Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Парная регрессия и корреляция 1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 4.6.2024

ЭКОНОМЕТРИКА

Учебное пособие для экономических специальностей

Оглавление

Введение

1. Парная регрессия и корреляция

1.1. Линейная модель парной регрессии и корреляции

1.2. Нелинейные модели парной регрессии и корреляции

2. Множественная регрессия и корреляция

2.1. Спецификация модели. Отбор факторов при построении уравнения множественной регрессии

2.2. Метод наименьших квадратов (МНК). Свойства оценок на основе МНК

2.3. Проверка существенности факторов и показатели качества регрессии

2.4. Линейные регрессионные модели с гетероскедастичными остатками

2.5. Обобщенный метод наименьших квадратов (ОМНК)

2.6. Регрессионные модели с переменной структурой (фиктивные переменные)

3. Системы эконометрических уравнений

3.1. Структурная и приведенная формы модели

3.2. Проблема идентификации

3.3. Методы оценки параметров структурной формы модели

4. Временные ряды

4.1. Автокорреляция уровней временного ряда

4.2. Моделирование тенденции временного ряда

4.3. Моделирование сезонных колебаний

4.4. Автокорреляция в остатках. Критерий Дарбина-Уотсона

Приложение 1. Случайные переменные

Приложение 2. Математико-статистические таблицы

Учебное пособие «Эконометрика для экономических специальностей» включает основные разделы эконометрики: парная и множественная регрессия, системы эконометрических уравнений и временные ряды.

Учебный материал в пособии разбит на четыре раздела:

В первом разделе рассмотрены модели парной регрессии (линейная и нелинейные модели).

Во втором разделе разбирается модель множественной линейной регрессии и обсуждается проблемы гомоскедастичности и автокоррелированности остатков.

Третий раздел посвящен системам одновременных эконометрических уравнений.

В четвертом разделе рассматриваются модели временных рядов.

По всем разделам представлены варианты контрольных работ и тесты. Для выполнения контрольных заданий рассмотрены типовые задачи.

Пособие предназначено для студентов экономических специальностей дневной, заочной и вечерней форм обучения.

Введение

Эконометрика – одна из базовых дисциплин экономического образования во всем мире.

Эконометрика – это наука, в которой на базе реальных статистических данных строятся и анализируются математические модели реальных экономических явлений и процессов. Одно из направлений эконометрики – построение прогнозов по различным экономическим показателям.

Для описания эконометрической модели весь процесс моделирования разбивается, как правило, на шесть основных этапов:

1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли;

2-й этап (априорный) – анализ экономической сущности изучаемого явления, формирование и формализация априорной информации, в частности, относящейся к природе исходных статистических данных и случайных остаточных составляющих;

3-й этап (параметризация) – собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в нее связей;

4-й этап (информационный) – сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей на различных временных или пространственных этапах функционирования изучаемого явления;

5-й этап (идентификация модели) – статистический анализ модели и, в первую очередь, статистическое оценивание неизвестных параметров модели;

6-й этап (верификация модели) – сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.

Эконометрическое моделирование реальных социально-экономических процессов и систем обычно преследует две конечные прикладные цели:

1) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы;

2) имитацию различных возможных исходов социально-экономического развития анализируемой системы.

Раздел 1. Парная регрессия и корреляция

Парная регрессия представляет собой регрессию между двумя переменными – y и x, т. е. модель вида:

,

где y – зависимая переменная (результирующий показатель); x – независимая, или объясняющая, переменная (фактор-аргумент). Знак «^» означает, что между переменными x и y нет строгой функциональной зависимости, поэтому в каждом отдельном случае величина y складывается из двух слагаемых:

,

где y – фактическое значение результирующего показателя;  – теоретическое значение результирующего показателя, найденное исходя из уравнения регрессии;  – случайная величина, характеризующая отклонения реального значения результирующего показателя от теоретического, найденного по уравнению регрессии.

Случайная величина  называется также возмущением. Ее присутствие в модели порождено тремя источниками: спецификацией модели, выборочным характером исходных данных, особенностями измерения переменных.

От правильно выбранной спецификации модели зависит величина случайных ошибок: они тем меньше, чем в большей мере теоретические значения результирующего признака , подходят к фактическим данным y. К ошибкам спецификации относятся неправильный выбор той или иной математической функции для  и недоучет в уравнении регрессии какого-либо существенного фактора, т. е. использование парной регрессии вместо множественной.

Ошибки выборки имеют место в силу неоднородности данных в исходной статистической совокупности, что, как правило, бывает при изучении экономических процессов. Для получения хорошего результата обычно исключают из совокупности единицы с аномальными значениями исследуемых признаков.

Использование временной информации также представляет собой выборку из всего множества хронологических дат. Изменив временной интервал, можно получить другие результаты регрессии.

Наибольшую опасность в практическом использовании методов регрессии представляют ошибки измерения. Если ошибки спецификации можно уменьшить, изменяя форму модели (вид математической формулы), а ошибки выборки – увеличивая объем исходных данных, то ошибки измерения практически сводят на нет все усилия по количественной оценке связи между признаками.

Особенно велика роль ошибок измерения при исследовании на макроуровне. Так, в исследованиях спроса и потребления в качестве объясняющей переменной широко используется «доход на душу населения». Вместе с тем, статистическое измерение величины дохода сопряжено с рядом трудностей и не лишено возможных ошибок, например, в результате наличия скрытых доходов.

Предполагая, что ошибки измерения сведены к минимуму, основное внимание в эконометрических исследованиях уделяется ошибкам спецификации модели.

