Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

темам счисления 1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 24.11.2024

Методические указания к выполнению

расчетно-графической работы по системам счисления

1. Системы счисления и арифметические операции в них

Совокупность приемов обозначения (записи) чисел называется системой счисления. Известны позиционные и непозиционные системы счисления.

В непозиционных системах счисления числовое значение символа не зависит от его местоположения в числе. Примером может служить римская.

В позиционных системах счисления каждая цифра или символ имеет свое определенное значение в зависимости от положения в числе и величина числа зависит не только от набора цифр, но и от того в какой последовательности записаны цифры.

Основание системы счисления – количество цифр, используемых для представления чисел в позиционной системе счисления.

Система счисления, использующая для своего образования 16 цифр: 0-9, A, B, C, D, E, F, называется шестнадцатеричной; использующая для своего образования 10 цифр от 0 до 9, называется десятичной системой счисления; использующая для своего образования 8 цифр (от 0 до 7) - восьмеричной; система счисления, в которой используются всего две цифры (0 и 1), называется двоичной системой счисления.

Для представления восьмеричных чисел достаточно трех двоичных разрядов. Такое описание называется триадным (запись по триадам). Для описания шестнадцатеричных чисел необходимо 4 двоичных разряда. Такая запись называется тетрадной (запись по тетрадам). Указанные записи используются при переводе чисел из двоичной системы счисления в шестнадцатеричную и восьмеричную систему счисления и обратно. В целой части числа группировка производится справа налево, в дробной части — слева направо. Если в последней группе недостает цифр, дописываются нули: в целой части — слева, в дробной — справа. Затем каждая группа заменяется соответствующей цифрой новой системы. Соответствия приведены в таблице 1.

Таблица 1

10 с/сч

16 с/сч

8 с/сч

2 с/сч

обычная запись

по триадам

по тетрадам

0

0

0

0

000

0000

1

1

1

1

001

0001

2

2

2

10

010

0010

3

3

3

11

011

0011

4

4

4

100

100

0100

5

5

5

101

101

0101

6

6

6

110

110

0110

7

7

7

111

111

0111

8

8

10

1000

001 000

1000

9

9

11

1001

001 001

1001

10

A

12

1010

001 010

1010

11

B

13

1011

001 011

1011

12

C

14

1100

001 100

1100

13

D

15

1101

001 101

1101

14

E

16

1110

001 110

1110

15

F

17

1111

001 111

1111

Например:


Например,


При переводе целого числа, представленного в десятичной системе счисления в шестнадцатеричную, восьмеричную или двоичную систему счисления, необходимо заданное число последовательно делить на основание 16, 8 или 2. Полученный от деления остаток будет младшим разрядом искомого 16, 8 или двоичного числа. Целая часть частного снова делится на 16, 8 или 2 и остаток будет следующим по старшинству разрядом и т.д. до тех пор, пока частное от деления не будет меньше основания (16, 8 или 2). Число читается снизу вверх. Такой способ перевода чисел называется правилом последовательного деления.

Пример 1: Переведем число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 7510 = 1 001 0112   =  1138  =  4B16.

Для дробных чисел правило последовательного деления заменяется правилом последовательного умножения. Переводят отдельно целую и дробную части, затем  второй результат приписывают к первому после запятой. При переводе дробной части числа из 10 системы счислении ее умножают на основание той системы, в которую переводят, выделяя при этом целые, образующие вначале старший, а затем младшие разряды искомого числа. Перевод осуществлен, когда во всех разрядах дробной части появятся нули или будет достигнута необходимая точность.  Число читается сверху вниз.

Пример 2. Перевести данное число из десятичной системы счисления в двоичную (получить пять знаков после запятой в двоичном представлении).

а) 464(10); б) 380,1875(10); в) 115,94(10)

а) 464

0

б) 380

0

1875

в) 115

1

94

232

0

190

0

0

375

57

1

1

88

116

0

95

1

0

75

28

0

1

76

58

0

47

1

1

5

14

0

1

52

29

1

23

1

1

0

7

1

1

04

14

0

11

1

3

1

0

08

7

1

5

1

1

1

0

16

3

1

2

0

1

1

1

1

а)  464(10)=111010000(2); б) 380,1875(10) = 101111100,0011(2); в)  115,94(10)  1110011,11110(2) 

(в данном случае было получено шесть знаков после запятой, после чего результат был округлен.)

