прессы- оборудование безударного действия(для получения крупногабаритных паковок) они могут быть парагидравлические и гидравлические.
Усилия от 5 до 150мН Дефекты ковки. Могут возникать на различных стадиях тех. процесса. при нагреве паковки в процессе формоизменения в процессе охлаждения 4. в процессе не правильной термообработки(1) обусловлены нарушением режима нагрева материала) Недогрев нагрев до t ↓ t ковки или недостаточная выдержка при ковочной t. В заг-ке возникают пов-ные или внутр трещины(недостаток пластичности)б) Перегрев дефектов возникает при нагреве заг- ки при t ↑ допустимой для данной марки стали или при длительной выдеожке. Результат черезвычайный рост зерна и снижение прочностив) Пережог- процесс окисления или оплавления по границе зерен металла в следствии длительного окисленного нагрева при высокой t. Металл теряет прочность и пластичность, что приводит к разрушению. Характерен крупнозернистый излом. Признак: обильное выделение рассыпающихся искр, образование надрывов с изгибистым очертанием .г) Обезуглероживание- выгорание с пов-ти.
24. Исходные материалы для кузнечного производства заготовок
Для процессов ковки исходными материалами являются слитки, масса которых может составлять от нескольких килограммов до 250...350 т, и прокатные заготовки. Для горячей штамповки используют кованую, прокатанную, прессованную заготовки и заготовки, получаемые волочением, а также жидкий металл. При листовой штамповке исходный материал это горяче- и холоднокатаные листы и ленты из различных сталей, сплавов на основе алюминия, меди, никеля, титана, благородных металлов и другие материалы.
Подготовка исходного материала (слиток, прутковый или листовой металл) к ковке и штамповке включает такие операции, как сортировка, разрезка на мерные длины, удаление поверхностных дефектов, термическая обработка, если это необходимо, и др. Если деформирование выполняется в горячем состоянии, возникает необходимость нагрева металла. Разнообразие существующих технологических операций в ковочно-штамповочном производстве требует соблюдения при выборе технологического процесса следующих основных положений: принятый технологический процесс должен обеспечить производство изделий с определенными; точностью их геометрической формы и размеров, механическими свойствами, структурой и отсутствием поверхностных и внутренних дефектов. При проектировании технологического процесса предусматривается периодический контроль качества изделий, который должен не только выявлять, но и предупреждать появление брака. Отделочные операции включают такие виды обработки, как обрезка облоя (заусенца) или других отходов, калибровка для повышения точности размеров и формы изделия и улучшения качества поверхности, термическая обработка, правка, очистка и травление, гальванические и лакокрасочные покрытия, оксидирование, анодирование и пр.
26. Виды деформаций при пластической обработке металлов
Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие. Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.
Основным признаком, по которому в теории ОМД производится деление пластической деформации на виды, является температура. Она определяет соотношение процессов упрочнения и разупрочнения, происходящих параллельно в деформируемом теле.
Совокупность явлений, связанных с повышением прочностных свойств металлов в процессе пластической деформации, называется деформационным упрочнением или наклепом.
Если в ходе пластической деформации прочностные характеристики металла понижаются, то речь идет о так называемом разупрочнении металла.
Упрочняющие и разупрочняющие процессы протекают во времени с определенными скоростями, обусловленными условиями деформации и природой деформируемого металла. В зависимости от того, какой из про-цессов является преобладающим, результаты деформации будут различны.
Существует несколько вариантов разделения пластической деформации на виды, из которых на практике наибольшее распространение получил тот, по которому различают только горячую и холодную деформации.
Пластическую деформацию металлов называют горячей, если она осуществляется при температуре, равной или выше температуры начала рекристаллизации (Т Трекр). Температура Т берется в Кельвинах. Рекристаллизация (Трекр = 0,4 Тпл), т.е. процесс роста новых недеформированных зерен, вызывающий восстановление всех первоначальных физико-механических характеристик металла, успевает пройти полностью, искажения кристаллической решетки отсутствуют.
При холодной деформации рекристаллизация и возврат полностью отсутствуют и деформированный металл имеет все признаки упрочнения. Температурный интервал холодной деформации расположен ниже температур начала рекристаллизации (Т < Трекр). В результате холодной деформации сопротивление металла деформации увеличивается, пластичность уменьшается. Используется она обычно на конечных стадиях получения изделий для обеспечения точности размеров, требуемого уровня свойств и высокого качества поверхности.
