Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Простые вещества вещества, состоящие исключительно из атомов одного химического элемента (из гомоядерных молекул), в отличие от сложных веществ. Являются формой существования химических элементов в свободном виде; или, иначе говоря, элементы, не связанные химически ни с каким другим элементом, образуют простые вещества.
Сложное вещество (хим. соединение), состоящее из химически связанных атомов двух или нескольких элементов (гетероядерные молекулы). Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (азот, кислород, иод, бром, хлор, фтор, предположительно астат).
Смесь физико-химическая система, в состав которой входят два или несколько химических соединений (компонент). В смеси исходные вещества включены неизменными. При этом нередко исходные вещества становятся неузнаваемыми, потому что смесь обнаруживает другие физические свойства по сравнению с каждым изолированным исходным веществом. При смешивании не возникает, тем не менее, никакое новое вещество.
Химическая реакция превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не меняются, в частности не изменяется их общее число, изотопный состав химических элементов, при этом происходит перераспределение электронов и ядер и образуются новые химические вещества.
Химический процесс (продолжение хим. реакции) - Химические реакции происходят при смешении или физическом контакте реагентов самопроизвольно, при нагревании, участии катализаторов (катализ), действии света (фотохимические реакции), электрического тока (электродные процессы), ионизирующих излучений (радиационно-химические реакции), механического воздействия (механохимические реакции), в низкотемпературной плазме (плазмохимические реакции) и т. п. Взаимодействие молекул между собой происходит по цепному маршруту: ассоциация электронная изомеризация диссоциация, в котором активными частицами являются радикалы, ионы, координационно-ненасыщенные соединения. Скорость химической реакции определяется концентрацией активных частиц и разницей между энергиями связи разрываемой и образуемой.
Катализ (греч. κατάλυσις восходит к καταλύειν разрушение) избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.
Гомогенный катализ - Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:
H2О2 + I → H2О + IO; H2О2 + IO → H2О + О2 + I. При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.
Гетерогенный катализ
При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.
Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы. Диффузия реагирующих веществ к поверхности твердого вещества; Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их; Химическая реакция между реагирующими молекулами; Десорбция продуктов с поверхности катализатора; Диффузия продукта с поверхности катализатора в общий поток. Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).
Катализатор химическое вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции. Количество катализатора, в отличие от реагентов, после реакции не изменяется. Важно понимать, что катализатор не участвует в реакции. Они обеспечивают более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно повторяется.
Ингибитор (лат. inhibere задерживать) вещество, замедляющее или предотвращающее течение какой-либо химической реакции: коррозии металла, старения полимеров, окисления топлива и смазочных масел, пищевых жиров и др.
Иммобилизация иначе фиксация (англ. immobilization) процесс фиксации соединения на поверхности носителя. (Для обозначения процесса фиксации соединений на поверхности носителя в различных областях науки употребляются разные термины: «иммобилизация» применительно к ферментам, «закрепление» и «гетерогенизация» в катализе, «прививка» в химии высокомолекулярных соединений, «хемосорбция» в классической физической химии. Все эти различные термины объединяет то, что они обозначают перенос вещества из гомогенной подвижной фазы на поверхность твердой фазы-носителя и его закрепление за счет специфических взаимодействий. Носители (подложки, матрицы) различаются по химической природе (металлы, оксиды, сильносшитые органические полимеры), по морфологии (пористые, планарные, высокодисперсные), по структуре (кристаллические, аморфные) и т. д. Благодаря наличию структурных функциональных групп на поверхности носителя, происходит его химическое связывание с прививаемым веществом (модификатором), называемое реакцией иммобилизации.)
Реагенты, Химические реактивы (реагенты химические) химические препараты, предназначенные для химического анализа научно-исследовательских, различных лабораторных работ. В большинстве случаев химические реактивы представляют собой индивидуальные вещества; однако к реактивам относят и некоторые смеси веществ (например, петролейный эфир). Иногда реактивами называются растворы довольно сложного состава специального назначения (например, реактив Несслера для определения аммиака).
Химическая связь это электромагнитные взаимодействия электронов и атомного ядра одной частицы (атома, иона, молекулы и т.д.) с электронами и атомным ядром другой частицы, удерживающие эти частицы в стабильном или метастабильном химическом соединении. Химическую связь нельзя строго описать как результат действия кулоновских сил притяжения положительно заряженных ядер к электронному облаку, сконцентрированному в межъядерном пространстве, природа химической связи проистекает из квантовых свойств электрона и носит обменную природу.Основные характеристики химической связи - прочность, длина, полярность.
