Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
1)Эрстед заметил влияние тока в проводнике на компас, а Ампер - предсказал и проверил взаимодействие токов и катушек с током друг с другом и с магнитами.
Ни тот, ни другой траектории частиц НЕ ИЗУЧАЛИ и вообще не знали, что существует в природе такая хрень, как заряженные элементарные частицы..
2) Определение: магнитное поле область пространства, в которой конфигурация бионов, передатчиков всех взаимодействий, представляет собой динамическое, взаимосогласованное вращение (смотрите анимацию).
Направление действия магнитных сил совпадает с осью вращения бионов с применением правила правого винта (для случая показанного в анимации вектор магнитного поля направлен от зрителя).
Силовая характеристика магнитного поля определяется частотой вращения бионов. Чем выше частота вращения тем сильнее поле.
2.1) Одно из важнейших свойств магнитного поля - явление электромагнитной индукции. Его суть состоит в том, что при всяком изменении магнитного потока, пронизывающего какой-либо контур, в нем наводится электродвижущая сила. Другим свойством магнитного поля является механическое взаимодействие его с электрическим током. Минеральные частицы, попадая в магнитное поле, влияют на расположение его силовых линий. Магнитные частицы оказывают небольшое сопротивление магнитным силовым линиям, поэтому последние в них концентрируются. Устремляясь по кратчайшему пути, силовые линии втягивают магнитные частицы в пространство между полюсами. Немагнитные частицы ухудшают проводимость, поэтому силовые линии обходят их и выталкивают из поля.
Физическая сущность магнитной сепарации состоит в том, что магнитное поле искажает гравитационную траекторию минералов, обладающих соответствующими магнитными свойствами, чем вызывает их извлечение из потока других минералов, которые таких свойств не имеют.
3) Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции
Количественной характеристикой магнитного поля служит специальная физическая величина - напряженность магнитного поля, не зависящая от магнитных свойств среды. С напряженностью связана также еще одна характеристика магнитного поля - индукция.
Индукция и напряженность являются векторами.
Направление этих векторов подчиняется правилу правого буравчика: направление магнитного поля совпадает с направлением движения конца рукоядуи буравчика с правой нарезкой, движущегося поступательно в направлении тока.
Магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты) .
В СИ магнитная индукция измеряется в Тесла
Магнитное поле это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.
Можно также рассматривать магнитное поле, как релятивистскую составляющую электрического поля. Точнее, магнитные поля являются необходимым следствием существования электрических полей и специальной теории относительности. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются свет и прочие электромагнитных волны.
Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током) . Сила, действующая на движущуюся в магнитном поле заряженную частицу, называется силой Лоренца. Она пропорциональна величине индукции магнитного поля, составляющей скорости, перпендикулярной направлению вектора магнитного поля, и заряду частицы.
Также магнитное поле действует на проводник с током. Сила, действующая на проводник будет называться силой Ампера. Эта сила складывается из сил, действущих на отдельные движущиеся внутри проводника заряды.
Интересно явление, которое называется ИНВЕРСИЯ МАГНИТНОГО ПОЛЯ, - изменение полярности, когда северный магнитный полюс Земли становится южным и наоборот. Анализ магнитного направления базальтовых лав суши и океанов, а также осадков на дне морей показал, что главное МАГНИТНОЕ ПОЛЕ Земли претерпевало частые и быстрые изменения. Поле много раз менялось за последние четыре миллиона лет.
4) Направление вектора магнитной индукции. Ориентирующее действие магнитного поля на магнитную стрелку или рамку с током можно использовать для определения направления вектора магнитной индукции.
За направление вектора магнитной индукции принимается направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле (рис. 1.7, а). Это направление совпадает с направлением положительной нормали к замкнутому контуру с током (рис. 1.7, б). Положительная нормаль направлена в ту сторону, куда перемещается буравчик (с правой нарезкой), если вращать его по направлению тока в рамке (рис. 1.7, в).
