Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Реферат
Неметаллические полезные ископаемые. Месторождения алмазов.
Общие сведения.
К неметаллическим полезным ископаемым относятся минералы и горные породы, из которых не извлекают в качестве главного компонента металлы и которые не являются энергетическим сырьём.
Термины неметаллическое и нерудное полезное ископаемое рассматриваются как синонимы, но такие выдающиеся геологи, как А. Е. Ферсман и П. М. Татаринов, отдавали предпочтение первому из них как более точно отражающему сущность предмета. В последние годы по отношению к отдельным видам неметаллических полезных ископаемых все чаще стал использоваться термин руда. Выделяют апатитовые, фосфоритовые, серные, асбестовые, графитовые, баритовые, калийные и многие другие руды. В то же время к таким неметаллическим полезным ископаемым, как гранит, пески, глины, каменная соль и другие, этот термин не применяется. Можно называть рудами те неметаллические полезные ископаемые, которые представлены минералами и минеральными агрегатами, образующими вкрапленники, прожилки, жилы, пластообразные и неправильные залежи, их извлекаются из вмещающих пород либо избирательной отработкой, либо с применением методов обогащения.
В настоящее время насчитывается свыше 130 видов неметаллических полезных ископаемых, используемых в естественном или переработанном виде.
Одной из наиболее характерных черт неметаллических полезных ископаемых является наличие определённых физических, химических и технических свойств, которые влияют не только на технологию переработки, но и на качество конечных промышленных изделий. Многообразие состава и свойств неметаллического полезного ископаемого может играть главную роль в использовании его в том или ином производстве; оно приводит к исключительной специализации данного сырья и к выработке очень точных и строгих стандартов, технических условий, кондиций и сортификации, применяемых лишь для узких и строго определённых производств. Сортификация неметаллических полезных ископаемых по их различным физическим и механическим свойствам предопределяет сложность геолого-экономичекой оценки их месторождений. Кроме определения запасов полезного ископаемого, его содержания, горнотехнических условий необходимо знать требования соответствующих отраслей промышленности к данному сырью. Например, применение хризотил-асбеста в текстильной, картонно-шиферной или асбоцементной промышленности зависит от длины волокна, прочности его на разрыв, эластичности (гибкости); слюды в электротехнике от величины пластин-кристаллов, диэлектрической проницаемости, термической стойкости и отсутствия дефектов.
Многие неметаллические полезные ископаемые могут применяться в различных отраслях производства, которые используют те или иные их свойства. Например, флюорит является важным сырьем для металлургического, химического, стекольного, ювелирного и оптического производства; тальк применяют в огнеупорной, бумажной, резиновой, кабельной, строительной и фармацевтической отраслях производства, серу в химической, резиновой, бумажной, пищевой отраслях и в сельском хозяйстве .
Важная особенность неметаллического сырья его взаимозаменяемость, в силу тождественности тех или иных свойств для одной и той же цели используются различные виды сырья. Так, в качестве электроизоляторов могут применяться не только слюды, но и мрамор, асбест, тальковый камень; в качестве смазочных веществ наряду с графитом могут применяться тальк и слюдяной порошок.
Промышленная классификация.
Промышленная классификация неметаллических полезных ископаемых, предложенная П.М.Татариновым, основывается на их свойствах и главных направлениях применения в промышленности. По этим признакам выделены три группы неметаллических полезных ископаемых.
1. Индустриальное сырье: драгоценные, технические и поделочные камни алмаз, рубин, сапфир, изумруд, гранаты, агат, яшмы; графит; слюды мусковит и флогопит; асбесты хризотиловые и амфиболовые; тальк и тальковый камень; магнезит и брусит; пьезооптический кварц и кварц для плавки; флюорит; барит и витерит; исландский шпат; цеолиты и др.
II. Химическое и агрономическое сырье: минеральные соли; фосфатное сырьеапатит и фосфориты; серное и борное сырье.
III. Минеральные строительные материалы и сырье для их производства: керамическое сырье пегматиты, фарфоровый камень, высокоглиноземистые силикаты, волластонит; глины и каолины; песок и гравий; карбонатные породы; гипс и ангидрит; активные минеральные добавки диатомиты, трепелы, опоки, трассы и пуццоланы; породы для получения легких строительных материалов шунгит, перлит, вермикулит; естественные строительные камни.