Химический анализ - определение химического состава и строения веществ; включает качественный и количественный анализ. В химическом анализе используют химические методы, основанные на химических реакциях определяемых веществ в растворах, например гравиметрический и титриметрический анализ; физико-химические методы, основанные на измерении физических величин, изменение которых обусловлено химическими реакциями (потенциометрия, амперометрическое титрование и др.); в основе физических методов лежит измерение физических характеристик, обусловленных химической индивидуальностью веществ, например спектральный анализ, активационный анализ.
Химический синтез в узком смысле это процесс создания или построения сложных молекул из более простых. В широком смысле получение химических соединений химическими и физическими методами. В зависимости от природы продукта синтез может быть органическим или неорганическим. Следует отметить, что в органическом синтезе, продуктом химической реакции может являться и более простым веществом, чем одно из исходных соединений. Впервые термин «синтез» в химии был употреблен приблизительно в 121 году н.э. знаменитым римским алхимиком Галадиеном. Понятие синтеза в современном смысле этого слова ввёл немецкий химик Герман Кольбе.
Адсорбция (лат. ad на, при; sorbeo поглощаю) увеличение концентрации растворенного вещества у поверхности раздела двух фаз (твердая фаза-жидкость, конденсированная фаза - газ) вследствие нескомпенсированности сил межмолекулярного взаимодействия на разделе фаз. Адсорбция является частным случаем сорбции, процесс, обратный адсорбции десорбция.
Химический элемент совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Менделеева.
Химическое соединение сложное вещество, состоящее из химически связанных атомов двух или нескольких элементов (гетероядерные молекулы). Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (азот, кислород, иод, бром, хлор, фтор, предположительно астат). Инертные (благородные) газы и атомарный водород нельзя считать химическими соединениями.
Молекула (новолат. molecula, уменьшительное от лат. moles масса) электрически нейтральная частица, образованная из двух или более связанных ковалентными связями атомовнаименьшая частица химического вещества. В физике к молекулам причисляют также одноатомные молекулы, то есть свободные (химически не связанные) атомы (например, инертных газов, ртути и т. п.). Причисление к молекулам одноатомных молекул, то есть свободных атомов, например одноатомных газов, приводит к совмещению понятий «молекула» и «атом». Совмещение понятий «молекула» и «атом» идёт вразрез с атомно-молекулярным учением, по которому молекула образуется из атомов. В химии принято считать, что из одного атома молекула образоваться не может. Обычно подразумевается, что молекулы нейтральны (не несут электрических зарядов) и не несут неспаренных электронов (все валентности насыщены); заряженные молекулы называют ионами, молекулы с мультиплетностью, отличной от единицы (то есть с неспаренными электронами и ненасыщенными валентностями) радикалами.
Химическая кинетика или кинетика химических реакций раздел физической химии, изучающий закономерности протекания химических реакций во времени, зависимости этих закономерностей от внешних условий, а также механизмы химических превращений. Термодинамический метод изучения химических реакций позволяет сделать вывод о принципиальной возможности исследуемого процесса в тех или иных условиях и о глубине его протекания.
Химическая термодинамика раздел физической химии, изучающий процессы взаимодействия веществ методами термодинамики. Основными направлениями химической термодинамики являются: Классическая химическая термодинамика, изучающая термодинамическое равновесие вообще.Термохимия, изучающая тепловые эффекты, сопровождающие химические реакции. Теория растворов, моделирующую термодинамические свойства вещества исходя из представлений о молекулярном строении и данных о межмолекулярном взаимодействии. Химическая термодинамика тесно соприкасается с такими разделами химии, как аналитическая химия; электрохимия; коллоидная химия; адсорбция и хроматография.
Валентность (от лат. valēns «имеющий силу») способность атомов химических элементов образовывать определённое число химических связей с атомами других элементов.
Аденозинтрифосфат (сокр. АТФ, англ. АТР) нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ был открыт в 1929 году Карлом Ломанном, а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке.
Рибосома важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром от 1520 нанометров (прокариоты) до 2530 нанометров (эукариоты), состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.