Используя рамку с током или магнитную стрелку, можно определить направление вектора магнитной индукции в любой точке поля.
На рисунках 1.8, 1.9 показаны опыты с магнитной стрелкой, повторяющие опыты с рамкой (см. рис. 1.5, 1.6).
В магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке устанавливается по касательной к окружности (см. рис. 1.9). Плоскость такой окружности перпендикулярна проводу, а центр ее лежит на оси провода.
Направление вектора магнитной индукции устанавливают с помощью правила буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление враш,ения ручки буравчика указывает направление вектора магнитной индукции.
Опыт по определению направления вектора индукции магнитного поля Земли проводит каждый, кто ориентируется на местности по компасу.
Вектор магнитной индукции-характеристика магнитного поля.
За направление вектора маг. индукции принимается направление от южного полюса к северному магнитной стрелки, свободно устанавливающейся в маг. поле.Это направление совпадает с направлением положительной нормали( перпендикуляра) к замкнутому контуру с током.
НАПРАВЛЕНИЕ ВЕКТОРА МАГ. ИНДУКЦИИ УСТАНАВЛИВАЮТ С ПОМОЩЬЮ "ПРАВИЛА БУРАВЧИКА".
Линиями маг. индукции называют линии, касательные к которым направлены также как вектор маг. индукции в данной точке поля.
В каждой точке маг. поля можно определить направление вектора маг. индукции и его модуль с помощью измерения силы, действующей на участок проводника с током.(закон Ампера, сила Ампера определяется по правилу ЛЕВОЙ РУКИ)
5) Линии магнитной индукции - линии, касательные к которым направлены также как и вектор магнитной индукции в данной точке поля. Магнитные поля, так же как и электрические, можно изображать графически при помощи линий магнитной индукции. Через каждую точку магнитного поля можно провести линию индукции. Так как индукция поля в любой точке имеет определённое направление, то и направление линии индукции в каждой точке данного поля может быть только единственным, а значит, линии магнитного поля, так же как и электрического поля, линии индукции магнитного поля прочерчивают с такой густотой, чтобы число линий, пересекающих единицу поверхности, перпендикулярной к ним, было равно (или пропорционально) индукции магнитного поля в данном месте. Поэтому, изображая линии индукции, можно наглядно представить, как меняется в пространстве индукция, а следовательно, и напряжённость магнитного поля по модулю и направлению.
Характеристика однородного магнитного поля: магнитные линии параллельные прямые; густота магнитных линий везде одинакова; сила, с которой магнитное поле действует на магнитную стрелку, одинакова во всех точках этого поля по величине и направлению.
Однородное магнитное поле существует, например, внутри полосового магнита, между плоскими полюсами большого электромагнита или внутри соленоида равномерно намотанной длинной катушки с током - если его длина много больше, чем диаметр.
Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии, принято считать северным полюсом, а противоположный конец, в который входят силовые линии, южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы. Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий.
6)
Действие магнитного поля на проводник с током Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. |
|
Сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником: F=B.I.ℓ. sin α закон Ампера. |
|
Направление силы Ампера (правило левой руки) Если левую руку расположить так, чтобы перпендикулярная составляющая вектора В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник с током. |
Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца: |
|
Направление силы Лоренца (правило левой руки) Направление F определяется по правилу левой руки: вектор F перпендикулярен векторам В и v.. |
|
Правило левой руки сформулировано для положительной частицы. Сила, действующая на отрицательный заряд будет направлена в противоположную сторону по сравнению сположительным. |
Сила Ампера равна произведения вектора магнитной индукции на силу тока, длину участка проводника и на синус угла между магнитной индукцией и участком проводника.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называю силой Лоренца. Эту силу можно найти с помощью закона Ампера.
Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной к l, к числу N заряженных частиц, упорядочение движущихся на этом участке проводника:
Направление с помощью правила левой руки: Если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец покажет направление действующей на заряд силы Лоренца.