При переводе чисел из системы счисления с основанием P в десятичную систему счисления необходимо пронумеровать разряды целой части справа налево, начиная с нулевого, и дробной части, начиная с разряда сразу после запятой, слева направо (начальный номер –1). Затем вычислить сумму произведений соответствующих значений разрядов на основание системы счисления в степени, равной  номеру разряда. Это и есть представление исходного числа в десятичной системе счисления.

Пример 3. Перевести данное число в десятичную систему счисления:

а) 1000001(2).

1000001(2) = 1  26 + 0  25 + 0  24 + 0  23 + 0  22 + 0  21 + 1  20 = 64 + 1 = 65(10).

Замечание. Если в каком-либо разряде стоит нуль, то соответствующее слагаемое можно опускать.

б) 1000011111,0101(2).

1000011111,0101(2) = 1  29 + 1  24 + 1  23 + 1  22 + 1  21 + 1  20 + 1  2–2 + 1  2–4 =

= 512 + 16 + 8 + 4 + 2 + 1 + 0,25 + 0,0625 = 543,3125(10).

в) 1216,04(8).

1216,04(8) = 1  83 +  82 + 1  81 + 6  80 + 4  8–2 = 512 + 128 + 8 + 6 + 0,0625 = 654,0625(10).

г) 29A,5(16).

29A,5(16) =  162 +  161 + 10  160 +  16–1 = 512 + 144 + 10 + 0,3125 = 656,3125(10).

Для выполнения арифметических операций в системе счисления с основанием P необходимо иметь соответствующие таблицы:

а) двоичная система счисления

+

0

1

0-0=0

1-1=0

0

0

1

1-0=1

10-1=1

1

1

10

б) восьмеричная система счисления

+

0

1

2

3

4

5

6

7

0

0

1

2

3

4

5

6

7

1

1

2

3

4

5

6

7

10

2

2

3

4

5

6

7

10

11

3

3

4

5

6

7

10

11

12

4

4

5

6

7

10

11

12

13

5

5

6

7

10

11

12

13

14

6

6

7

10

11

12

13

14

15

7

7

10

11

12

13

14

15

16

в) шестнадцатеричная система счисления

+

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

1

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

2

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

3

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

4

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

5

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

6

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

7

7

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

8

8

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

9

9

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

A

A

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

B

B

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

C

C

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

D

D

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

E

E

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

F

F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

Сложение

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 4. Сложить числа 15 и 6 в различных системах счисления.


   

 

Шестнадцатеричная: F16+616 

Ответ: 15+6 = 2110 = 101012 = 258 = 1516
Проверка. Преобразуем полученные суммы к десятичному виду:
10101
2 = 24 + 22 + 20 = 16+4+1=21, 
25
8 = 2 . 81 + 5 . 80 = 16 + 5 = 21, 
15
16 = 1 . 161 + 5 . 160 = 16+5 = 21. 

Пример 5. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F16+716+316 

Ответ: 5+7+3 = 2510 = 110012 = 318 = 1916
Проверка:
11001
2 = 24 + 23 + 20 = 16+8+1=25,
31
8 = 3 . 81 + 1 . 80 = 24 + 1 = 25, 
19
16 = 1 . 161 + 9 . 160 = 16+9 = 25. 

Пример 6. Сложим числа 141,5 и 59,75.


 
Ответ: 141,5 + 59,75 = 201,2510 = 11001001,012 = 311,28 = C9,416
Проверка. Преобразуем полученные суммы к десятичному виду:
11001001,01
2 = 27 + 26 + 23 + 20 + 2-2 = 201,25
311,2
8 = 3 . 82 + 1 . 81 + 1 . 80 + 2 . 8-1 = 201,25
C9,4
16 = 12 . 161 + 9 . 160 + 4 . 16-1 = 201,25

Вычитание

Пример 7. Вычтем единицу из чисел 102, 108 и 1016
     
     
 
 
Пример 8. Вычтем единицу из чисел 1002, 1008 и 10016.
     
