Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
22
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
Севастопольский национальный технический университет
по курсу «Обработка данных в автоматизированных системах»
«Разработка технического и программного обеспечений автоматизированной системы научных исследований»
(Альбом документов)
Брусинов С. Э.
Проверил:
Краснодубец Л. А.
Допущено к защите
Защищено с оценкой
Севастополь
ОПИСЬ АЛЬБОМА
Отчет по курсовому проектированию содержит следующие документы:
- Техническое задание, где обозначены: цель проекта, технические требования, основные этапы работы и график их выполнения;
- Пояснительная записка, в которой представлено описание и принцип действия АСНИ; все расчеты заданного устройства и выводы по проделанной работе;
- Приложения, включающие: текст программы, принципиальную электрическую схему информационного измерительного канала и структурную схему программы.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
Севастопольский национальный технический университет
по курсу «Обработка данных в автоматизированных системах»
«Разработка технического и программного обеспечений автоматизированной системы научных исследований»
(Техническое задание)
Брусинов С. Э.
Проверил:
Краснодубец Л.А.
Севастополь
Севастопольский национальный технический университет
(наименование высшего учебного заведения)
Факультет Автоматики и вычислительной техники
Дисциплина Обработка данных в автоматизированных системах
Специальность Компьютеризированные системы, автоматика и управление
Курс IV Группа А-41з Семестр IХ
На курсовой проект студента
Брусинова Сервера Энверовича
(фамилия, имя, отчество)
1. Тема проекта Разработка технического и программного обеспечений автоматизированной системы научных исследований
2. Срок сдачи студентом законченного проекта (работы)
3. Исходные данные к проекту (работе)
Внутреннее сопротивление датчика - Rи=300
Выходное напряжение датчика - Uc =3,0мВ
Эффективное значение синфазной помехи - Uсф=1,2B
Максимальная погрешность от синфазной помехи - =3%
Частота работы АЦП Fд=2000Гц
Разрешение по частоте при определении спектральной плотности b=5Гц
Период дискретизации T=0.02c
Ошибка спектрального анализа =25%
4. Содержание расчётно-пояснительной записки (перечень подлежащих разработке вопросов)
1.Введение
.Теоретические сведения
.Разработка методического обеспечения
.Разработка технического обеспечения
. Разработка программного обеспечения
.Тестирование ПО
.Заключение
5. Перечень графического материала (с точным указанием обязательных чертежей)
6. Дата выдачи задания 22 июня 2007 года
№п/п |
Название этапов курсового проекта (работа) |
Срок выполнения этапов проекта (работы) |
Пометки |
1 |
Получение задания, подбор литературы |
||
2 |
Расчет дифференциального усилителя |
||
3 |
Расчет фильтра низких частот и нормирующего усилителя |
||
4 |
Разработка схем и алгоритмов программы |
||
5 |
Написание программы |
||
6 |
Оформление отчета |
||
Студент__________________________________
(подпись)
Руководитель_____________________________ (подпись) (фамилия, имя, отчество)
«_____» ___________________________20___г.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
Севастопольский национальный технический университет
по курсу «Обработка данных в автоматизированных системах»
(Пояснительная записка)
Брусинов С. Э.
Проверил:
Краснодубец Л.А.
.
Севастополь
7
СОДЕРЖАНИЕ
Целью курсового проекта является разработка технического и программного обеспечения автоматизированной системы научных исследований (АСНИ).
АСНИ предназначена для спектрального анализа данных, поступающих от первичных преобразователей физических величин, характеризующих некоторый технологический процесс. В состав АСНИ входят следующие подсистемы:
В современных условиях необходимо внедрение средств микроэлектроники и вычислительной техники во все сферы народного хозяйства. Это обусловлено стремлением к повышению эффективности и качества производимой продукции.
В соответствии с заданием на курсовое проектирование необходимо разработать техническое и программное обеспечение: выполнить расчет информационно-измерительного канала автоматизированной системы научных исследований, состоящего из дифференциального усилителя и активного фильтра по исходным данным, а также разработать программу, выполняющую анализ поступающих сигналов.
2 РАЗРАБОТКА МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ
В состав методического обеспечения АСНИ включены методы генерации временных рядов и методы оценивания спектральных плотностей мощности.