В парной регрессии выбор вида математической функции  может быть осуществлен тремя методами:

  1.  графическим;
  2.  аналитическим, т.е. исходя из теории изучаемой взаимосвязи;
  3.  экспериментальным.

При изучении зависимости между двумя признаками графический метод подбора вида уравнения регрессии достаточно нагляден. Он основан на анализе корреляционного поля. Основные типы кривых, используемые при количественной оценке связей, представлены на рис. 1.1:

Рис. 1.1. Основные типы кривых, используемые при количественной оценке связей между двумя переменными.

Особый интерес представляет аналитический метод выбора типа уравнения регрессии. Он основан на изучении материальной природы связи исследуемых признаков.

При обработке информации на компьютере выбор вида уравнения регрессии обычно осуществляется экспериментальным методом, т. е. путем сравнения величины остаточной дисперсии , рассчитанной при разных моделях.

Если уравнение регрессии проходит через все точки корреляционного поля, что возможно только при функциональной связи, когда все точки лежат на линии регрессии , то фактические значения результативного показателя совпадают с теоретическими , т.е. они полностью обусловлены влиянием фактора x. В этом случае остаточная дисперсия .

В практических исследованиях, как правило, имеет место некоторое рассеяние точек относительно линии регрессии. Оно обусловлено влиянием прочих, не учитываемых в уравнении регрессии, факторов. Т.е. имеют место отклонения фактических данных от теоретических . Величина этих отклонений и лежит в основе расчета остаточной дисперсии:

.

Чем меньше величина остаточной дисперсии, тем меньше влияние не учитываемых в уравнении регрессии факторов и тем лучше уравнение регрессии подходит к исходным данным.

Считают, что число наблюдений должно в 7-8 раз превышать число рассчитываемых параметров при переменной x. Это означает, что искать линейную регрессию, имея менее 7 наблюдений, вообще не имеет смысла. Если вид функции усложняется, то требуется увеличение объема наблюдений, ибо каждый параметр при x должен рассчитываться хотя бы по 7 наблюдениям. Таким образом, если в качестве модели выбирают параболу второй степени , то требуется объем информации уже не менее 14 наблюдений.

1.1. Линейная модель парной регрессии и корреляции

Рассмотрим простейшую модель парной регрессии – линейную регрессию. Линейная регрессия находит широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров.

Линейная регрессия сводится к нахождению уравнения вида

или .         (1.1)

Уравнение вида  позволяет по заданным значениям фактора x находить теоретические значения результирующего показателя, подставляя в него фактические значения фактора x.

Построение линейной регрессии сводится к оценке ее параметров – a и b. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результирующего показателя y от теоретических  минимальна:

.         (1.2)

Т.е. из всего множества линий линия регрессии на графике выбирается так, чтобы сумма квадратов расстояний по вертикали между точками и этой линией была бы минимальной (рис. 1.2):

Рис. 1.2. Линия регрессии с минимальной дисперсией остатков.

Как известно из курса математического анализа, чтобы найти минимум функции (1.2), надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю. Обозначая  через , получим:

        (1.3)

После несложных преобразований, получим следующую систему линейных уравнений для оценки параметров a и b:

         (1.4)

Решая систему уравнений (1.4), найдем искомые оценки параметров a и b. Можно воспользоваться готовыми формулами, которые следуют непосредственно из решения системы (1.4):

, ,      (1.5)

где  – ковариация признаков x и y,  – дисперсия признака x и

, , , .

Ковариация – числовая характеристика совместного распределения двух случайных величин, равная математическому ожиданию произведения отклонений этих случайных величин от их математических ожиданий. Дисперсия – характеристика случайной величины, определяемая как математическое ожидание квадрата отклонения случайной величины от ее математического ожидания. Математическое ожидание – сумма произведений значений случайной величины на соответствующие вероятности (см. Приложение 1).

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу.

Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях.

Формально a – значение y при . Если фактор x не может иметь нулевого значения, то тогда трактовка свободного члена a не имеет смысла, т.е. параметр a может не иметь экономического содержания.

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции , который можно рассчитать по следующим формулам:

.          (1.6)

Линейный коэффициент корреляции находится в пределах: . Чем ближе абсолютное значение  к единице, тем сильнее линейная связь между факторами (при  имеем строгую функциональную зависимость). Однако близость абсолютной величины линейного коэффициента корреляции к нулю еще не означает отсутствия связи между признаками. При другой (нелинейной) спецификации модели связь между признаками может оказаться достаточно тесной.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции , называемый коэффициентом детерминации. Коэффициент детерминации характеризует долю дисперсии результирующего показателя y, объясняемую регрессией, в общей дисперсии результирующего показателя:

,             (1.7)

где , .

Соответственно величина  характеризует долю дисперсии y, вызванную влиянием остальных, не учтенных в модели, факторов.

После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Проверить значимость уравнения регрессии – означает установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.

Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации:

.          (1.8)

Средняя ошибка аппроксимации не должна превышать 8–10%.

Оценка значимости уравнения регрессии в целом производится на основе F-критерия Фишера, которому предшествует дисперсионный анализ. В математической статистике дисперсионный анализ рассматривается как самостоятельный инструмент статистического анализа. В эконометрике он применяется как вспомогательное средство для изучения качества регрессионной модели.

Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной y от среднего значения  раскладывается на две части – «объясненную» и «необъясненную»:

,

где  – общая сумма квадратов отклонений;  – сумма квадратов отклонений, объясненная регрессией (или факторная сумма квадратов отклонений);  – остаточная сумма квадратов отклонений, характеризующая влияние неучтенных в модели факторов.

