Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Масс-спектрометрия
Метод основан на изучении распределения по массам ионов, образующихся при ионизации исследуемого вещества. Процесс получения масс-спектра включает несколько этапов, каждому из которых соответствует свой функциональный узел.
Система напуска обеспечивает испарение вещества и вводит его в масс-спектрометр. Как правило, для измерений достаточно 1-100 мкг вещества, но в принципе, масс-спектрометрический анализ позволяет определять до 10-9 г вещества, что делает масс-спектрометрию одним из наиболее чувствительных методов анализа.
В случае органических соединений ионизация осуществляется методом электронного удара, т.е. пары вещества пересекают электронный пучок с энергией электронов порядка 70 эВ, в результате чего образуются исключительно катионы. Ионизированные частицы разгоняются между решетками, к которым приложено напряжение 2-3 кэВ. При этом они получают дополнительную энергию в форме кинетической энергии .
Далее частицы попадают в масс-анализатор, где начинают двигаться по искривленной траектории под действием внешнего магнитного поля (направление указано стрелками на схеме). При этом на частицы действуют две силы (F1 отклонения и F2 центробежная):
В зависимости от напряжения на детектор приходят частицы с различным отношением массы к заряду. Получаем линейчатый спектр, известный под именем «масс-спектр».
Масс-спектрометры характеризуются по крайней мере двумя параметрами: 1) массовой областью (как правило, она меньше 1000 атомных единиц); 2) точностью (как правило, четыре знака после запятой для массовых чисел меньше 100).
Измерения проводятся в вакууме (10-7 мм рт. ст.). Сложный спектр формируется в результате образования разнообразных заряженных осколков.
Наряду с рассматриваемой схемой масс-спектрометра с отклонением в магнитном поле на практике используются и другие, в частности, квадрупольные масс-спектрометры. Разделение ионов здесь осуществляется в электрическом поле сложной формы. Также используются времяпролетные масс-спектрометры, в случае которых напряжение на сетки подается короткими импульсами, ионы приобретают одинаковую энергию и, пройдя расстояние около 2 м, приходят к детектору в разные моменты времени. Оба эти масс-спектрометра имеют меньшее разрешение, но удобны для некоторых практических измерений.
Принципы формирования масс-спектра
Результатом электронного удара является формирование молекулярных ионов. Возможен отрыв одного электрона, отрыв нескольких электронов и захват электрона с образованием аниона. Вероятность каждого из этих процессов определяется энергией электронов. Последний процесс возможен только для низкоэнергетических электронов (около 0,1 В). Отрыв нескольких электронов возможен только в случае использования высокоэнергетических электронов. При использовании электронов с энергией 70 эВ единственным процессом в системе будет являться генерация однозарядных катионов. Если энергия электронов сопоставима или превышает энергию разрыва связи (7-15 эВ), то мы будем наблюдать следующую зависимость выхода молекулярных ионов от энергии электронов.
В итоге получаем ион с заведомо избыточной энергией, которая преобразуется в колебательную, результатом чего является фрагментация молекулярных ионов с выделением незаряженных фрагментов и стабильных молекул. Характер фрагментации индивидуален для каждой молекулы и определяется особенностями её строения. При этом наличие ароматических групп и двойных связей стабилизирует молекулярный ион, а наличие разветвления приводит к увеличению эффективности фрагментации в силу высокой стабильности образующегося третичного карбониевого иона. В целом, можно лишь на основании имеющегося опыта установить ряд относительной стабильности молекулярных ионов для различных органических соединений.
ароматические > неразветвленные УВ > кетоны > амины > эфиры
Некоторые фрагменты не являются собственно частями молекулы, а являются продуктом перегруппировки, протекающей как внутримолекулярная реакция. Примером является перегруппировка МакЛафферти.
В целом, тенденция к выделению молекул, способных унести с собой избыточную энергию, является чрезвычайно ярко выраженной. Такие группы, как С2Н4, СО, Н2О, HCN, CS2, НГал отщепляются довольно часто. Порой такое отщепление провоцирует скелетные перегруппировки.
Таким образом, если речь идёт о фрагментации, её не надо понимать как массовый разрыв химических связей и их рекомбинация с образованием новых соединений. Во всех случаях это вполне определенные реакции, аналогичные химическим. Механизм этих реакций был установлен для целого ряда химических соединений в рамках специфического раздела химии высоких энергий, в данном случае, процессов, индуцированных электронным ударом.
В большинстве случаев просто рассматривают масс-спектр как индивидуальный отпечаток пальца, поскольку эти масс-спектры индивидуальны даже для изомеров и совпадают только в случае стереоизомеров.
Таким образом, структура масс-спектра определяется прежде всего ходом процессов фрагментации. Ещё одним фактором, ответственным за формирование тонкой структуры масс-спектра является изотопный состав исследуемого вещества. Так, если принять во внимание, что, например, бром представлен двумя изотопами: бром-79 (сод. 50,54%) и бром-81 (сод. 49,46%), то реально некий фрагмент RBr+ распадется на дублет. Ежели фрагмент дважды бромирован, то получится триплет со средним пиком удвоенной интенсивностью, поскольку с удвоенной вероятностью будет формироваться смешанный по изотопу фрагмент. Отметим, что такая правильно симметричная картинка масс-спектра является результатом эквивалентности распространения легкого и тяжелого изотопов в природе. В случае других элементов с различным распространением в природе, интенсивность пиков изменится сообразно этой распространенности.