Одной из важнейших задач, решаемых автоматизированными системами, является сбор и обработка данных, поступающих от первичных преобразователей (датчиков), установленных на объектах автоматизации. Эти данные рассматривают как временные ряды.
Временной ряд это множество наблюдений, генерируемых последовательно во времени. В зависимости от того, как изменяется время: непрерывно или дискретно, различают временные ряды непрерывные и дискретные.
Современные автоматизированные системы обрабатывают данные с помощью компьютеров, поэтому все данные, которые поступают в виде аналоговых сигналов преобразуются в цифровую форму.
При исследовании процесса аналого-цифрового преобразования будут рассматриваться следующие временные ряды:
Х(t) - исходная физическая величина (непрерывный ряд);
х(t) - выходной сигнал датчика в вольтах, соответствующий функции Х(t) (непрерывный ряд);
С(t) - выход х(t) датчика, переведенный в непрерывные отсчёты (непрерывный ряд);
С(iT) - выход х(t) датчика, переведенный в непрерывные отсчёты, выполненные в дискретные моменты времени с периодом Т (дискретный ряд);
с(i) - выход х(t) датчика, переведенный в округленные отсчёты, полученные после операции квантования (дискретный временной ряд);
е(i) - погрешность, равная С(iT) - с(i).
Фиктивный временной ряд С(t) введен здесь только для удобства. Как временной ряд С(t) , так и ряд с(i) измеряются в одних единицах - отсчётах. Временной ряд С(t) есть просто результат линейного преобразования функции х(t), представленного формулой (2.1):
(2.1) |
Дискретное преобразование Фурье (финитное) определяется соотношением (2.2):
,
(2.2) |
где
X(k) - значение (комплексное) дискретного преобразования Фурье, определенное в частоте с номером k;
x(i) - значение (вещественное) исходного временного ряда, определенное в момент времени с номером i;
T - период дискретизации;
N - количество отсчетов (длина) временного ряда.
Дискретное преобразование Фурье связывает спектральную характеристику (комплексный спектр) X(k), определенную в дискретных значениях частоты (с номером k), с дискретными значениями временного ряда (сигнала) x(i), определенными в дискретные моменты времени (с номером i).
Точность представления спектральной характеристики определяется разрешением по частоте
(2.3) |
Обратное дискретное преобразование Фурье определяется соотношением (2.4):
(2.4) |
Из сравнения формул (2.2) и (2.4) следует, что они отличаются знаком показателя экспоненты, множителем перед знаком суммы, а также переменной суммирования. Это позволяет строить единые программы для прямого и обратного преобразований Фурье.
Применяя формулу Эйлера, выражение (2.2) можно привести к виду (2.5):
(2.5) |
где
(2.6) |
Оценивание спектральной плотности мощности (СПМ) с помощью дискретного преобразования Фурье осуществляется по формуле (2.7):
(2.7) |
Где X(k) - дискретное преобразование Фурье (спектральная характеристика) временного ряда , соответствующего процессу x(t);
T - период дискретизации процесса x(t);
N - длина временного ряда.
Черта в правой части формулы (2.7) означает операцию осреднения. Применение формулы (2.7) без операции осреднения приводит к получению "грубой" оценки СПМ. Формула (2.7) позволяет вычислить оценку СПМ посредством статистического осреднения модуля спектральной характеристики совокупности данных, поделенного на длину записи данных. Статистическое осреднение необходимо здесь потому, что ординаты спектральной характеристики являются случайными величинами изменяющимися для каждой используемой реализации случайного временного ряда .
Операция осреднения уменьшает статистическую изменчивость, или повышает статистическую устойчивость. В спектральном анализе случайных временных рядов на статистическую устойчивость влияют два параметра - разрешение по частоте и длина записи .
Можно показать, что оценки СПМ приближенно имеют распределение с n степенями свободы, где . Более того, для достаточно больших n, например, , распределение аппроксимируется гауссовским (нормальным) распределением. В этом случае нормированное стандартное отклонение (стандартное отклонение, связанное с оцениваемой величиной, т.е. процентная ошибка, или, в статистической терминологии, "коэффициент разброса") определяется соотношением (2.8):
(2.8) |
Величину называют стандартной ошибкой.
Если , то .
Последний результат означает, что вычисление оценки СПМ с использованием полной длины временного ряда имеет стандартную ошибку, равную 100%.