Эта классификация достаточно условна, так как один и тот же вид сырья в силу многообразия свойств может применяться в разных областях и относиться к разным группам. Например, флюорит может быть отнесен и к индустриальному. и к химическому сырью; карбонатные породы к химическому сырью и к природным строительным материалам.
Индустриальное сырье представлено минералами, обладающими исключительными физическими свойствами (высокая твердость, мягкость, огнеупорность, волокнистость, оптические и пьезоэлектрические, диэлектрические эффекты). Они используются в естественном виде, подвергаясь в основном механической обработке.
К химическому сырью относятся горные породы и минеральные агрегаты (соляные породы, фосфориты, апатит-нефелиновые, апатит-магнетитовые и серные руды, бораты), из которых путем химической переработки извлекают элементы и химические соединения..
В группу природных строительных материалов и сырья для их производства входят широко распространенные горные породы, большая часть из которых применяется в естественном виде или после термической или технологической переработки.
Значение неметаллических полезных ископаемых.
Роль и значение неметаллических полезных ископаемых в экономике трудно переоценить, и практически невозможно найти отрасль промышленности или техники, где не использовалось бы неметаллическое сырье. Применение неметаллических полезных ископаемых возрастает с каждым годом, что обусловлено вовлечением в сферу промышленного освоения новых видов дешевого и широко распространенного в природе неметаллического сырья, резким увеличением потребностей сельского хозяйства в минеральных удобрениях, интенсивным ростом жилищного, промышленного и дорожного строительства, широким внедрением химических методов обработки разных видов сырья.
Применение неметаллического сырья существенно расширилось в современную эпоху, особенно в XX в., когда начали использовать новые виды минерального сырья в сельском хозяйстве, химии, в производстве огнеупоров, кислотоупорных изделий, фильтровальных и изоляционных материалов, а также в керамике, металлургии, оптике, бумажной, резиновой и пищевой промышленности. Особенно роль его возросла, во-первых, с применеяием новых видов неметаллического сырья (например, высокоогнеупорных форстеритов и силлиманитов, вспученных перлитов и вермикулитов с высокой емкостью поглощения), во-вторых, с новыми областями использования традиционных материалов (например, применение химически чистого графита в качестве замедлителя быстрых нейтронов в атомных реакторах, кремния в качестве полупроводников в электронных устройствах, в которых нуждаются автоматические и кибернетические системы) и, в-третьих, с использованием технологических достижений нашего атомного и космического века. При создании ракет, отдельные части которых должны выдерживать высокие температуры при запуске и возвращении на Землю (прохождение через плотные слои атмосферы), используются покрытия из керамических материалов совместно с органическими полимерами, Zr02 или металлическими порошками для авиационных двигателей и тепловых экранов (так называемая металлокерамика). В атомной промышленности огнеупоры используются как конструкционные материалы для замедлителей и отражателей нейтронов (например, стержни из В4С и BN); эти же материалы применяются для изготовления легких керамических плит для самолетов и вертолетов. Для изготовления различных лазеров применяются такие минералы, как альмандин, апатит, флюорит и рубин.
По объёму производства неметаллические полезные ископаемые занимают первое место среди всех видов минерального сырья. Даже в экономике такой страны, богатой рудными месторождениями, как США, ресурсы неметаллов в два раза превышают количество руд в общем национальном продукте, и это различие продолжает возрастать.
Особенно это проявляется в стоимостном выражении. Так ценность балансовых (разведанных) запасов в России неметаллических полезных ископаемых сравнима по стоимости руд металлов и алмазов. На нерудные полезные ископаемые (НИИ) приходится 15 %, а на черные, редкие, благородные металлы и алмазы 14,3 % валовой потенциальной стоимости. Если же убрать из этого ряда стоимость алмазов, которые тоже относятся к неметаллам, то разница будет ещё более значительной.