Углерод в составе органических соединений также представлен в виде двух изотопов, причем содержание тяжелого углерода-13 составляет 1,1%.
Пример: неопентан
В продуктах фрагментации будет полностью отсутствовать пик исходного молекулярного иона, поскольку он распадается на 100%.
Пример: п-хлоранилин
Фрагментация протекает по двум основным механизмам.
В масс-спектре будут иметься яркие проявления изотопного состава, т.к. хлор в природе представлен двумя изотопами. Пик в 7% указывает на наличие тяжелого изотопа углерода-13.
Задачи, решаемые при помощи масс-спектрометрии:
Молекулярные ионы очень ярко проявляются прежде всего в соединениях, в которых есть ароматические фрагменты. Если в исследуемом соединении эффективность фрагментации велика и выход молекулярного иона небольшой, то можно понизить энергию электронного пучка для того, чтобы подавить фрагментацию. Строго молекулярные пики давало бы использование электронов очень низкой энергии, в котором идет процесс образования анионов вместо образования катионов.
Масс-спектрометрия используется в комбинации с другими методами, особенно если природа исследуемого соединения неизвестна. Масс-спектры являются очень индивидуальными и различаются даже для изомеров. Одинаковые масс-спектры наблюдаются для стереоизомеров. Иногда масс-спектры используются как «отпечатки пальцев» (англ. fingerprint).
Основной подход отслеживание включения изотопных меток во фрагменты исследуемых молекул
Использование масс-спектрометрии позволило также установить механизм реакций фрагментации в условиях электронного удара.
Дейтерируем исходное соединение в α-положение: масс-спектр продукта сдвинется.
При дейтерировании в β-положение спектр продукта никак не изменится:
Дейтерирование в γ-положение также сдвинет спектра продукта:
4) Масс-спектрометрия является эффективным средством исследования кинетики химических реакций, особенно в тех случаях, где образуется малое количество веществ.
5) Масс-спектрометрия в силу чувствительности позволяет получить информацию о состоянии газообразных продуктов над твердой фазой.
6) Масс-спектрометрия позволяет определить потенциалы ионизации, исходя из потенциалов появления ионов.
7) Так как вклад процессов фрагментации молекул различных веществ в смеси в итоговый масс-спектр аддитивен, то масс-спектрометрия может быть использована для определения состава паров органических веществ.
До недавнего времени именно масс-спектрометрия обслуживала многие химические производства (крекинг и проч.)
Хромато-масс-спектрометрия
Комбинация газового хроматографа и масс-спектрометра, выполняющего роль высокоэффективного детектора продуктов разделения газовой смеси.
Информация о природе исследуемых веществ получается из двух источников:
В случае хромато-масс-спектрометров реализуются идеальные условия для функционирования масс-спектрометра, т.к. компоненты смеси разделяются на индивидуальные вещества, которые последовательно поступают на детектор. О выходе нового вещества можно судить по ионному току, причем интегрирование ионного тока по времени дает относительное количество вещества, а масс-спектр указывает на его природу.
Существует обширная база данных, поставляемая с масс-спектрометрами, причем она может быть расширена с учетом потребностей исследователя. Высокая чувствительность масс-спектрометра обеспечивает и высокую чувствительность хромато-масс-спектрометрических исследований: 100 пг по стеарату натрия.
Лазерная масс-спектрометрия (LMS)
Поверхность облучается импульсами лазерного излучения. Если сообщенная энергия превышает возможности образца по теплоотводности, то происходит поверхностная сублимация с образованием кратеров глубиной несколько мкм с размерами пятен в 10-100 мкм. Особенностью данной модификации является факт образования большого количества многозарядных ионов и отсутствие кластеров. Чувствительность метода высокая: 10-3 10-7 ат. %. Количественные измерения требуют использования стандартов, иногда роль стандарта может выполнять один из элементов образца.
Искровой метод масс-спектрометрии
К поверхности образца подводят зонд и пропускают разряд напряжением 100 кВ, испаряя вещество на площадке 100 мкм. Если образец не является проводящим, то его запрессовывают в фольгу и выполняют измерения. Метод традиционно используется для оценки качества образцов стали, а также в геологических исследованиях. Вместе со вторично-ионной масс-спектрометрией LMS и искровой метод приспособлены для исследования твердотельных образцов.
- 5 -
1 газ-носитель
2 ввод пробы
3 хроматограф.
колонка
4 масс-спектр-р
4
3
2
He
1
65
92 100
127
7%
32%
М+ 100%
С4Н9+
57 m/z
100 I/I0∙100%
С3Н5+
41
41,5
С2Н5+
29
38,5
С2Н3+
27
15,7
С5Н12+
потенциал
возникновения
50
70
Ee, эВ
выход М+