Согласно приведенной классификации холодная и горячая деформации не связаны с конкретными температурами нагрева, а зависят только от протекания процессов упрочнения и разупрочнения. Определить вид деформации можно по заданной температуре обработки металла
27. Механические характеристики деформируемых сталей и сплавов
Легированные стали для штампов холодного деформирования:
Эти стали должны обладать твердостью и прочностью, большими, чем твердость и прочность деформируемого металла; высокой износостойкостью; достаточной вязкостью; соответствующей прокаливаемостью; незначительными объемными изменениями при закалке.
Высокохромистые стали применяют для крупных штампов сложной формы, работающих при повышенных нагрузках и износе. Сталь Х12, имеющая более низкие механические свойства, применяется редко. Сталь Х12Ф1 превосходит сталь Х12М по пластичности, вязкости и устойчивости против отпуска. Сталь Х12М с большим содержанием С после закалки получает более высокую твердость. Сталь Х6ВФ применяется для штампов сравнительно небольших размеров.
Пластически деформируемые сплавы обладают высокими механическими свойствами, хорошо штампуются, режутся ножницами, обрабатываются на станках.
Применение же пластически деформируемых сплавов ограничено их высокой стоимостью.
К дуралюминам относится группа пластически деформируемых сплавов на алюминиевой основе.
Механические характеристики определяются следующими факторами:
-веществом, его структурой и свойствами;
-конструктивными особенностями элемента, т. е, размерами, формой, наличием концетраторов, состоянием поверхности;
-условиями при нагружении: температурой, скоростью, повторяемостью нагрузки и др.
Конструкционные материалы в процессе деформирования вплоть до разрушения ведут себя по разному. Пластичное поведение характеризуется существенным изменением формы и размеров, при этом к моменту разрушения развиваются значительные деформации, не исчезающие после снятия нагрузки. Такие материалы называют пластичными. При хрупком поведении разрушение наступает при весьма малых деформациях, и материалы с такими свойствами называют хрупкими. Однако одни и те же конструкционные материалы, находящиеся в различных условиях деформирования, ведут себя по разному: при одних условиях проявляют себя как пластичные материалы, при другихкак хрупкие. В связи с этим, основные макромеханические характеристики материалов упругость, пластичность, вязкость и др. правильнее относить не к их свойствам, а к состояниям материала.
28. Температурный интервал горячей обработки давлением
Для горячей обработки давлением металл нагревается до определенной температуры и деформируется до тех пор, пока т-ра его не опустится до такой, при которой дальнейшая деформация окажется невозможной. Таким образом, металл может быть деформирован в строго определенном температурном интервале. Максимальная т-ра его называется верхней границей, а минимальная - нижней. Каждый металл имеет свой строго определенный тр-ный интервал горячей обработки давлением. Верхний предел т-рного интервала tв.п избирается так, чтобы не было пережигания, интенсивного окисления и обезуглероживания, а также перегрева. При выборе верхней границы т-рного интервала для высокоуглеродистых и легированных сталей необходимо иметь в виду их большую склонность к перегреву. Температура нижней границы tн.п должна быть такая, чтобы после деформации при этой т-ре металл не получил укрепления (наклепа) и имел необходимую величину зерна. Особое значение выбор нижней границы имеет для легированных сталей и сплавов, не имеющих фазовых и аллотропических превращений, например для аустенитных и ферритных сталей. Конечные свойства этих сталей определяются в основном нижней границей температурного интервала (поскольку они не подвергаются термической обработке).
Температурный интервал горячей обработки давлением 1150 - 850, охлаждение на воздухе; штам-пуемость хорошая; допускается глубокая вытяжка. В термически обработанном состоянии стали отличаются высокой пластичностью. Температурный интервал горячей обработки 1180 - 900 С, охлаждение замедленное. Хорошо штампуется и сваривается всеми видами сварки.
Каждый металл и сплав имеет свой строго определенный температурный интервал горячей обработки давлением. Например, алюминиевый сплав АК4 470 - 350 С; медный сплав БрАЖМц 900 - 750 С; титановый сплав ВТ8 1100 - 900 С. Для углеродистых сталей температурный интервал нагрева можно определить по диаграмме состояния ( см. разд. Например, для стали 45 температурный интервал 1200 - 750 С, а для стали У10 1100 - 850 С.
29.Свободная ковка
Заготовки, получаемые св. ковкой и штамповкой паковки.
Св.к. предназначается для изготовления поковок m= 0.3кг-10т.
В условиях индивид. и мелкосер. Производства точность регламентируется стандартом ГОСТ 7505-89
Применяют оборудование: паровоздушные молоты одинарного и двойного действия, пневматические молоты.