В настоящее время экономика России (с позиции ряда важнейших видов неметаллов) оказалась в критической зависимости от превышения 50%-ного порога доли экспорта от всего производства (калийные соли, апатит, асбест), а также почти полной зависимости рынка (на 6090 %) от импорта по ряду неметаллов (щелочные бентониты, барит, каолин, кристаллический графит и др.). Это объясняется тем, что основные горнодобывающие предприятия и ранее подготовленные в бывшем СССР промышленные запасы остались за пределами России: свыше 90 % барита в Казахстане и Грузии, более 80 % фосфоритов в Казахстане и Узбекистане, каолина на Украине и в Казахстане, 70 % высококачественных бентонитов на Кавказе и в Средней Азии, 60 % кристаллического графита на Украине и др.
Генетическая классификация неметаллических полезных ископаемых.
В этой связи возникла необходимость расширения поисковых и разведочных работ, которые должны базироваться на фундаментальных знаниях о генезисе различных видов полезных ископаемых. Советскими геологами П.М. Татариновым и В.И. Смирновым и др. обобщены данные о генезисе месторождений неметаллических полезных ископаемых . Предложенная ими классификация приводится ниже.
А. Эндогенные месторождения
I. Собственно магматические
1. Раннемагматические.
2. Позднемагматические.
3. Ликвационные.
К классу собственно магматических месторождений (ранне- и позднемагматических) относятся некоторые месторождения алмаза, графита и апатита, а главным образом многочисленные и широко используемые промышленностью в качестве естественных строительных камней месторождения различных изверженных пород (гранит, базальт, диабаз, лабрадорит, вулканический туф, пемза, перлит и т. д. ).
II. Пегматиты
К этому классу относятся месторождения полевых шпатов, нефелина, мусковита, кварца, письменного гранита, горного хрусталя (преимущественно морион), драгоценных, цветных и поделочных камней (изумруд, топаз, турмалин и др.), корунда и наждака, оптического флюорита.
III. Карбонатиты
В генетической и пространственной связи с карбонатитами встречаются некоторые месторождения апатита, флогопита и вермикулита.
IV. Постмагматические
1. Скарновые.
2. Гидротермальные:
а) глубинные (больших и умеренных глубин) высоко-, средне- и низкотемпературные;
б) близповерхностные (малых глубин и поверхностные) высоко-, средне- и низкотемпературные.
3. Эксгаляционные и вулканогенно-осадочные.
Скарновыми являются некоторые месторождения андалузита, корунда, графита, силикатов бора и боратов.
К классу гидротермальных глубинных относятся некоторые месторождения флогопита, апатита, хризотил-асбеста и амфибол-асбестов, талька и талькового камня, магнезита, горного хрусталя, плавикового шпата.
Гидротермальными близповерхностными являются месторождения плавикового шпата, барита, витерита, агата, алунита, исландского шпата, серы.
К классу эксгаляционных и вулканогенно-осадочных принадлежат весьма крупные месторождения серы и боратов.
Б. Экзогенные месторождения
I. Месторождения выветривания
1. Обломочные: элювиальные и делювиальные россыпи. Сюда относятся некоторые месторождения алмаза, графита, барита, корунда и андалузита.
2. Остаточные:
а) глины, каолины и латериты;
б) типа железной шляпы.
К классу остаточных относятся некоторые месторождения глин, каолина, фосфоритов, стекольных песков, боратов, талька, гипса, серы, алунита, вермикулита.
3. Инфилътрационные.
К ним относятся месторождения фосфоритов, барита, магнезита, боратов, исландского шпата, гипса, серы.
II. Осадочные месторождения
1. Механические осадки:
а) аллювиальные россыпи и конгломераты;
б) переотложенные осадки тонкодисперсных продуктов выветривания.
Механическими осадками являются многие месторождения гравия, глин, каолинов, песка и песчаника, алмаза, фосфоритов.
2. Химические осадки:
а) из истинных растворов;
б) из коллоидных;
в) биохимические.
К классу химических осадков относятся месторождения солей натрия, калия и магния, гипса, боратов, доломита, известняков, мергелей, фосфоритов, диатомита, трепела и опок, серы.
В. Метаморфогенные месторождения
I. Метаморфизованные
II. Метаморфические
В классе метаморфогенных месторождений находятся многие месторождения андалузита, силлиманита, кианита, мрамора, кварцита, талька и талькового камня, графита, кровельного сланца, корунда, наждака, гнейса.