Так как сила Лоренца перпендикулярна скорости частицы, то. она не совершает работу.
Силу Ампера применяют в громкоговарителях, динамиках.
Принцип работы: По катушке протекает переменный электрический ток с частотой, равной звуковой частоте от микрофона или с выхода радиоприемника. Под действием силы Ампера катушка колеблется вдоль оси громкоговорителя в такт с колебаниями тока. Эти колебания передаются диафрагме, и поверхность диафрагмы излучает звуковые волны.
Силу Лоренца применяют в телевизорах, масс-спектограф.
Принцип работы: Вакуумная камера прибора помещена в магнитное поле. Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории . По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко определить его массу.
Сила Ампера - сила взаимодействия двух токов, текущих в малых отрезках проводников, находящихся на некотором расстоянии друг от друга.
В частном случае параллельных проводников силы взаимодействия стремятся сблизить проводники, если текущие в них токи параллельны, и удалить их друг от друга, если токи антипараллельны. Таким образом, параллельные токи притягиваются, а антипараллельные - отталкиваются.
Этот физический эффект используется в определении единицы измерения силы электрического тока - Ампера.
Также силой Ампера называют силу, с которой магнитное поле, характеризуемое вектором магнитной индукции B, действует на элементарный отрезок проводника dl, по которому течёт ток силы I:
F = B I dl \sin\alpha\! (в системе СИ), где ? -угол между направлениями dl и B.
Иначе амперова сила выражается как векторное произведение: F=I[dl,B], где жирные буквы обозначают вектора, а квадратные скобки - вих векторное произведение.
7) Силой Лоренца называется сила, действующая на заряженную частицу, движущуюся во внешнем электромагнитном поле.
Формула для силы Лоренца (F) была впервые получена путем обобщения опытных фактов Х.А. Лоренцем в 1892 г. и представлена в работе «Электромагнитная теория Максвелла и ее приложение к движущимся телам». Она имеет вид:
F= qE + q[VЧB], (1)
где q - заряженная частица;
Е - напряженность электрического поля;
B - вектор магнитной индукции, не зависящий от величины заряда и скорости его движения;
V - вектор скорости заряженной частицы относительно системы координат, в которой вычисляются величины F и B.
Первый член в правой части уравнения (1) - сила, действующая на заряженную частицу в электрическом поле FЕ=qE, второй член - сила, действующая в магнитном поле:
Fм = q[VЧB]. (2)
Формула (1) универсальна. Она справедлива как для постоянных, так и для переменных силовых полей, а также для любых значений скорости заряженной частицы. Она является важным соотношением электродинамики, так как позволяет связать уравнения электромагнитного поля с уравнениями движения заряженных частиц.
В нерелятивистском приближении сила F, как и любая другая сила, не зависит от выбора инерциальной системы отсчета. Вместе с тем магнитная составляющая силы Лоренца Fм изменяется при переходе от одной системы отсчета к другой из-за изменения скорости, поэтому будет изменяться и электрическая составляющая FЕ. В связи с этим разделение силы F на магнитную и электрическую имеет смысл только с указанием системы отсчета.
В скалярной форме выражение (2) имеет вид:
Fм = qVBsina, (3)
где a - угол между векторами скорости и магнитной индукции.
Таким образом магнитная часть силы Лоренца максимальна, если направление движения частицы перпендикулярно магнитному полю (a=p/2), и равна нулю, если частица движется вдоль направления поля В (a=0).
Магнитная сила Fм пропорциональна векторному произведению [VЧB], т.е. она перпендикулярна вектору скорости заряженной частицы и поэтому работы над зарядом не совершает. Это означает, что в постоянном магнитном поле под действием магнитной силы искривляется лишь траектория движущейся заряженной частицы, но энергия ее всегда остается неизменной, как бы частица ни двигалась.
Направление магнитной силы для положительного заряда определяется согласно векторному произведению [VЧB] (рис. 1).
