Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
6. Расчетная часть
6.1. Габаритный расчет
Сначала произведем габаритный расчет схемы когерентного оптичес-кого спектроанализатора. Зададимся соответствующими значениями диаметра фурье-объектива, фокусным растоянием фурье-объектива, продольным размером ЛЗ.
Тогда имеем , , .
Определим отрезок .
мм.
Определим отрезок .
мм.
Теперь нам нужно произвести расчет согласование лазерного пучка по апертуре с оптической системой КОС.
Зададимся относительным отверстием .
Определим размер перетяжки .
Из [3] известна формула . Выразим искомый параметр через заданный, в результате получим мкм.
Определим конфокальный параметр .
мкм.
Определим положение перетяжки относительно линзы.
мкм.
мм.
Определим значение диаметра светового пятна на линзе.
мм.
Теперь можем пересчитать фокусное растояние по заданному относи-тельному отверстию и раситанному .
мм.
10. Расчитаем конфокальный параметр сфокусированного пучка.
мкм.
Определим размер перетяжки.
мкм.
Найдем положение перетяжки после объектива.
мкм.
6.2. Энергетический расчет
Основные принципы энергетического расчета оптической системы КОС представлены в работе [6] и в 5 разделе данного курсового проекта, где рассматривается математическая модель измерительной системы .
В качестве исходных данных для энергетического расчета выбраны па-раметры лазера ( мощность , длительность волны излучения и радиус перетяжки гауссового пучка излучения); геометрического размера опти-ческой системы (растояние между элементами, - фокусное растоя-ние и диаметр входного зрачка фурье-объектива); интегральная чувсви-тельность .
Оптическая система КОС, выполненная по схеме “входной транспарант перед фурье-объективом”, состоит из ряда последовательно расположен-ных вдоль оптической оси узлов: источник когерентного излучения, входной транспарант, фурье-объектив, фоторегистратор спектра (рис.2).
Применив принцип Гюйгенса-Френеля (5.3), можно определить распре-деление светового поля в плоскости х2у2 перед фурье-объективом, а поле за ним - применив (5.2).
Таким образом, распределение поля в плоскости х3у3 анализа будет описываться :
, где - оператор Френеля для преобразования поля на i-м участке свободного пространства толщиной li.
Распределение поля в плоскости х2у2 за фурье-объективом, согласно (5.2) будет
, а подставив (5.6) в (5.7) с учетом (5.3), распределение поля в плоскости х3у3 анализа можно представить в виде :
,
где .
Учитывая (5.16) и (5.20) выражение (5.14) можно представить в виде:
(5.23),
откуда видно, что квадратичные фазовые искажения фурье-образа (5.14) сигнала устранимы не только при освещении входного транспаранта плос-кой, но и сферической волной при выполнении условий (5.18 ) и (5.22).
Выходной электрический сигнал ФИС представляет собой решение известной в оптике задачи о набегании светового пятна, распределение освещенности в котором описывается выражением:
, на узкую щеле-вую диафрагму вдоль координаты х3. Наиболее общим методом решения подобных задач является вычисление интеграла свертки функции освещенности с функцией пропускания полевой диафрагмы ФИС, равной:
(5.24), где - ширина щели вдоль координаты х3, - высота щели вдоль координаты у3.
Распределение комплексных амплитуд световой волны в плос-
кости х3у3 анализа КОС описывается выражением (5.23) и является прост-ранственно-частотным фурье-образом входного сигнала т.е.
.
Из уравнений Максвелла для электромагнитной волны следует, что энергия преносимая волной, пропорциональна квадрату амплитуды напря-женности электромагнитного поля, т.е.
(5.25), где К - постоянный коэфициент, зависящий от свойств среды, где распостраняется электромагнитная волна [14, 23]. Поэтому пространственно-частотный энергетический спектр входного сигнала пропорционален распределению освещенности в плоскости спектрального анализа КОС, т.е.
(5.26), где ,
- взаимосвязь между пространственными х(у) и пространственно-частотными координатами в плоскости спектрального анализа КОС; комплексная постоянная, определяемая (5.8).
Тогда согласно [11, 12] выходной сигнал ФИС с безинерционным фотоприемником, воспринимающим весь световой поток, прошедший через полевую диафрагму, можно определить как
(5.27), где - интегральная чувствитель-ность фотоприемника; - положение центра полевой диафрагмы в фиксированный момент времени при измерении сечения спектра вдоль координаты .
Применительно к рассматриваемому случаю выражение (5.27) с учетом (2.16) и (5.24) может быть представлено в виде
(5.28).