МЕСТОРОЖДЕНИЯ ИНДУСТРИАЛЬНОГО СЫРЬЯ
Алмаз (С) является полиморфной модификацией углерода, кристаллизующейся в кубической сингонии.
Большая часть алмазов встречается в природе в виде отдельных хорошо оформленных кристаллов или их обломков. Преобладают октаэдры, ромбододекаэдры и кубы, а также их комбинации. Это кристаллы с ровными плоскими гранями. Так их и называют плоскогранными. Реже встречаются кривогранные, округлые кристаллы, однако в некоторых месторождениях они преобладают. Зачастую кристаллы алмаза срастаются друг с другом или же, как бы «прорастают» друг друга, образуя соответственно так называемые двойники срастания и прорастания. Практически во всех алмазных месторождениях присутствуют микро- и скрытокристаллические агрегаты, сложенные сотнями тесно сросшихся мельчайших зерен алмаза.
Уникальные свойства алмаза обусловлены особенностями его кристаллического строения. Элементарная кристаллическая ячейка алмаза представляет собой гранецентрированный куб. Атомы углерода (С) расположены в вершинах куба, в центрах его граней, а также в центрах 4-х несмежных октаэдров. Каждый атом углерода связан с четырьмя ближайшими атомами, симметрично расположенными по вершинам тетраэдра наиболее «прочной» химической связью ковалентной. Идеальный кристалл алмаза можно представить себе как одну гигантскую молекулу. Этим и объясняются многие, исключительно ценные свойства алмаза.
Алмаз является самым твёрдым из всех известных веществ и превосходит по абсолютной твёрдости корунд в 150 раз и кварц в 1000 раз. Сильный блеск и игра цвета у алмаза объясняются высокими показателем преломления и дисперсией. Для алмаза характерны совершенная спайность по октаэдру, хрупкость, высокая плотность, люминесценция в ультрафиолетовых и рентгеновских лучах, высокая теплопроводность. Он является диэлектриком, химически стоек- не растворяется ни в кислотах ни в щелочах. Температура плавления алмаза 3700 4000°С. Сгорает алмаз на воздухе при 850 1000°С, а в кислородной среде горит слабо-голубым пламенем при 720 800°С полностью превращаясь в конечном счете в углекислый газ. При нагреве до 2000 3000°С без доступа воздуха алмаз переходит в графит.
Большинство природных алмазов бесцветно, однако, нередки камни самых разнообразных цветов и оттенков. Хотя алмаз может быть почти любого цвета, алмазы синего цвета наиболее редки и потому наиболее ценны. Однако ослепительная игра их открывается лишь тогда, когда камень огранен в форму бриллианта. Такие алмазы ценятся очень высоко, но опять же выше всех среди прочих ценится алмаз, обладающий голубоватым оттенком. Наиболее часто встречаются алмазы со слабым желтоватым оттенком, а также зеленоватые. В США, Великобритании и ряде других странах искусственное окрашивание природных алмазов производят в лабораторных условиях путём бомбардировки их электронами высоких энергий.
Алмаз с чистой поверхностью гидрофобен, т.е. не смачивается водой. В то же время алмазы способны прилипать к некоторым видам жиров, на чем основаны некоторые способы извлечения алмазов из раздробленной алмазоносной породы.
Вес алмазов измеряется в каратах: 1 карат равен 0,2 грамма.
Применение алмазов.
В зависимости от качества алмазы делятся на ювелирные и технические. К ювелирным относят достаточно крупные кристаллы совершенной формы, окраски, исключительной прозрачности, без трещин, включений и иных дефектов. Минимальный размер ювелирных алмазов 0,05 карата (0,01 г); крупными считаются камни более 10 каратов; если масса алмаза превышает 50 каратов ему присваивается имя.
Крупные алмазы распиливают, подвергают огранке и шлифовке с получением бриллиантов, при этом теряется более 50% их массы. Назначение огранки -придать камню наибольший блеск и игру цветов. Стоимость бриллиантов достигает очень большой величины ( более 10000 долларов за карат).