Направление силы, действующей на положительный заряд в магнитном поле
Сила Лоренца=это сила, действующая на движущуюся заряженную частицу в магнитном поле. Сила Лоренца работы не совершает. Сила Лоренца играет роль центростремительной силы. Fl=q*B*v*sin(a).
8) СВОЙСТВА ВЕЩЕСТВА
Магнитное поле создается не только электрическими токами, но и постоянными магнитами.
Намагничивание вещества. Постоянные магниты могут быть изготовлены лишь из сравнительно немногих веществ, но все вещества, помещенные в магнитное поле, намагничеваются т. е. сами становятся источниками магнитного поля. В результате этого вектор магнитной индукции при наличии вещества отличается от вектора магнитной индукции в вакууме.
Гипотеза Ампера. Причина, вследствие которой тела обладают магнитными свойствами, была установлена французским ученым Ампером. Сначала, под непосредственным впечатлением от наблюдения за поворачивающейся вблизи проводника с током магнитной стрелкой в опытах Эрстеда Лмиер предположил, что магнетизм Земли вызван токами, проходящими внутри земного шара. Главный шаг был сделан: магнитные свойства тела можно объяснить циркулирующими внутри него токами. Далее Ампер пришел к общему заключению: магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него. Этот решающий шаг от возможности объяснения магнитных свойств тела токами к категорическому утверждению, что магнитные взаимодействия это взаимодействия токов, свидетельство большой научной смелости Ампера.
Согласно гипотезе Ампера внутри молекул и атомов циркулируют элементарные электрические токи. (Теперь мы хорошо знаем, что эти токи образуются вследствие движения электронов в атомах.) Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу из-за теплового движения молекул (рис. 1.28, а), то их действия взаимно компенсируются, и никаких магнитных свойств тело не обнаруживает. В намагниченном состоянии элементарные токи в теле ориентированы так, что их действия складываются (рис. 1.28, б).
Гипотеза Ампера объясняет, почему магнитная стрелка и рамка (контур) с током в магнитном поле ведут себя одинаково (см. § 2). Стрелку можно рассматривать как совокупность маленьких контуров с током, ориентированных одинаково.
Наиболее сильные магнитные поля создают вещества, называемые ферромагнетиками. Магнитные поля создаются ферромагнетиками не только вследствие обращения электронов вокруг ядер, но и вследствие их собственного вращения.
9) Диамагне́тики вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны. Под действием внешнего магнитного поля каждый атом диамагнетика приобретает магнитный момент I (а каждая единица объёма намагниченность M), пропорциональный магнитной индукции B и направленный навстречу полю. Поэтому магнитная восприимчивость = M/H у диамагнетиков всегда отрицательна. По абсолютной величине диамагнитная восприимчивость мала и слабо зависит как от напряжённости магнитного поля, так и от температуры.
Другими словами, магнитная проницаемость и слабо зависит как от напряжённости магнитного поля, так и от температуры.
парамагнетики вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля (J↑↑H) и имеют положительную магнитную восприимчивость. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемость незначительно отличается от единицы .
Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.
Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствии внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.
К парамагнетикам относятся алюминий (Al), платина (Pt), многие другие металлы (щелочные и щелочно-земельные металлы, а также сплавы этих металлов), кислород (О2), оксид азота (NO), оксид марганца (MnO), хлорное железо (FeCl3) и др.
Парамагнетиками становятся ферро- и антиферромагнитные вещества при температурах, превышающих, соответственно, температуру Кюри или Нееля (температуру фазового перехода в парамагнитное состояние).
Ферромагнетики вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля.
Ферриты (оксиферы) химические соединения оксида железа Fe2O3 с оксидами других металлов, обладающие особыми магнитными (ферримагнетики) свойствами, сочетающие высокую намагниченность и полупроводниковые или диэлектрические свойства, благодаря чему они получили широкое применение как магнитные материалы в радиотехнике, радиоэлектронике, вычислительной технике.