Ковка горячая деф-ция, поэтому исп-ся все стали и отливки.
Шер-ть пов-ти Rz=320-160
Применение подплодных штампов Rz=80, коэф-т валовой точности 0,4-0,5, что приведет к значит-у V мех-кой обработки.
“+”1. Воз-ть получения ↑ кач-ва металла с ↑ мех-кими св-ми (особ. пластичностью);2. Возм-ть получения крупногабаритных заг-к;
3. Оборудование меньшей мощности.“-” 1. Низкая произ-ть;2. Значительная трудоемкость;3. Большие припуски, напуски и допуски, что составляет значит. Потерю металла при мех. обр-ке. Тех. Процесс получения паковок включает в себя следующие операции:1. Подготовительные операции (подготовка слитков к ковке или пруткаразделка на мерные заг-ки)2. Ковочные или штамповочные операции. Все тех. операции ведущие к изменению формы заг-ки3. Завершающие тех. Опер. Обработка заусенца, прошивка и пробивка отверстия.4. Отделочные. Правка очистка от окалины, калибровка, термообработка.
30. Основные дефекты свободной ковки
Виды и причины дефектов
Поковки, изготовленные с отступлением от технических условий и требующие дополнительных работ для устранения выявленных в них пороков, называются дефектными.
Главными причинами дефектов поковок являются: недоброкачественный исходный металл слитка или заготовки; неправильные режимы нагрева слитка или заготовки; неправильные приемы ковки; несоблюдение режима охлаждения поковки после ковки; работа неисправным инструментом.
Основными дефектами поковок являются наружные трещины или рванины, волосовины, внутренние разрывы или свищи и расслоения, нажимы и складки, вмятины, флокены, неметаллические включения и следы усадочной рыхлости.
Причиной появления трещин в поковках могут быть: недоброкачественный исходный материал заготовки или слитка; ковка при низких температурах; неравномерное охлаждение поковки; применение неправильных приемов и весьма больших обжатий при ковке. Трещины, обнаруженные при ковке, удаляют в горячем состоянии вырубкой при помощи специальных топоров, а в холодном состоянии зачисткой абразивными кругами, вырубкой пневматическими зубилами и другими способами.
Волосовины представляют собой очень тонкие и мелкие (видимые после травления невооруженным глазом) трещины, которые могут образоваться в процессе ковки или прокатки слитков, имеющих мелкие газовые подкорковые пузыри, и от слишком быстрого охлаждения поковок. Волосовины часто наследуются от проката.
Рванины появляются: в процессе первого обжатия слитка во время ковки при низких температурах; при неправильном нагреве заготовки (пережог металла).
Свищи (пустоты или скворешники) получаются в осевой зоне при неправильных приемах ковки круглых поковок под плоскими бойками, когда ведут протяжку с небольшими обжатиями с круга на круг без перехода на квадратное сечение с последующей сбивкой углов.
Нажимы (рисунке показана последовательность образования) появляются во время протяжки в результате малой подачи при глубоких обжимах заготовки или от ковки на неисправных бойках. Во время осадки складки получаются от уступчатой поверхности заготовки, появившейся в результате недоброкачественной протяжки заготовки перед ее осадкой.
Вмятины возникают при небрежной очистке заготовки и бойков от окалины, которая в процессе формообразования заковывается в тело поковки.
Флокены внутренние трещинки, возникающие от выделения водорода, поглощенного жидкой сталью во время выплавки. Флокены образуются в результате быстрого охлаждения поковки после ковки и в тем большей степени, чем больше сечение поковки.
Неметаллические включения (шлаки, песок) и следы усадочной рыхлости в поковках выявляются обычно при механической обработке. Если прибыльная часть в процессе ковки удалена неполностью, то остатки усадочной раковины в виде рыхлости раскрываются при ковке.
К неисправимым дефектам поковок относятся: глубокие продольные и поперечные трещины, рванины, рыхлость и неметаллические включения, пережог. Поковки с неисправимыми дефектами являются негодными и их бракуют.
К исправимым дефектам поковок относят: малые трещины, перегрев металла, нажимы и складки, если они не входят в контур детали. Мелкие трещины вырубают в холодном состоянии пневматическими зубилами и в процессе ковки «на горячо» специальными топорами. Нажимы и складки, если они не входят в контур детали, удаляют зачисткой на наждачном круге или вырубкой. Для улучшения механических свойств металла в целях устранения влияния перегрева и снижения внутренних напряжений поковки подвергают первичной термической обработке отжигу, нормализации и улучшению