Схема дисперсионного анализа имеет вид, представленный в таблице 1.1 (n – число наблюдений, m – число параметров при переменной x).

Таблица 1.1

Компоненты дисперсии

Сумма квадратов

Число степеней свободы

Дисперсия на одну степень свободы

Общая

Факторная

m

Остаточная

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F-критерия Фишера:

.             (1.9)

Фактическое значение F-критерия Фишера (1.9) сравнивается с табличным значением  при уровне значимости  и степенях свободы  и . При этом, если фактическое значение F-критерия больше табличного, то признается статистическая значимость уравнения в целом.

Для парной линейной регрессии , поэтому

.      (1.10)

Величина F-критерия связана с коэффициентом детерминации , и ее можно рассчитать по следующей формуле:

.          (1.11)

В парной линейной регрессии оценивается значимость не только уравнения в целом, но и отдельных его параметров. С этой целью по каждому из параметров определяется его стандартная ошибка:  и .

Стандартная ошибка коэффициента регрессии определяется по формуле:

,        (1.12)

где  – остаточная дисперсия на одну степень свободы.

Величина стандартной ошибки совместно с t-распределением Стьюдента при  степенях свободы применяется для проверки существенности коэффициента регрессии и для расчета его доверительного интервала.

Для оценки существенности коэффициента регрессии его величина сравнивается с его стандартной ошибкой, т.е. определяется фактическое значение t-критерия Стьюдента:  которое затем сравнивается с табличным значением при определенном уровне значимости  и числе степеней свободы . Доверительный интервал для коэффициента регрессии определяется как . Поскольку знак коэффициента регрессии указывает на рост результативного показателя y при увеличении фактора x (), уменьшение результативного показателя при увеличении признака-фактора () или его независимость от независимой переменной () (см. рис. 1.3), то границы доверительного интервала для коэффициента регрессии не должны содержать противоречивых результатов, например, . Такого рода запись указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего не может быть.

Рис. 1.3. Наклон линии регрессии в зависимости от значения параметра .

Стандартная ошибка параметра a определяется по формуле:

.      (1.13)

Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии. Вычисляется t-критерий: , его величина сравнивается с табличным значением при  степенях свободы.

Значимость линейного коэффициента корреляции проверяется на основе величины ошибки коэффициента корреляции :

.           (1.14)

Фактическое значение t-критерия Стьюдента определяется как .

Существует связь между t-критерием Стьюдента и F-критерием Фишера:

.           (1.15)

В прогнозных расчетах по уравнению регрессии определяется предсказываемое  значение как точечный прогноз  при , т.е. путем подстановки в уравнение регрессии  прогнозного значения x. Точечный прогноз дополняется расчетом доверительного интервала прогнозного значения :

,

где , а  – средняя ошибка точечного прогноза:

.       (1.16)

Пример. По данным проведенного опроса восьми групп семей известны данные связи расходов населения на продукты питания с уровнем доходов семьи.

Таблица 1.2

Расходы на продукты питания, y, тыс. руб.

0,9

1,2

1,8

2,2

2,6

2,9

3,3

3,8

Доходы семьи, x, тыс. руб.

1,2

3,1

5,3

7,4

9,6

11,8

14,5

18,7

Предположим, что связь между доходами семьи и расходами на продукты питания линейная. Для подтверждения нашего предположения построим поле корреляции (Рис. 1.4).

По графику видно, что точки выстраиваются в некоторую прямую линию.

Для удобства дальнейших вычислений составим таблицу (см. табл. 1.3).

Рассчитаем параметры линейного уравнения парной регрессии . Для этого воспользуемся формулами (1.5):

Рис. 1.4.

;

.

Получили уравнение: . Т.е. с увеличением дохода семьи на 1000 руб. расходы на питание увеличиваются на 169 руб.

Рассчитаем показатель тесноты связи – линейный коэффициент корреляции :

.

Близость коэффициента корреляции к 1 указывает на тесную линейную связь между признаками.

Коэффициент детерминации  (примерно тот же результат получим, если воспользуемся формулой (1.7)) показывает, что уравнением регрессии объясняется 98,2% дисперсии результативного признака, а на долю прочих факторов приходится лишь 1,8%.

Оценим качество уравнения регрессии в целом с помощью F-критерия Фишера. Сосчитаем фактическое значение F-критерия:

.

Табличное значение (, , ):  (см. Приложение 2). Так как , то признается статистическая значимость уравнения в целом.

Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитаем t-критерий Стьюдента и доверительные интервалы каждого из показателей. Рассчитаем случайные ошибки параметров линейной регрессии и коэффициента корреляции :

,

Таблица 1.3

x

y

, %

1

2

3

4

5

6

7

8

9

10

1

1,2

0,9

1,08

1,44

0,81

1,027

–0,127

0,016

14,060

2

3,1

1,2

3,72

9,61

1,44

1,348

–0,148

0,022

12,328

3

5,3

1,8

9,54

28,09

3,24

1,720

0,080

0,006

4,440

4

7,4

2,2

16,28

54,76

4,84

2,075

0,125

0,016

5,668

5

9,6

2,6

24,96

92,16

6,76

2,447

0,153

0,023

5,867

6

11,8

2,9

34,22

139,24

8,41

2,820

0,080

0,006

2,773

7

14,5

3,3

47,85

210,25

10,89

3,276

0,024

0,001

0,718

8

18,7

3,8

71,06

349,69

14,44

3,987

–0,187

0,035

4,915

Сумма

71,6

18,7

208,71

885,24

50,83

18,700

0,000

0,125

50,769

Среднее

значение

8,95

2,34

26,09

110,66

6,35

2,34

0,016

6,35

5,53

0,943

30,55

0,890

,

.