10) магнитная проницаемость физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией и напряжённостью магнитного поля в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая ее состав, состояние, температуру и т. д.).
МАГНИТНАЯ ПРОНИЦАЕМОСТЬ физическая величина, характеризующая магнитные свойства вещества. Относительная магнитная проницаемость показывает, во сколько раз в данной среде сила взаимодействия между проводами с током изменяется по сравнению с вакуумом. Численно равна отношению абсолютной магнитной проницаемости к магнитной постоянной.
Абсолютная магнитная проницаемость равна произведению магнитной проницаемости на магнитную постоянную. Изменение сил взаимодействия между проводами обусловлено изменением интенсивности магнитного поля, вызванного размером, формой проводов, а также магнитными свойствами вещества, находящегося между проводами. Магнитная проницаемость показывает, во сколько раз абсолютная магнитная проницаемость данного материала больше магнитной постоянной. Магнитная проницаемость воздуха и большинства веществ, за исключением ферромагнитных материалов, близка к единице.
Магнитная постоянная равна 12.56 x 10-7 Г/м.
Словарь Бензаря
Применение ферромагнетиков в технике: роторы генераторов и электродвигателей; сердечники трансформаторов, электромагнитных реле; в электронно-вычислительных машинах (ЭВМ), телефонах, магнитофонах, на магнитных лентах. На практике их применяют для катушек индуктивности, трансформаторов высокой частоты. Феррит обладает очень хорошей электромагнитной проводимостью, лучше, чем трансформаторная сталь! На подобных катушках с ферритом можно построить генераторы, и возбудители электромагнитных волн.
Принцип работы устройств, использующих эту технологию, состоит в локальном нагревании лазером и перемагничивании в процессе записи поверхности пластин жесткого диска. Нагрев поверхности снижает коэрцитивность материала поверхности, что позволяет значительно уменьшить размеры магнитной области, хранящей один бит информации, и увеличить стабильность хранения данных, избегая вредного влияния суперпарамагнитного эффекта[2]. Нагрев выполняется с помощью лазера, который за 1 пс разогревает область записи до 100 °C[3].
В настоящее время компания HGST (англ.)русск. вкладывает ресурсы:
… в разработку материала носителя (он должен обладать стабильными характеристиками в течение длительного времени и множества циклов записи, быть достаточно дёшевым и технологичным, иметь определённые термодинамические и механические характеристики и т. д.) и интеграцию оптики в записывающую головку (а здесь нужно добиться стабильной фокусировки при изменении высоты полёта головки, решить проблемы теплоотвода, компенсации возрастающей массы головки, изменения её аэродинамических характеристик…)[2].
В компании Seagate работы по технологии HAMR с 1998 года ведет подразделение Seagate Research[4]. Компания Fujitsu также работает над собственной реализацией данной технологии[5].
Термоассистируемая магнитная запись (также термомагнитная запись, тепловая магнитная запись, магнитная запись с подогревом; HAMR (англ. Heat-assisted magnetic recording)) гибридная технология записи информации, комбинирующая магнитное чтение и магнитооптическую запись[1].
Микрофон и громкоговоритель. Наиболее привычный для каждого человека способ обмена информацией это речь. При обмене информацией с помощью речи один человек возбуждает звуковые колебания в воздухе с помощью голосовых связок, другой воспринимает эти колебания с помощью органов слуха.
Первыми шагами к созданию современных способов записи и воспроизведения звука было изобретение микрофона и громкоговорителя. Микрофоном называется прибор для преобразования звуковых колебаний в электрические.
Изменения давления, происходящие при распределении звуковых волн в воздухе, позволяют использовать для их объективной регистрации и изучения электродинамический микрофон. В электродинамическом микрофоне имеется тонкая и гибкая мембрана 1, к которой приклеена легкая проволочная катушка 2. Катушка расположена в кольцевом зазоре между полюсами постоянного магнита 3 (рис. 198).
