Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
тЕМА 3. лИНЕЙНОЕ ПРОГРАММИРОВАНИЕ
Линейное программирование раздел математического программирования, применяемый при разработке методов отыскания экстремума линейных функций нескольких переменных при линейных ограничениях, налагаемых на переменные. По типу решаемых задач его методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений.
Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений.
Формы записи задачи линейного программирования:
Общей задачей линейного программирования называют задачу
(1)
при ограничениях
(2)
(3)
(4)
(5)
- произвольные (6)
где - заданные действительные числа; (1) целевая функция; (1) (6) ограничения;
- план задачи.
Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков:
F(X) → max;
X ϵ A,
где Х параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу число, вектор, множество и т.п.
Цель менеджера максимизировать целевую функцию F(X), выбрав соответствующий Х. При этом он должен учитывать ограничения X ϵ A на возможные значения управляющего параметра Х он должен лежать в множестве А. Рассмотрим примеры оптимизационных задач менеджмента.
Среди оптимизационных задач менеджмента наиболее известны задачи линейного программирования, в которых максимизируемая функция F(X) линейная, а ограничения А задаются линейными неравенствами.
Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола 20 единиц (футов красного дерева). Стул требует 10 человеко- часов, стол 15. Имеется 400 единиц материала и 450 человеко-часов. Прибыль при производстве стула 45 дол. США, при производстве стола 80 дол. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль?
Обозначим Х1 число изготовленных стульев, Х2 число столов. Задача оптимизации имеет вид:
45Х1 + 80Х2 → max;
5Х1 + 20Х2 < 400;
10Х1 + 15Х2 < 450;
Х1 > 0; Х2 > 0.
В первой строке выписана целевая функция прибыль при выпуске Х1 стульев и Х2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х1 и Х2 . При этом должны быть выполнены ограничения по материалу (вторая строчка) истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) затрачено не более 450 ч. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х1 положительно. Но невозможно представить себе отрицательный выпуск Х1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны.
Условия производственной задачи можно изобразить на координатной плоскости. Будем по оси абсцисс откладывать значения Х1, а по оси ординат значения Х2. Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения (Х1, Х2) объемов выпуска в виде треугольника (рис. 1).
Рис. 1. Ограничения по материалу
Таким образом, ограничения по материалу изображаются в виде выпуклого многоугольника, в данном случае треугольника. Этот треугольник получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (80,0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0,20). Это означает, что если весь материал пустить на изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, что означает материал останется.
Аналогичным образом можно изобразить и ограничения по труду (рис. 2).
Рис. 2. Ограничения по труду
Ограничения по труду, как и ограничения по материалу, изображаются в виде треугольника, который получается аналогично путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (45,0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0,30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, что означает часть рабочих будет простаивать.
Мы видим, что очевидного решения нет для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то и другое. Но в каком соотношении?
Чтобы ответить на этот вопрос, надо «совместить» рис. 1 и рис. 2, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве (рис. 3).
Рис. 3. Основная идея линейного программирования
Таким образом, множество возможных значений объемов выпуска стульев и столов (Х1, Х2), или, в других терминах, множество А, задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т.е. выпуклый четырехугольник, показанный на рис. 3. Три его вершины очевидны это (0,0), (45,0) и (0,20). Четвертая это пересечение двух прямых границ треугольников на рис. 1 и рис. 2, т.е. решение системы уравнений
5Х1 + 20Х2 = 400;
10Х1 + 15Х2 = 450.
Из первого уравнения: 5Х1 = 400 - 20 Х2, Х1 = 80 - 4Х2. Подставляем значение X1, выраженное через X2, во второе уравнение:
10(80 - 4Х2) + 15Х2 = 800 - 40Х2 + 15Х2 = 800 - 25Х2 = 450,
следовательно, 25Х2 = 350, Х2 = 14, откуда Х1 = 80 - 4 х 14 = 80 - 56 = 24. Итак, четвертая вершина четырехугольника это (24, 14).
Надо найти максимум линейной функции на выпуклом многоугольнике. (В общем случае линейного программирования максимум линейной функции на выпуклом многограннике, лежащем в конечномерном линейном пространстве.) Основная идея линейного программирования состоит в том, что максимум достигается в вершинах многоугольника. В общем случае в одной вершине, и это единственная точка максимума. В частном в двух, и тогда отрезок, их соединяющий, тоже состоит из точек максимума.
Целевая функция 45Х1 + 80Х2 принимает минимальное значение, равное 0, в вершине (0,0). При увеличении аргументов эта функция увеличивается. В вершине (24, 14) она принимает значение 2200. При этом прямая 45Х1 + 80Х2 = 2200 проходит между прямыми ограничений 5Х1 + 20Х2 = 400 и 10Х1 + 15Х2 = 450, пересекающимися в той же точке. Отсюда, как и из непосредственной проверки двух оставшихся вершин, вытекает, что максимум целевой функции, равный 2200, достигается в вершине (24, 14).
Таким образом, оптимальный выпуск таков: 24 стула и 14 столов. При этом используется весь материал и все трудовые ресурсы, а прибыль равна 2200 дол.