Фактические значения t-статистик: , , . Табличное значение t-критерия Стьюдента при  и числе степеней свободы  есть  (см. Приложение 2). Так как ,  и , то признается статистическая значимость параметров регрессии и показателя тесноты связи.

Рассчитаем доверительные интервалы для параметров регрессии a и b:  и . Получим, что  и .

Средняя ошибка аппроксимации (находим с помощью столбца 10 таблицы 1.3; )  говорит о хорошем качестве уравнения регрессии, т.е. свидетельствует о хорошем подборе модели к исходным данным.

И, наконец, найдем прогнозное значение результативного фактора  при значении признака-фактора, составляющем 110% от среднего уровня , т.е. найдем расходы на питание, если доходы семьи составят 9,845 тыс. руб.

(тыс. руб.)

Таким образом, если доходы семьи составят 9,845 тыс. руб., то расходы на питание будут 2,490 тыс. руб.

Найдем доверительный интервал прогноза. Ошибка прогноза

,

а доверительный интервал ():

.

Т.е. прогноз является статистически надежным.

Теперь на одном графике изобразим исходные данные и линию регрессии:

Рис. 1.5.

1.2. Нелинейные модели парной регрессии и корреляции

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

  1.  Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например

– полиномы различных степеней – , ;

– равносторонняя гипербола – ;

– полулогарифмическая функция – .

  1.  Регрессии, нелинейные по оцениваемым параметрам, например

– степенная – ;

– показательная – ;

– экспоненциальная – .

Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые модели.

Равносторонняя гипербола может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объема выпускаемой продукции, времени обращения товаров от величины товарооборота, процента прироста заработной платы от уровня безработицы (например, кривая Филлипса), расходов на непродовольственные товары от доходов или общей суммы расходов (например, кривые Энгеля) и в других случаях. Гипербола приводится к линейному уравнению простой заменой: . Система линейных уравнений при применении МНК выглядит следующим образом:

        (1.17)

Аналогичным образом приводятся к линейному виду зависимости ,  и другие.

Иначе обстоит дело с регрессиями нелинейными по оцениваемым параметрам, которые делятся на два типа: нелинейные модели внутренне линейные (приводятся к линейному виду с помощью соответствующих преобразований, например, логарифмированием) и нелинейные модели внутренне нелинейные (к линейному виду не приводятся).

К внутренне линейным моделям относятся, например, степенная функция – , показательная – , экспоненциальная – , логистическая – , обратная – .

К внутренне нелинейным моделям можно отнести следующие модели: , .

Среди нелинейных моделей наиболее часто используется степенная функция , которая приводится к линейному виду логарифмированием:

;

;

,

где .

Таким образом, МНК мы применяем для преобразованных данных:

а затем потенцированием находим искомое уравнение.

Широкое использование степенной функции связано с тем, что параметр b в ней имеет четкое экономическое истолкование – он является коэффициентом эластичности. (Коэффициент эластичности показывает, на сколько процентов измениться в среднем результат, если фактор изменится на 1%.) Формула для расчета коэффициента эластичности имеет вид:

.            (1.18)

Так как для остальных функций коэффициент эластичности не является постоянной величиной, а зависит от соответствующего значения фактора x, то обычно рассчитывается средний коэффициент эластичности:

.           (1.19)

Уравнение нелинейной регрессии, так же, как и в случае линейной зависимости, дополняется показателем тесноты связи. В данном случае это индекс корреляции:

,           (1.20)

где  – общая дисперсия результативного признака y,  – остаточная дисперсия.

Величина данного показателя находится в пределах: . Чем ближе значение индекса корреляции к единице, тем теснее связь рассматриваемых признаков, тем более надежно уравнение регрессии.

Квадрат индекса корреляции носит название индекса детерминации и характеризует долю дисперсии результативного признака y, объясняемую регрессией, в общей дисперсии результативного признака:

,           (1.21)

т.е. имеет тот же смысл, что и в линейной регрессии; .

Индекс детерминации  можно сравнивать с коэффициентом детерминации  для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина  меньше . А близость этих показателей указывает на то, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.

Индекс детерминации используется для проверки существенности в целом уравнения регрессии по F-критерию Фишера:

,          (1.22)

где  – индекс детерминации, n – число наблюдений, m – число параметров при переменной x. Фактическое значение F-критерия (1.22) сравнивается с табличным при уровне значимости  и числе степеней свободы  (для остаточной суммы квадратов) и  (для факторной суммы квадратов).

О качестве нелинейного уравнения регрессии можно также судить и по средней ошибке аппроксимации, которая, так же как и в линейном случае, вычисляется по формуле (1.8).

Рассмотрим пример из параграфа 1.1, предположив, что связь между признаками носит нелинейный характер, и найдем параметры следующих нелинейных уравнений:  и .

А. Для нахождения параметров регрессии  делаем замену  и составляем вспомогательную таблицу ().

Найдем уравнение регрессии:

,

.

Таблица 1.5

x

z

y

1

2

3

4

5

6

7

8

9

10

11

1

1,2

0,182

0,9

0,164

0,033

0,81

0,483

0,417

0,174

46,33

2

3,1

1,131

1,2

1,358

1,280

1,44

1,499

–0,299

0,089

24,93

3

5,3

1,668

1,8

3,002

2,781

3,24

2,073

–0,273

0,075

15,19

4

7,4

2,001

2,2

4,403

4,006

4,84

2,431

–0,231

0,053

10,49

5

9,6

2,262

2,6

5,881

5,116

6,76

2,709

–0,109

0,012

4,21

6

11,8

2,468

2,9

7,157

6,092

8,41

2,930

–0,030

0,001

1,04

7

14,5

2,674

3,3

8,825

7,151

10,89

3,151

0,149

0,022

4,52

8

18,7

2,929

3,8

11,128

8,576

14,44

3,423

0,377

0,142

9,92

Сумма

71,6

15,315

18,7

41,918

35,035

50,83

18,700

0,000

0,568

116,62

Среднее

значение

8,95

1,914

2,34

5,240

4,379

6,35

0,0711

14,58

0,845

0,943

0,714

0,890

Таким образом, уравнение регрессии имеет вид: .