Ïîëó÷åííîå âûðàæåíèå (5.28) îïèñûâàåò ôîðìó ýëåêòðè÷åñêîãî ñèãíàëà íà âûõîäå ÔÈÑ ïðè ñêàíèðîâàíèè ýíåðãåòè÷åñêîãî ñïåêòðà ïðîñòðàíñòâåí-íîé ñòðóêòóðû ЛЗ узкой щелевой диафрагмой. Из (5.28) видно, что форма выходного сигнала ФИС повторяет форму спектра с точностью до коэфи-циента пропорциональности, зависящего от размеров полевой диафрагмы ФИС и коэфициента - масштаба КОС. Поэтому, измеряя амплитудно-временные параметры выходного электрического сигнала ФИС соответст-вующей аппаратурой, можно реализовать амплитудный метод контроля величины среднего квадратического отклонения ширины щелей в прост-ранственной структурк ЛЗ.
При амплитудном методе контроля с помощью КОС величины среднего квадратического отклонения ширины щелей в пространственной струк-туре ЛЗ необходимо на выходе ФИС измерять величину амплитуд отдельных максимумов ее энергетического спектра на частотых . Тогда, подставив в (5.28) с учетом, что и выполнив ряд алгеб-раических преобразований можно показать, что амплитула -го максимума спектра, измеряемого на выходе ФИС, будет равна
(5.29), а использовав тож-дество (653.4) из [20], амплитуду -го максимума спектра представим в виде
(5.30).
Найдем значение фотоэлектрического сигнала для первого максимума.
Для нашего случая распостранения излучения в воздухе коэфициент . А значение и может быть найдено по следуюшим формулам:
- освещенность на оси пучка в плоскости х0у0, где размер перетяжки лазерного пучка в плоскости х0у0.
.
С учетом вышеизложенного выражение (5.30) перепишется к виду
(6.1) . Подставив в дан-ное выражение исходные значения получим:
Линейная зависимость амплитуд максимумов спектра от освещен-ности пространственной квазипериодической структуры ЛЗ приведет к значительным погрешностям амплитудного метода контроля лишь абсолютных значений амплитуд максимумов спектра. Эти погреш-ности возникают из-за нестабильности выходной мощности излучения лазе-ра при температурных дрейфах его резонатора, которая достигает 20-30% от [19]. Поэтому, используя относительные измерения путем определения величины отношения амплитуд -го и -го максимумов спектра
(5.31),
можно избавиться от влияния временных флуктуаций выходной мощности излучения лазера.
Зависимость представлена в виде семейства графиков, пост-роенных для случаев mn=31,51,53. Из анализа этих графиков видно, что наиболее предпочтительным является использование для измерений 3 и 1 максимумов.
Это предпочтительней из следующих соображений:
Для этого случая как видно из графика выше точность измерений.
Использование этих максимумов обеспечивает большую чувствитель-ность.
Наконец применение m=3 и n=1 позволяет увеличить динамический диапазон измерений и увеличить длительность линейного участка работы измерирительной системы.
Рассмотрим случай когда измерительная система ограничена шумами приемника излучения. Пусть этот шум подчиняется нормальному закону распределения. Известно, что для нормального закона распределения случайной величины справедливо:
, где х - это измеряемая величина, а интервал - это диапазон в который попадет измеряемая величина с вероятностью 97%.
Для нашего случая В. Тогда имеем:
(6.2).
Рассмотрим два предельных случая:
(6.3) - максимальное значение.
(6.4) - минимальное значение.
Тогда мы можем определить погрешность измерений обусловленную этим шумом:
(6.4)
Найдем численное значение этой погрешности. Сначала расчитаем значение и по формуле (6.1). , . Теперь можем подставить известные значения в формулу (6.4) и получить значение погрешности измерения для конкретных значений используемых при нахождении .
(6.5).
И наконец мы уже можем определить отношение сигнал-шум для данной измерительной системы:
.
7. Описание конструкции
Данная измерительная система предназначена для определения и измерения параметров энергетического спектра пространственных сигна-лов. Конструктивно она представляет собой когерентный оптический спектроанализатор пространственных сигналов с фотоэлектронной систе-мой обработки и индикации.
Функционально измерительная система состоит из трех основных сис-тем:
Оптической преобразующей системы.
Фотоэлектрической системы преобразования оптического сигнала в цифровой электрический сигнал.
Измерительной подсистемы на базе ЭВМ.
Оптическая система предназначена для формирования дифракционного изображения исследуемого пространственного объекта, в частности пространственной структуры ЛЗ. Оптическая преобразующая система выполнена по схеме “âõîäíîé òðàíñïàðàíò ïåðåä ôóðüå-îáúåêòèâîì”. Это позволяет исключить квадратичные фазовые искажения.