Самый крупный алмаз Куллинан (масса 3106 карат, размеры 10X6,5X5 см) голубого цвета был обнаружен в 1905 г. в южноафриканской трубке Премьер; он представлял обломок октаэдрического кристалла. После распиловки из него было получено большое количество мелких бриллиантов и два очень крупных: Звезда Африки (530,2 кар) и Куллинан-2 (317,4 кар). Общая масса бриллиантов, полученных из этого алмаза, составила 1063,65 кар.
Но в 2007 году в Африке был найден самый крупный в истории человечества алмаз ювелирного качества массой около 6000 карат.
Существенное изменение технологии огранки алмазов произошло в связи с внедрением лазерной техники: использование луча лазера для распиловки кристаллов экономично и почти неограниченно расширяет ассортимент форм огранки.
В общей массе алмазного сырья свыше 75% приходится на долю технических алмазов, среди которых различают борт, баллас, карбонадо и конго. Борт мелкие неправильные кристаллы, сростки, непригодные для ювелирных целей. Баллас шарообразные мелкозернистые агрегаты с более твердой, чем ядро, оболочкой. Карбонадо тонкозернистые, пористые агрегаты черного, серого или зеленоватого цветов. Конго наиболее низкосортные мелкие алмазы, пригодные лишь в качестве абразивного материала.
Технические алмазы используются для армирования буровых коронок, изготовления режущих инструментов и свёрл, для изготовления метчиков, твердомеров, фильеров, подшипников, износостойких покрытий в точных приборах, кювет и окошек в химическом производстве. Алмазные порошки используются для изготовления шлифовальных кругов, обрезных дисков, шлифовальных паст.
В связи со всё возрастающими требованиями к точности и скорости обработки металлов технические алмазы широко применяются в машиностроении, электронной, авиационной, автомобильной и других отраслях промышленности.
В последние годы во многих странах налажено промышленное производство синтетических алмазов не уступающих по технологическим показателям. природным техническим алмазам (в США, ЮАР, Ирландии, Швеции, Японии, России) . Мелкие кристаллы синтетических алмазов получают при перекристаллизации графита в присутствии железа в качестве катализатора при высоких температурах и давлениях. Мировое производство синтетических алмазов технических сортов сопоставимо с объёмом добычи природных.
Промышленно- генетические типы месторождений алмазов.
I коренные:
II Россыпные ( россыпи Намибии, Бразилии, ЮАР, Индии, бассейна р. Конго, бассейна р. Вилюй в Якутии).
Коренные месторождения алмазов.
Коренные месторождения алмазов, связанные с кимберлитовыми трубками взрыва, успешно эксплуатируются на протяжении более 120 лет. На их долю приходится около 80% добычи всех природных алмазов в мире. Кимберлитовые и лампоитовые тела приурочены к разломам активизированных древних платформ. Часто процессы активизации протекают на одной и той же платформе в несколько этапов. Так на Сибирской установлено три этапа: девонский, триасовый и юрско-меловой.
Кимберлитовые трубки конусообразные, суживающиеся вниз рвущие тела округлой, реже более сложной формы в плане, прослеживаемые на большую глубину (до 2 км и более) среди пород платформенного чехла и кристаллических образований фундамента. Трубообразные тела имеют сечение от нескольких метров до нескольких сот и даже тысяч метров. Так, наиболее крупная трубка в мире Камафука Камазамбо в Анголе имеет площадь 150 га. При этом поперечные сечения резко сокращаются с глубиной (трубка Мир в Якутии на глубине 600 м уменьшается в 5 раз ). Часто трубки на глубине переходят в дайки. В разрезе в трубках различают кратерную, диатремовую и канальную части.
Алмазоносные кимберлитовые магматические тела сложены богатой летучими калиевой ультраосновной порфировой породой, которая носит название кимберлит. Ксеноморфные минералы, принесенные из мантии (оливин, флогопит, пикроильменит, гранат,хромдиопсид, алмаз) погружены в более тонкозернистую цементирующую массу. Породы обычно изменены постмагматическими процессами и превращены в серпентин хлорит карбонатную массу. Собственно кимберлиты слагают только отдельные участки кимберлитовых трубок, а большая часть их образована эксплозивными и эруптивными брекчиями, а также автолитовыми брекчиями ( обломки кимберлитов ранних фаз внедрения). Кимберлитовые трубки являются многофазовыми образованиями, формировавшимися в результате многократного прорыва кимберлитовой магмы. Однофазовые трубки менее алмазоносны , чем многофазовые. Кратерные части трубок выполнены обломочным материалом сносимым с бортов после образования трубок,. Они фиксируются только в слабоэродированных районах.