Индекс корреляции находим по формуле (1.20):

,

а индекс детерминации , который показывает, что 92,0% вариации результативного показателя объясняется вариацией фактора дохода, а 8,2% приходится на долю прочих факторов.

Средняя ошибка аппроксимации: , что недопустимо велико.

F-критерий Фишера:

,

значительно превышает табличное .

Изобразим на графике исходные данные и линию регрессии:

Рис. 1.6.

Б. Для нахождения параметров регрессии  необходимо провести ее линеаризацию посредством логарифмирования:

,

где .

Составим таблицу для преобразованных данных (см. таблицу 1.6).

Построим линейную форму уравнения регрессии:

,

.

Т.е. линейная форма уравнения регрессии имеет вид: .

После потенцирования находим искомое уравнение регрессии:

.

Индекс корреляции находим по формуле (1.20):

,

                            Таблица 1.6

X

Y

1

2

3

4

5

6

7

8

9

10

1

0,182

–0,105

–0,019

0,033

0,011

0,816

0,084

0,0070

9,316

2

1,131

0,182

0,206

1,280

0,033

1,376

–0,176

0,0310

14,677

3

1,668

0,588

0,980

2,781

0,345

1,849

–0,049

0,0024

2,706

4

2,001

0,788

1,578

4,006

0,622

2,222

–0,022

0,0005

0,980

5

2,262

0,956

2,161

5,116

0,913

2,564

0,036

0,0013

1,393

6

2,468

1,065

2,628

6,092

1,134

2,872

0,028

0,0008

0,960

7

2,674

1,194

3,193

7,151

1,425

3,217

0,083

0,0069

2,512

8

2,929

1,335

3,910

8,576

1,782

3,701

0,099

0,0099

2,615

Сумма

15,315

6,002

14,637

35,035

6,266

18,616

0,084

0,0597

35,159

Среднее

значение

1,914

0,750

1,830

4,379

0,783

0,0075

4,395

0,845

0,469

0,716

0,220

а индекс детерминации , который показывает, что 98,3% вариации результативного показателя объясняется вариацией фактора дохода, а 1,7% приходится на долю прочих факторов.

Средняя ошибка аппроксимации:  показывает, что линия регрессии хорошо приближает исходные данные.

F-критерий Фишера:

значительно превышает табличное .

Изобразим на графике исходные данные и линию регрессии:

Рис. 1.8.

Сравним построенные модели по индексу детерминации и средней ошибке аппроксимации:

Таблица 1.7

Модель

Индекс детерминации,

(, )

Средняя ошибка

аппроксимации, , %

Линейная модель,

0,982

6,35

Полулогарифмическая

модель,

0,920

14,58

Степенная модель,

0,983

4,395

Наиболее хорошо исходные данные аппроксимирует степенная модель.

Раздел 2. Множественная регрессия и корреляция

Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Если же этим влиянием пренебречь нельзя, то в этом случае следует попытаться выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии

,

где y – зависимая переменная (результирующий показатель),  – независимые, или объясняющие переменные (фактор-аргументы).

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

2.1. Спецификация модели. Отбор факторов при построении уравнения множественной регрессии

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Он включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Включение в уравнение множественной регрессии того или иного набора факторов связано, прежде всего, с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям.

  1.  Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
  2.  Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, может привести к нежелательным последствиям – система нормальных уравнений может повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии.

Если между факторами существует высокая корреляция (взаимосвязь), то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.

Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором m факторов, то для нее рассчитывается показатель детерминации , который фиксирует долю объясненной вариации результирующего показателя за счет рассматриваемых в регрессии m факторов. Влияние других, не учтенных в модели факторов, оценивается как  с соответствующей остаточной дисперсией .

При дополнительном включении в регрессию  фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться:

и .

Если же этого не происходит и данные показатели практически не отличаются друг от друга, то включаемый в анализ фактор  не улучшает модель и практически является лишним фактором.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости. Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют статистики для параметров регрессии.

Коэффициенты интеркорреляции (т.е. коэффициенты корреляции между объясняющими переменными) позволяют исключать из модели дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Пусть, например, при изучении зависимости  матрица парных коэффициентов корреляции оказалась следующей:

Таблица 2.1

y

y

1

0,8

0,7

0,6

0,8

1

0,8

0,5

0,7

0,8

1

0,2

0,6

0,5

0,2

1

Очевидно, что факторы  и  дублируют друг друга. В анализ целесообразно включить фактор , а не , хотя корреляция  с результатом y слабее, чем корреляция фактора  с y , но зато значительно слабее межфакторная корреляция . Поэтому в данном случае в уравнение множественной регрессии включаются факторы  и .

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. В результате вариация в исходных данных перестает быть полностью независимой и нельзя оценить воздействие каждого фактора в отдельности.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующих последствий:

  1.  Затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл.
  2.  Оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.

Если бы факторы не коррелированы между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы   были бы равны нулю. Так, для уравнения, включающего три объясняющих переменных

матрица коэффициентов корреляции между факторами имела бы определитель, равный единице:

.

Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю:

.

Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

Существует ряд подходов преодоления сильной межфакторной корреляции. Самый простой путь устранения мультиколлинеарности состоит в исключении из модели одного или нескольких факторов. Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если , то возможно построение следующего совмещенного уравнения:

.

Рассматриваемое уравнение включает взаимодействие первого порядка (взаимодействие двух факторов). Возможно включение в модель и взаимодействий более высокого порядка, если будет доказана их статистическая значимость по F-критерию Фишера, но, как правило, взаимодействия третьего и более высоких порядков оказываются статистически незначимыми.

Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Подходы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно к разным методикам. В зависимости от того, какая методика построения уравнения регрессии принята, меняется алгоритм ее решения.

Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:

  1.  Метод исключения – отсев факторов из полного его набора.
  2.  Метод включения – дополнительное введение фактора.
  3.  Шаговый регрессионный анализ – исключение ранее введенного фактора.

При отборе факторов также рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6-7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а F-критерий меньше табличного значения.

2.2. Метод наименьших квадратов (МНК). Свойства оценок на основе МНК

Возможны разные виды уравнений множественной регрессии: линейные и нелинейные.

Ввиду четкой интерпретации параметров наиболее широко используется линейная функция. В линейной множественной регрессии  параметры при x называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

Рассмотрим линейную модель множественной регрессии

.         (2.1)

Классический подход к оцениванию параметров линейной модели множественной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных  минимальна:

.           (2.2)

Как известно из курса математического анализа, для того чтобы найти экстремум функции нескольких переменных, надо вычислить частные производные первого порядка по каждому из параметров и приравнять их к нулю.

Итак, имеем функцию  аргумента:

.

Находим частные производные первого порядка:

После элементарных преобразований приходим к системе линейных нормальных уравнений для нахождения параметров линейного уравнения множественной регрессии (2.1):

     (2.3)

Для двухфакторной модели данная система будет иметь вид:

Метод наименьших квадратов применим и к уравнению множественной регрессии в стандартизированном масштабе:

         (2.4)

где  – стандартизированные переменные: , , для которых среднее значение равно нулю: , а среднее квадратическое отклонение равно единице: ;  – стандартизированные коэффициенты регрессии.

Стандартизованные коэффициенты регрессии показывают, на сколько единиц изменится в среднем результат, если соответствующий фактор  изменится на одну единицу при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии  можно сравнивать между собой, ранжируя факторы по силе их воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Применяя МНК к уравнению множественной регрессии в стандартизированном масштабе, получим систему нормальных уравнений вида

      (2.5)

где  и  – коэффициенты парной и межфакторной корреляции.

Коэффициенты «чистой» регрессии  связаны со стандартизованными коэффициентами регрессии  следующим образом:

.             (2.6)

Поэтому можно переходить от уравнения регрессии в стандартизованном масштабе (2.4) к уравнению регрессии в натуральном масштабе переменных (2.1), при этом параметр a определяется как .

Рассмотренный смысл стандартизованных коэффициентов регрессии позволяет их использовать при отсеве факторов – из модели исключаются факторы с наименьшим значением .

На основе линейного уравнения множественной регрессии

        (2.7)

могут быть найдены частные уравнения регрессии:

         (2.8)

т.е. уравнения регрессии, которые связывают результирующий показатель с соответствующим фактором  при закреплении остальных факторов на среднем уровне. В развернутом виде систему (2.8) можно переписать в виде:

При подстановке в эти уравнения средних значений соответствующих факторов они принимают вид парных уравнений линейной регрессии, т.е. имеем

          (2.9)

где

В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности:

,        (2.10)

где  – коэффициент регрессии для фактора  в уравнении множественной регрессии,  – частное уравнение регрессии.

Наряду с частными коэффициентами эластичности могут быть найдены средние по совокупности показатели эластичности:

,           (2.11)

которые показывают, на сколько процентов в среднем изменится результат, при изменении соответствующего фактора на 1%. Средние показатели эластичности можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.

Рассмотрим пример. Пусть имеются следующие данные (условные) о сменной добыче угля на одного рабочего y (т), мощности пласта  (м) и уровне механизации работ  (%), характеризующие процесс добычи угля в 10 шахтах.

Таблица 2.2

1

2

3

4

5

6

7

8

9

10

8

11

12

9

8

8

9

9

8

12

5

8

8

5

7

8

6

4

5

7

y

5

10

10

7

5

6

6

5

6

8

Предполагая, что между переменными y, ,  существует линейная корреляционная зависимость, найдем уравнение регрессии y по  и .

Для дальнейших вычислений составляем таблицу ():


Таблица 2.3

y

1

2

3

4

5

6

7

8

9

10

11

12

1

8

5

5

64

25

25

40

40

25

5,13

0,016

2

11

8

10

121

64

100

88

110

80

8,79

1,464

3

12

8

10

144

64

100

96

120

80

9,64

0,127

4

9

5

7

81

25

49

45

63

35

5,98

1,038

5

8

7

5

64

49

25

56

40

35

5,86

0,741

6

8

8

6

64

64

36

64

48

48

6,23

0,052

7

9

6

6

81

36

36

54

54

36

6,35

0,121

8

9

4

5

81

16

25

36

45

20

5,61

0,377

9

8

5

6

64

25

36

40

48

30

5,13

0,762

10

12

7

8

144

49

64

84

96

56

9,28

1,631

Сумма

94

63

68

908

417

496

603

664

445

68

6,329

Среднее

значение

9,4

6,3

6,8

90,8

41,7

49,6

60,3

66,4

44,5

2,44

2,01

3,36

1,56

1,42

1,83


Для нахождения параметров уравнения регрессии в данном случае необходимо решить следующую систему нормальных уравнений:

Откуда получаем, что , , . Т.е. получили следующее уравнение множественной регрессии:

.