Колебания давления воздуха, возникающие при прохождении звуковой волны, вызывают колебания мембраны микрофона и соединенной с ней проволочной катушки. Колебания катушки в магнитном поле постоянного магнита приводят к возникновению переменной ЭДС индукции. Таким образом в электродинамическом микрофоне происходит преобразование звуковых колебаний в электрические.
Для обратного преобразования электрических колебаний в звуковые применяется громкоговоритель. В громкоговорителе катушка 1 (рис. 199) из медного провода соединена с гибкой мембраной 2 и коническим диффузором 3.
Катушка находится в магнитном поле постоянного магнита 4. При протекании переменного тока катушка под действием переменной силы Ампера колеблется с частотой колебаний силы тока. Катушка заставляет колебаться с такой же частотой мембрану и диффузор. Эти колебания создают колебания давления воздуха, т. е. звуковые волны.
Магнитная запись и воспроизведение звука. Одним из наиболее распространенных способов сохранения и последующего воспроизведения звуков речи и музыки является магнитная запись. Магнитная запись основана на свойстве ферромагнетиков сохранять остаточное намагничивание после снятия внешнего магнитного поля. Запись звука в магнитофонах производится на тонкую пластмассовую ленту, покрытую слоем порошка ферромагнитного материала. Колебания воздуха в звуковой волне преобразуются с помощью микрофона М в колебания силы тока в электрической цепи (рис. 200).
После усиления переменный ток звуковой частоты поступает в обмотку кольцевого магнита магнитной головки ГЗ. При протягивании магнитной ленты около зазора между полюсами кольцевого электромагнита различные участки ленты намагничиваются в соответствии с изменениями силы тока в обмотке. Полоса на ленте, намагниченная в процессе записи, называется дорожкой.
Для воспроизведения записи магнитная лента протягивается перед зазором кольцевого магнита магнитной головки воспроизведения ГВ с той же скоростью, с которой она протягивалась при записи. При движении намагниченной ленты происходят изменения магнитного поля в кольцевом электромагните в обмотке электромагнита возникает переменный ток. После усиления переменного напряжения усилителем воспроизведения УВ напряжение звуковой частоты подводится к катушке громкоговорителя Гр. Переменный ток в катушке громкоговорителя вызывает колебания катушки в магнитном поле постоянного магнита. Прикрепленный к катушке диффузор воспроизводит звук.
Для стирания ненужной записи с ленты служит магнитная головка стирания записи ГС. К ее обмотке подводится переменное напряжение от генератора ультразвуковой частоты ГУЗЧ. В бытовых магнитофонах при записи и воспроизведении обычно используются одна и та же универсальная головка и один усилитель.
Видеозапись. На магнитную ленту может быть записан не только сигнал звуковой частоты, но и сигнал для управления электронным лучом кинескопа телевизора. На магнитную ленту видеомагнитофона записывается информация об изображении в каждой точке экрана телевизора и звуковом сопровождении. При считывании записи с ленты с помощью магнитных головок на экране телевизора получается изображение и динамик воспроизводит звуковое сопровождение изображения.
Магнитная память ЭВМ. Для работы ЭВМ необходим обмен информацией с внешними устройствами. Так как вся информация для компьютера представляет собой набор сигналов типа «да» или «нет», эта информация может быть записана на магнитную ленту или магнитный диск в виде чередующихся участков с различной полярностью намагничивания.
В персональных компьютерах для записи информации используется тонкий пластмассовый диск, покрытый слоем магнитного материала. Запись и считывание производятся с помощью электромагнитной головки, перемещающейся над поверхностью диска по его радиусу (рис. 201).
Диск вращается со скоростью 300 оборотов в минуту, запись производится на концентрических дорожках, продольная плотность записи информации достигает 275 бит/мм, поперечная плотность до 60 дорожек на 1 мм по радиусу. Полная емкость записи информации на одной стороне диска диаметром 133 мм достигает 500 Кбайт.