ль
Рис. 1. Модель алмазоносной кимберлитовой трубки Зимнего Берега
(Архангельская алмазоносная провинция).
. Диатремовые части трубок, наибольшие по длине, сложены эксплозивными брекчиями и туфами кимберлитов. А канальные их части образованы массивными кимберлитами. Алмазоносны все части трубок, но максимальная алмазоносность отмечается в диатремовых частях. Алмазы заключены в основном в мелкозернистой кимберлитовой массе.
Кимберлитовые алмазоносные трубки обычно встречаются группами и выделяются как кимберлитовые поля (районы). Кимберлитовые провинции состоят из десятков кимберлитовых полей, содержащих сотни кимберлитовых тел.
Добыча алмазов из кимберлитовых трубок в ЮАР ведется уже более 100 лет. Например, известная трубка Премьер разрабатывается с 1903 года. Здесь было добыто большое количество камней ювелирного качества, в том числе алмазы чернильно-синего цвета и крупнейший алмаз Кулинан.
В Якутской алмазоносной провинции, являющейся основным алмазодобывающим регионом России выделяется 7 алмазоносных районов. В них сосредоточены наиболее крупные разрабатываемые кимберлитовые трубки : Удачная, Интернациональная, Айхал, Юбилейная, Нюрбинская. На давно эксплуатирующихся трубках Мир и Айхал ведётся строительство подземных рудников.
К последней четверти XX в. относится обнаружение новой Архангельской алмазоносной провинции на севере Русской платформы (месторождения имени Ломоносова и Гриба).
Лампроиты новый источник промышленных алмазов, открытый в конце 70-х годов в Австралии ( месторождение Аргайл). Это - богатая калием и магнием основная или ультраосновная порода вулканического или интрузивного гипабиссального происхождения. Лампроитовые тела по сравнению с кимберлитовыми имеют большие размеры. По своему строению лампроитовые трубки в целом аналогичны кимберлитовым, но, судя по месторождению Аргайл, они быстрее выклиниваются на глубину переходя в дайки. Обычно лампроиты содержат мелкие технические алмазы. Из высокопродуктивной лампроитовой трубки Аргайл, открытой в 1979 году, уже в 1983 году было добыто 6,2 млн карат алмазов.
Существует пять гипотез о происхождении алмазов в кимберлитах и лампроитах:; 1) алмазы кристаллизуются на мантийных глубинах, захвачены расплавом и вынесены магматическими потоками к поверхности; 2) они кристаллизовались в самой кимберлитовой или лампроитовой магме как ее естественные породообразующие минералы; 3) это результат ассимиляции ультраосновной магмой углеродсодержащих пород; 4) алмазы образуются в постмагматическую стадию в связи с пневматолитовыми и даже гидротермальными процессами; 5) формируются из глубинных подкоровых флюидных потоков. Первые две гипотезы поддерживаются многими геологаим.
Другой тип коренных месторождений алмазов связан с импактитами - породами, образовавшимися в результате ударов космических тел о поверхность Земли. В результате сверхвысоких давлений, возникших при ударе, произошел твёрдофазовый переход содержащегося в этих породах графита в алмаз. Алмаз представлен мелкими поликристаллическими агрегатами, нередко с примесью гексагональной модификации алмаза лонсдеелита. В настоящее время этот тип месторождений не имеет промышленного значения. Примером подобного типа месторождений является Попигайская астроблема.
Новый тип коренных месторождений алмазов, открытый в 60-х годах, приурочен к кристаллическим породам метаморфического комплекса Кокчетавского массива Казахстана. Алмазы установлены в биотитовых гнейсах, биотит-кварцевых, гранат-пироксеновых, пироксен- карбонатных породах. Преобладающий размер алмазов не превышает 100 мкм., поэтому они могут использоваться в качестве абразивного материала. В настоящее время месторождения этого типа не разрабатываются.
Россыпные месторождения.