Дезоксирибонуклеиновая кислота (ДНК) макромолекула (одна из трех основных, две другие РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.
Рибонуклеиновая кислота (РНК) одна из трёх основных макромолекул (две другие ДНК и белки), которые содержатся в клетках всех живых организмов.
Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.
Белки (протеины, полипептид) высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.
Аминокислоты (аминокарбо́новые кисло́ты) органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы.
Азотистые основания гетероциклические органические соединения, производные пиримидина и пурина, входящие в состав нуклеиновых кислот. Для сокращенного обозначения пользуются большими латинскими буквами. К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C), которые входят в состав как ДНК, так и РНК. Тимин (T) входит в состав только ДНК, а урацил (U) встречается только в РНК.
Жиры, или триглицериды природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. В живых организмах выполняют структурную, энергетическую и др. функции. Наряду с углеводами и белками, жиры один из главных компонентов питания. Жидкие жиры растительного происхождения обычно называют маслами так же, как и сливочное масло.
Липиды (от греч. λίπος, lípos жир) широкая группа органических соединений, включающая жирные кислоты, а также их производные, как по радикалу, так и по карбоксильной группе.
Органические кислоты органические вещества, проявляющие кислотные свойства. К ним относятся карбоновые кислоты, содержащие карбоксильную группу -COOH, сульфоновые кислоты, содержащие сульфогруппу -SO3H и некоторые другие. Самыми известными органическими кислотами являются уксусная, муравьиная, лимонная, щавелевая и молочная.
Углеводы (сахара, сахариды) органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды. Углеводы весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 23 % массы животных.
Биокатализ - Ферменты, или энзимы (от лат. fermentum, греч. ζύμη, ἔνζυμον закваска) обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу).
Биополимеры класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев мономеров. Мономеры белков аминокислоты, нуклеиновых кислот нуклеотиды, в полисахаридах моносахариды. Выделяют два типа биополимеров регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).
Фотосинтез (от др.-греч. φῶς свет и σύνθεσις соединение, складывание, связывание, синтез) процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.
Пептидная связь вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (NH2) одной аминокислоты с α-карбоксильной группой (СООН) другой аминокислоты. Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.
Нуклеотиды фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Витамины (от лат. vita «жизнь») группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы. Это сборная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи. Автотрофные организмы также нуждаются в витаминах, получая их либо путем синтеза, либо из окружающей среды. Так, витамины входят в состав питательных сред для выращивания организмов фитопланктона. Витамины содержатся в пище (или в окружающей среде) в очень малых количествах, и поэтому относятся к микронутриентам.
Гормоны (др.-греч. ὁρμάω возбуждаю, побуждаю) биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.
Медиаторы активные химические вещества, обусловливающие передачу возбуждения в синапсе. Синапс место контакта двух клеточных мембран, обеспечивающее переход возбуждения с нервных окончаний на возбудимые структуры (железы, мышцы, нейроны). В зависимости от структуры синапсы разделяют на нейросекреторные, нейромускулярные, межнейрональные.
Эмульсия (новолат. emulsio, от лат. emulgeo дою, выдаиваю) дисперсная система, состоящая из микроскопических капель жидкости (дисперсной фазы), распределенных в другой жидкости (дисперсионной среде). Эмульсии могут быть образованы двумя любыми несмешивающимися жидкостями; в большинстве случаев одной из фаз эмульсий является вода, а другой - вещество, состоящее из слабополярных молекул (например, жидкие углеводороды, жиры). Например, молоко одна из первых изученных эмульсий: в нём капли молочного жира распределены в водной среде.
Коллоиды, Коллоидные системы (коллоиды, др.-греч. κόλλα клей и εἶδος вид; «клеевидные») дисперсные системы, промежуточные между истинными растворами и грубодисперсными системами взвесями. Или это система, в которой дискретные частицы, капли или пузырьки дисперсной фазы, имеющие размер хотя бы в одном из измерений от 1 до 100 нм, распределены в другой фазе, обычно непрерывной, отличающейся от первой по составу или агрегатному состоянию и именуемой дисперсионной средой. Размеры коллоидных частиц варьируются в пределах от 0.001 до 0.1 мкм. В свободнодисперсных коллоидных системах (дымы, золи) частицы не выпадают в осадок.