В качестве источника когерентного излучения применяется малогаба-ритный гелий-неоновый лазер ЛГН-207А ( Р=2мВт, =0.6328 мкм). Для согласования апертуры фурье-объектива с источником излучения приме-няется короткофокусная положительная линза.
В качестве фурье-объектива используется двухлинзовый объектив склейка ( мм , ), который исправлен на сферическую абер-рацию.
Контрастность и резкость дифракционного изображения объекта в значительной мере зависит от точности ее юстировки и центрирования всех оптических деталей. Поэтому для получения высокоточных результатов измерения энергетического спектра исследуемых сигналов необходима тшательная юстировка оптической системы измерительной установки.
Фотоэлектрическая система состоит из: ПЗС-матрицы, блока формиро-вания видеосигнала, модуля паралельного интерфейса ввода-вывода.
Измерительная подсистема основана на применении вычислительных возможностей компьютера. Она представляет собой компьютерную про-грамму, обеспечивающую выполнение ñëåäóþùèõ çàäà÷:
Определение относительного значения амплитуды видеосигнала.
Графическое отображение измеряемого объекта и его характеристик.
Анализ измеряемого объекта на соответствие заданным параметрам.
Список используемой литературы
1.Тымчик Г.С. Когерентные оптические спектральные методы автомати-зации геометрического контроля СВЧ линий замедления, Киев, КПИ, 1983.
2. Пахомов И.И., Цибуля А.Б. Расчет оптических систем лазерных при-боров. - М.: Радио и связь, 1986.
3. Климков Ю.М. Прикладная лазерная оптика. - М.: Машиностроение, 1985.
4. Справочник по приемнткам оптического излучения. Под ред. Криксунова Л.З. - Киев.: Техника, 1985.
5. Справочник конструктора оптико-механических приборов. Под ред. Панова В.А. - Л.: Ìàøèíîñòðîåíèå, 1980.
6. В.Г. Колобродов, С.П. Сахно, Г.С. Тымчик Импульсный отклик и энер-гетический расчет оптических систем когерентных спектроанализаторов, ОМП, 1986, N 4, с.12-14.
7. Престон К. Когерентные оптические вычислительные машины, пер. с англ. - М.: Мир, 1974.
8. Юу Ф. Введение в теорию дифракции, голографию и обработку ин-формации, пер. с англ. - М.: Сов.радио, 1979.
9. Гудмен Дж. Введение в фурье-оптику, пер. с англ. - М.: Мир, 1970.
10. Папулис А. Теория систем и прелбразований в оптике, пер. с англ. М.: Сов.радио, 1972.
11. Мирошников М.М. Теоретические основы оптико-электронных при-боров. - Л.: Машиностроение, 1977.
12. Порфирьев Л.П. Теория оптико-электронных систем и приборов. - Л.: Машиностроение, 1980.
13. Васильев Л.А., Ефимов И.В. Интерферометр с дифракционной решеткой. - М.: Машиностроение, 1976.
14. Ландсберг Г.С. Оптика. - М.: Наука, 1976.
15. Сивухин Л.Б. Оптика. - М.: Наука, 1980.
16. Левин Б.Р. Теоретические основы статистической радиотехники. - М.: Сов.радио, 1980.
17. Ахманов С.А., Дьяков Ю.Е., Чиркин А.С. Введение в статистическую радиофизику и оптику. - М.: Наука, 1981.
18. Сороко Л.М. Основы когерентной оптики и голографии. - М.: Наука, 1971.
19. Климков Ю.П. Расчет и проектирование ОЭП с лазерами. - М.: Сов. Радио, 1978.
20. Двайт Г.Б. Таблицы интегралов и другие математические формулы, пер. с англ.-М.: Наука,1978.
21. Браславский Д.А., Петров В.В. Точность измерительных устройств. М.: Машиностроение, 1976.
22. Коротков В.П., Тайц Б.А. Основы метрологии и теория точности измерительных устройств. - М.: Издательство Стандартов, 1978.
23. Довгий Я.О. Физический практикум по оптическим квантовым генераторам. - Киев.: Выща школа, 1977.
24. Филькенштейн Е.И. - ОМП, 1973, N 8, с.30-32.
25. Левандовская Н.Е. и др. - ОМП, 1982, N 6, с.28-30.
26. Ронки В. Испытание оптических систем. М.-Л.: ГТТИ, 1983, с.102.
27. Harrison G.R. The productions of diffraction gratings. - JOSA, 1949, V39, N 6, pp. 413-426.
28. Авт. свид. 773429, МКИ: G 01 b 11/02, 1980.
29. Авт. свид. 842402, МКИ: G 01 b 11/02, 1979.
30. Авт. свид. 775615, МКИ: G 01 b 11/08, 1978.