Месторождения алмазов этой генетической серии представлены разнообразными россыпями, которые сформировались в результате либо выветривания (обломочные месторождения), либо осадконакопления (механические осадки) и представляют собой вторичные концентрации алмазов. Эксплуатация россыпей алмазов технически и экономически более выгодна по сравнению с эксплуатацией коренных месторождений. Она осуществляется в основном открытым способом. Во многих россыпях концентрации алмазов превышают десятки каратов на 1 м3 рыхлой породы.
Элювиальные россыпи
Обломочные месторождения кор выветривания образуются при выветриванли алмазоносных кимберлитовых трубок, алмазоносных песчаников и конгломератов (древние ископаемые россыпи), вскрытых эрозией. Они сложены рыхлыми продуктами химического и физического выветривания алмазоносных пород, в которых повышается концентрация алмазов и облегчаются условия их извлечения.
Наиболее продуктивная кора выветривания возникает в самых верхних горизонтах кимберлитовых трубок во влажном и теплом климате. Она выделяется под названием «желтая земля» и представляет собой глиноподобную массу желтого цвета, состоящую из карбонатов, опала, барита и глинистых минералов. Алмазы в ней находятся в «свободном» состоянии и извлекаются промывкой. Мощность «желтой земли» достигает десятков метров. В арктическом климате элювий кимберлитов сформирован дресвой и мелкой щебенкой, распространяющейся на глубину 35 м.
Аллювиальные россыпи являются наиболее распространенными и важными в промышленном отношении среди экзогенных месторождений алмазов. Они приурочены к речным отложениям и в возрастном отношении подразделяются на древние и современные (молодые).
. Древние россыпи не эксплуатируются, за исключением докембрийских конгломератов в Индии и ЮАР Витватерсранд (в последнем случае алмазы извлекаются попутно при добыче золота). Первичный источник алмазов -денудированные кимберлиты. Древние россыпи являются важным источником алмазов современных элювиально-делювиальных россыпей.
Современные россыпи подразделяют на долинные, террасовые, пойменные и русловые Долинным россыпям свойственна концентрация алмазов в грубозернистых отложениях.
Прибрежно-морские россыпи алмазов образуются на пологих океанических берегах при выносе алмазов реками из глубин континента и разносе вдоль побережья. Наиболее промышленно значимые россыпи этого типа находятся в Намибии и ЮАР. Содержание алмазов в них достигает 100 и более карат на кубометр породы, причем практически все они (90 -95%) ювелирных сортов, Экономическая ценность месторождений такого типа велика, так как разработка их достаточно дёшева.
Рис 2. Распределение мировой добычи алмазов по массе и стоимости в 2010 г.
Мировая добыча алмазов постоянно растёт: в 1970 г. она составила 33,5 млн.карат, в 2000 г. 136 млн. карат стоимостью в 7,8 млрд. дол., а в 2010 г.- достигла 160 млн.кар. суммарной стоимостью 10,9 млрд дол.; повышается доля более качественных и дорогих алмазов. Большая часть алмазов добывается на Африканском континенте (Рис2).
Россия занимает первое место в мире по запасам и добыче алмазов. В 2011 году в России добыто 36,9 млн. кар. стоимостью 2,2 млрд.дол. Сырьевая база России сосредоточена в 3 алмазоносных провинциях: Республике Саха (Якутия), Архангельская область, Пермский край. На долю коренных месторождений приходится 95 % разведанных запасов.
Список литературы
1. Белоусов В.В. Очерки истории геологии. У истоков науки о Земле (геология до конца ХVIII в.). М., 2003.
2. Вернадский В.И. Избранные труды по истории науки. М.: Наука, 1981.
3. Поваренных А.С., Оноприенко В.И. Минералогия: прошлое, настоящее, будущее. Киев: Наукова Думка, 2005.
4. Современные идеи теоретической геологии. Л.: Недра, 2004.
5. Хаин В.Е. Основные проблемы современной геологии (геология на пороге ХХI века). М.: Научный мир, 2011..
6. Хаин В.Е., Рябухин А.Г. История и методология геологических наук. М.: МГУ, 2006.
7. Хэллем А. Великие геологические споры. М.: Мир,2011.