Оно показывает, что при увеличении только мощности пласта  (при неизменном ) на 1 м добыча угля на одного рабочего y увеличится в среднем на 0,854 т, а при увеличении только уровня механизации работ  (при неизменном ) на 1% – в среднем на 0,367 т.

Найдем уравнение множественной регрессии в стандартизованном масштабе:

при этом стандартизованные коэффициенты регрессии будут

,

.

Т.е. уравнение будет выглядеть следующим образом:

.

Так как стандартизованные коэффициенты регрессии можно сравнивать между собой, то можно сказать, что мощность пласта оказывает большее влияние на сменную добычу угля, чем уровень механизации работ.

Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности (2.11):

.

Вычисляем:

, .

Т.е. увеличение только мощности пласта (от своего среднего значения) или только уровня механизации работ на 1% увеличивает в среднем сменную добычу угля на 1,18% или 0,34% соответственно. Таким образом, подтверждается большее влияние на результат y фактора , чем фактора .

2.3. Проверка существенности факторов и показатели качества регрессии

Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата – показателя детерминации.

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком или, иначе, оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции может быть найден как индекс множественной корреляции:

,          (2.12)

где  – общая дисперсия результативного признака;  – остаточная дисперсия.

Границы изменения индекса множественной корреляции от 0 до 1. Чем ближе его значение к 1, тем теснее связь результативного признака со всем набором исследуемых факторов. Величина индекса множественной корреляции должна быть больше или равна максимальному парному индексу корреляции:

.

При правильном включении факторов в регрессионную модель величина индекса множественной корреляции будет существенно отличаться от индекса корреляции парной зависимости. Если же дополнительно включенные в уравнение множественной регрессии факторы третьестепенны, то индекс множественной корреляции может практически совпадать с индексом парной корреляции (различия в третьем, четвертом знаках). Отсюда ясно, что, сравнивая индексы множественной и парной корреляции, можно сделать вывод о целесообразности включения в уравнение регрессии того или иного фактора.

Расчет индекса множественной корреляции предполагает определение уравнения множественной регрессии и на его основе остаточной дисперсии:

.        (2.13)

Можно пользоваться следующей формулой индекса множественной детерминации:

.       (2.14)

При линейной зависимости признаков формула индекса множественной корреляции может быть представлена следующим выражением:

,          (2.15)

где  – стандартизованные коэффициенты регрессии;  – парные коэффициенты корреляции результата с каждым фактором.

Индекс множественной корреляции для линейной регрессии получил название линейный коэффициент множественной корреляции.

Возможно также при линейной зависимости определение совокупного коэффициента корреляции через матрицу парных коэффициентов корреляции:

,          (2.16)

где

– определитель матрицы парных коэффициентов корреляции;

– определитель матрицы межфакторной корреляции.

Как видно, величина множественного коэффициента корреляции зависит не только от корреляции результата с каждым из факторов, но и от межфакторной корреляции. Рассмотренная формула позволяет определять совокупный коэффициент корреляции, не обращаясь при этом к уравнению множественной регрессии, а используя лишь парные коэффициенты корреляции.

В рассмотренных показателях множественной корреляции (индекс и коэффициент) используется остаточная дисперсия, которая имеет систематическую ошибку в сторону преуменьшения, тем более значительную, чем больше параметров определяется в уравнении регрессии при заданном объеме наблюдений n. Если число параметров при  равно m и приближается к объему наблюдений, то остаточная дисперсия будет близка к нулю и коэффициент (индекс) корреляции приблизится к единице даже при слабой связи факторов с результатом. Для того чтобы не допустить возможного преувеличения тесноты связи, используется скорректированный индекс (коэффициент) множественной корреляции.

Скорректированный индекс множественной корреляции содержит поправку на число степеней свободы, а именно остаточная сумма квадратов  делится на число степеней свободы остаточной вариации , а общая сумма квадратов отклонений  на число степеней свободы в целом по совокупности .

Формула скорректированного индекса множественной детерминации имеет вид:

,         (2.17)

где m – число параметров при переменных x; n – число наблюдений.

Поскольку , то величину скорректированного индекса детерминации можно представить в виде:

         (2.17а)

Чем больше величина m, тем сильнее различия  и .

Как было показано выше, ранжирование факторов, участвующих во множественной линейной регрессии, может быть проведено через стандартизованные коэффициенты регрессии (-коэффициенты). Эта же цель может быть достигнута с помощью частных коэффициентов корреляции (для линейных связей). Кроме того, частные показатели корреляции широко используются при решении проблемы отбора факторов: целесообразность включения того или иного фактора в модель можно доказать величиной показателя частной корреляции.

Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.

Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель.

В общем виде при наличии m факторов для уравнения

коэффициент частной корреляции, измеряющий влияние на y фактора , при неизменном уровне других факторов, можно определить по формуле:

,       (2.18)

где  – множественный коэффициент детерминации всех m факторов с результатом;  – тот же показатель детерминации, но без введения в модель фактора .