     
 
 
Пример 8. Вычтем число 59,75 из числа 201,25.


 
Ответ: 201,2510 - 59,7510 = 141,510 = 10001101,12 = 215,48 = 8D,816.
Проверка. Преобразуем полученные разности к десятичному виду:
10001101,1
2 = 27 + 23 + 22 + 20 + 2-1 = 141,5;
215,4
8 = 2 . 82 + 1 . 81 + 5 . 80 + 4 . 8-1 = 141,5;
8D,8
16 = 8 . 161 + D . 160 + 8 . 16-1 = 141,5.

Необходимость выполнения арифметических действий не только над положительными, но и над отрицательными числами привела к трем способам кодирования в ЭВМ: прямым, обратным и дополнительным кодами. Для положительного числа изображение во всех трех кодах совпадает и равно самому числу. Различие в кодах проявляется при изображении отрицательных чисел.

Чтобы получить прямой код отрицательного двоичного числа, нужно в знаковом ряде поставить 1, а цифровые разряды оставить без изменения.

Чтобы получить обратный код отрицательного двоичного числа, необходимо в знаковом разряде поставить 1, во всех цифровых разрядах заменить 0 на 1, а 1 на 0.

Для получения дополнительного кода необходимо в знаковом разряде поставить1, во всех цифровых разрядах 1 заменить на 0, а 0 на 1 и к последнему цифровому разряду прибавить 1.

Разработаны специальные правила выполнения арифметических операций в обратном и дополнительных кодах. Для того, чтобы сумматор правильно работал в обратном коде, необходимо чтобы он осуществлял циклическое подсуммирование из старшего цифрового разряда в младший. В этом случае сумма кодов будет равна обратному коду суммы. Сумматор, работающий в дополнительном коде, должен обеспечивать потерю единицы переноса.

Пример 9. Выполнить вычитание:

0,1101(2) – 0,0110(2) 

1)

Х=

0,

1

1

0

1

[X]об=

0,

1

1

0

1

Y=

--

0,

0

1

1

0

[Y]об=

1,

1

0

0

1

X+Y=

0,

0

1

1

1

[X]об+[Y]об=

10,Ю,

0

1

1

0

0,

0

1

1

1

2)

[X]доп=

0,

1

1

0

1

[Y]доп=

1,

1

0

1

0

[X]доп+[Y]доп=

10,Ю,

0

1

1

1

0,

0

1

1

1

6




1. А Сопутствующее заболевание- хронический геморрой фаза обострения
2. На повестке дня услуги остававшиеся невостребованными почти два года кряду после краха банковской систем
3. і. ~уелгі палеолитті~ ~зі ~ш д~уірге б~лінеді.html
4. ТЕМА УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ CCESS Учебнометодическое пособие по изучению дисциплины и выполнению курсов
5. Вариант B Постановка задачи Разработать программу нахождения значения определенного интеграла с помощью
6. ФИЛОСОФИЯ ДЛЯ СТУДЕНТОВ 1 КУРСА ДНЕВНОГО ОТДЕЛЕНИЯ факультеты ~ ДКидБ и ДКжБ
7. А ж~не операцияларыны~ ассоциативтігі; жиыны ~шін P
8. Они живы Майор Маша Любимова не сразу поверила истории которую ей рассказала известная писательница Ан
9. тематична лінгвістика псіхопоетіка когнітивна лінгвістика фоносемантика залучає і використовує їх дані і.html
10. Красноярский государственный педагогический университет им
11. А затем Мир вам и милость Аллаха мои братья и сестры в Исламе
12. Школа Чистой Земли
13. Моя система оздоровления
14. Разговор с Анакреонтом.html
15. История Александрийской библиотеки
16. на тему- Відповідальність за правопорушення на ринку фінансових послуг
17. ТЕМА РАБОТЫ 2.2. УТВЕРЖДЕНИЕ ТЕМЫ 3
18. Реферат- Сезанн Поль
19. емых из районов за год График заездов 1
20. Forumcom Содержание Введение