Если отрезок Tp поделить на m участков, то в этом случае
.
Подставляя полученный результат в (2.8), найдем
.
Таким образом, для повышения точности оценивания СПМ необходимо исходный временной ряд длины N разбить на m участков длины Nу, вычислить для каждого i-го участка по формуле (1), а затем найти осредненную оценку по формуле
.
Следует иметь в виду, что разрешение по частоте в рассмотренном случае определяется из соотношения . Число степеней свободы для найденной оценки СПМ можно найти следующим образом
.
Следовательно, для повышения степеней свободы и, соответственно, статистической устойчивости оценок СПМ необходимо увеличивать число участков для осреднения.
Повышение числа степеней свободы можно достичь другим способом осреднением по частотам.
Сглаженная оценка
,
(2.9) |
полученная осреднением l соседних оценок спектральной характеристики, имеет распределение с числом степеней свободы, равным примерно 2l. Это следует из теории о сложении величин, имеющих распределение .
Следует отметить, что разрешение по частоте в данном случае определится из соотношения .
Поскольку операция осреднения линейная, оценку СПМ можно найти, комбинируя осреднение по участкам с осреднением по частотам. При этом сначала выполняется осреднение по участкам, а затем по частотам. При осреднении по m участкам с последующим осреднением l соседних спектральных оценок в итоге получаются оценки, число степеней, свободы которых равно . Разрешение в этом случае равно .
В состав технического обеспечения включены информационно-измерительный канал и персональная ЭВМ.
АСНИ предназначена для спектрального анализа данных, поступающих от первичных преобразователей физических величин, характеризующих некоторый технологический процесс. В состав АСНИ входят следующие подсистемы:
Обобщенная структура АСНИ представлена на рисунке 3.1
Рисунок 3.1 Обобщенная структура АСНИ
На рисунке 3.1 приняты следующие обозначения:
УСО устройство связи с объектом;
БД - база данных.
Состав и структура ИИК приведены на рисунке 3.2.
Рисунок 3.2 Структура информационно-измерительного канала
На рис.3.2 приняты следующие обозначения:
Д - датчик;
ДУ дифференциальный электронный усилитель;
ФНЧ - фильтр нижних частот;
НУ нормирующий усилитель;
АЦП - аналого-цифровой преобразователь.
ДУ предназначен для усиления сигналов, поступающих от датчиков и подавления синфазных помех.
ФНЧ выполняет функции противомаскировочного фильтра и служит для подавления высокочастотных составляющих сигнала в целях исключения ошибок аналого-цифрового преобразования.
НУ предназначен для согласования входного напряжения АЦП с динамическим диапазоном изменения преобразуемого аналогового сигнала.
В простейшем случае в качестве измерительного усилителя может быть использован операционный усилитель (ОУ) в дифференциальном включении (рисунок 3.2). При выполнении условия R1/R2=R3/R4 усиление дифференциального сигнала намного больше усиления синфазного сигнала и коэффициент ослабления синфазного сигнала (КОСС) будет максимальным.
Рисунок 3.3 - Схема простейшего измерительного усилителя
В соответствии с техническим заданием:
Uc.max = 3 мВ
Uсф = 1,2 В синфазная помеха
= 3 % допустимый процент подавления синфазной помехи
Rc = 300 Ом внутреннее сопротивление датчика
, |
(3.1) |
Определяется коэффициент усиления:
.
(3.2) |
Ксинф определяется из следующих соображений: если резисторы имеют допуск
Для резисторов имеющих допуск 5% - Ксинф = 0,1
Для резисторов имеющих допуск 1% - Ксинф = 0,02
Для резисторов имеющих допуск 0.5% - Ксинф = 0,01
Выбираем Ксинф = 0,1
Для наилучшего согласования датчика с усилителем принимаем сопротивление датчика равным входному сопротивлению, т.е.
; |
(3.3) |
Находим сопротивление обратной связи
Сопротивления резисторов R3 и R4
Напряжение на выходе предварительного усилителя:
В качестве операционного усилителя DA принимаем K140УД9, который имеет коэффициент подавления синфазного сигнала не менее 80 дБ, что соответствует усилению примерно в 10000 раз.
Схема простейшего фильтра нижних частот приведена на рисунке 3.3
Передаточная функция этого фильтра определяется выражением:
Рисунок 3.3 - Простейший фильтр нижних частот первого порядка
Передаточная функция фильтра нижних частот (ФНЧ) в общем виде может быть представлена формулой (3.4):
. |
(3.4) |
где с1, с2 , ... , сn положительные действительные коэффициенты;
K0 коэффициент усиления фильтра на нулевой частоте.
Порядок фильтра определяется максимальной степенью переменной S. Для реализации фильтра необходимо разложить полином знаменателя на множители. Если среди нулей полинома есть комплексные, то следует записать его в виде произведения квадратных трехчленов:
. |
(3.5) |
где ai и bi положительные действительные коэффициенты.
Для полиномов нечетных порядков коэффициент b1 равен нулю. Реализация комплексных нулей полинома на пассивных RC-цепях невозможна. Применение индуктивных катушек в низкочастотной области нежелательно из-за больших габаритов и сложности изготовления катушек, а также из-за появления паразитных индуктивных связей. Схемы с операционными усилителями позволяют обеспечить комплексные нули полиному без применения индуктивных катушек. Такие схемы называют активными фильтрами. Рассмотрим различные способы задания характеристик ФНЧ.
Широкое применение нашли фильтры Бесселя, Баттерворта и Чебышева, отличающиеся крутизной наклона амплитудно-частотной характеристики (АЧХ) в начале полосы задерживания и колебательностью переходного процесса при ступенчатом воздействии.
Амплитудно-частотная характеристика фильтра Баттерворта имеет довольно длинный горизонтальный участок и резко спадает за частотой среза. Переходная характеристика такого фильтра при ступенчатом входном сигнале имеет колебательный характер. С увеличением порядка фильтра колебания усиливаются.
Амплитудно-частотная характеристика фильтра Чебышева спадает более круто за частотой среза. В полосе пропускания она, однако, не монотонна, а имеет волнообразный характер с постоянной амплитудой. При заданном порядке фильтра более резкому спаду амплитудно-частотной характеристики за частотой среза соответствует большая неравномерность в полосе пропускания. Колебания переходного процесса при ступенчатом входном воздействии сильнее, чем у фильтра Баттерворта.
Фильтр Бесселя обладает оптимальной переходной характеристикой. Причиной этого является пропорциональность фазового сдвига выходного сигнала фильтра частоте входного сигнала. При равном порядке спад амплитудно-частотной характеристики фильтра Бесселя оказывается более пологим по сравнению с фильтрами Чебышева и Баттерворта.
С ростом порядка фильтра его фильтрующие свойства улучшаются. На одном ОУ достаточно просто реализуется фильтр второго порядка. Для реализации фильтров нижних частот, высших частот и полосовых фильтров широкое применение нашла схема фильтра второго порядка Саллена-Ки. На рисунке 3.4 приведен ее вариант для ФНЧ. Отрицательная обратная связь, сформированная с помощью делителя напряжения R3, обеспечивает коэффициент усиления. Положительная обратная связь обусловлена наличием конденсатора С2. Передаточная функция фильтра имеет вид (3.6):
(3.6) |
Рисунок 3.4 - Активный фильтр низких частот второго порядка
Расчет схемы существенно упрощается, если с самого начала задать некоторые дополнительные условия. Можно выбрать коэффициент усиления =1. Тогда (1) R7=0, и резистивный делитель напряжения в цепи отрицательной обратной связи можно исключить. ОУ оказывается включенным по схеме неинвертирующего повторителя. В простейшем случае он может быть даже заменен эмиттерным повторителем на составном транзисторе. При =5 передаточная функция фильтра принимает вид:
(3.7) |
В соответствии с методикой принимаем следующие параметры фильтра для расчета элементов схемы Саллена-Ки. А рассчитаем исходя из UАЦП и UДУ, последнее из которых можно определить по формуле:
(3.9) |
Находится значение емкости С2
(3.11) |
Где
Выберем коэффициенты
Для согласования сигнала с дифференциального усилителя со входом АЦП по напряжению требуется:
Находится значение емкости С1 по формуле (3.10):
(3.12) |
Сопротивление резистора R5:
(3.13) |
Сопротивление резистора R6:
(3.14) |
Сопротивления R7 и R8 находятся из соотношения
(3.15) |
Нормирующий усилитель может быть построенный на базе операционного усилителя LM741 представлен на рисунке 3.5.
d0 3.5
-