При двух факторах формула (2.18) примет вид:

; .     (2.18а)

Порядок частного коэффициента корреляции определяется количеством факторов, влияние которых исключается. Например,  – коэффициент частной корреляции первого порядка. Соответственно коэффициенты парной корреляции называются коэффициентами нулевого порядка. Коэффициенты частной корреляции более высоких порядков можно определить через коэффициенты частной корреляции более низких порядков по рекуррентной формуле:

.   (2.19)

При двух факторах данная формула примет вид:

; .   (2.19а)

Рассчитанные по рекуррентной формуле частные коэффициенты корреляции изменяются в пределах от –1 до +1, а по формулам через множественные коэффициенты детерминации – от 0 до 1. Сравнение их друг с другом позволяет ранжировать факторы по тесноте их связи с результатом. Частные коэффициенты корреляции дают меру тесноты связи каждого фактора с результатом в чистом виде. Если из стандартизованного уравнения регрессии  следует, что , т.е. пo силе влияния на результат порядок факторов таков: , , , то этот же порядок факторов определяется и по соотношению частных коэффициентов корреляции, .

В эконометрике частные коэффициенты корреляции обычно не имеют самостоятельного значения. Их используют на стадии формирования модели. Так, строя многофакторную модель, на первом шаге определяется уравнение регрессии с полным набором факторов и рассчитывается матрица частных коэффициентов корреляции. На втором шаге отбирается фактор с наименьшей и несущественной по t-критерию Стьюдента величиной показателя частной корреляции. Исключив его из модели, строится новое уравнение регрессии. Процедура продолжается до тех пор, пока не окажется, что все частные коэффициенты корреляции существенно отличаются от нуля. Если исключен несущественный фактор, то множественные коэффициенты детерминации на двух смежных шагах построения регрессионной модели почти не отличаются друг от друга, , где m – число факторов.

Из приведенных выше формул частных коэффициентов корреляции видна связь этих показателей с совокупным коэффициентом корреляции. Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент корреляции по формуле:

.   (2.20)

В частности, для двухфакторного уравнения формула (2.20) принимает вид:

.        (2.21)

При полной зависимости результирующего показателя от исследуемых факторов коэффициент совокупного их влияния равен единице. Из единицы вычитается доля остаточной вариации результативного признака , обусловленная последовательно включенными в анализ факторами. В результате подкоренное выражение характеризует совокупное действие всех исследуемых факторов.

Значимость уравнения множественной регрессии в целом, так же как и в парной регрессии, оценивается с помощью F-критерия Фишера:

,        (2.22)

где  – факторная сумма квадратов на одну степень свободы;  – остаточная сумма квадратов на одну степень свободы;  – коэффициент (индекс) множественной детерминации; m – число параметров при переменных x (в линейной регрессии совпадает с числом включенных в модель факторов); n – число наблюдений.

Оценивается значимость не только уравнения в целом, но и фактора, дополнительно включенного в регрессионную модель. Необходимость такой оценки связана с тем, что не каждый фактор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативного признака. Кроме того, при наличии в модели нескольких факторов они могут вводиться в модель в разной последовательности. Ввиду корреляции между факторами значимость одного и того же фактора может быть разной в зависимости от последовательности его введения в модель. Мерой для оценки включения фактора в модель служит частный F-критерий Фишера, т.е. .

Частный F-критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на одну степень свободы по регрессионной модели в целом. В общем виде для фактора  частный F-критерий определится как

,       (2.23)

где  – коэффициент множественной детерминации для модели с полным набором факторов,  – тот же показатель, но без включения в модель фактора , n – число наблюдений, m – число параметров в модели (без свободного члена).

Фактическое значение частного F-критерия сравнивается с табличным при уровне значимости  и числе степеней свободы: 1 и . Если фактическое значение  превышает , то дополнительное включение фактора  в модель статистически оправданно и коэффициент чистой регрессии  при факторе  статистически значим. Если же фактическое значение  меньше табличного, то дополнительное включение в модель фактора  не увеличивает существенно долю объясненной вариации признака y, следовательно, нецелесообразно его включение в модель; коэффициент регрессии при данном факторе в этом случае статистически незначим.

Для двухфакторного уравнения частные F-критерии имеют вид:

, .    (2.23а)

С помощью частного F-критерия можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор  вводился в уравнение множественной регрессии последним.

Частный F-критерий оценивает значимость коэффициентов чистой регрессии. Зная величину , можно определить и t-критерий для коэффициента регрессии при i-м факторе, , а именно:

.            (2.24)

Оценка значимости коэффициентов чистой регрессии по t-критерию Стьюдента может быть проведена и без расчета частных F-критериев. В этом случае, как и в парной регрессии, для каждого фактора используется формула:

,            (2.25)

где  – коэффициент чистой регрессии при факторе ,  – средняя квадратическая (стандартная) ошибка коэффициента регрессии .

Для уравнения множественной регрессии  средняя квадратическая ошибка коэффициента регрессии может быть определена по следующей формуле:

,       (2.26)

где  – среднее квадратическое отклонение для признака y,  – среднее квадратическое отклонение для признака ,  – коэффициент детерминации для уравнения множественной регрессии,  – коэффициент детерминации для зависимости фактора  со всеми другими факторами уравнения множественной регрессии;  – число степеней свободы для остаточной суммы квадратов отклонений.

Отсюда следует, чтобы воспользоваться данной формулой, необходимы матрица межфакторной корреляции и расчет по ней соответствующих коэффициентов детерминации . Так, для уравнения  оценка значимости коэффициентов регрессии , ,  предполагает расчет трех межфакторных коэффициентов детерминации: , , .

Взаимосвязь показателей частного коэффициента корреляции, частного F-критерия и t-критерия Стьюдента для коэффициентов чистой регрессии может использоваться в процедуре отбора факторов. Отсев факторов при построении уравнения регрессии методом исключения практически можно осуществлять не только по частным коэффициентам корреляции, исключая на каждом шаге фактор с наименьшим незначимым значением частного коэффициента корреляции, но и по величинам  и . Частный F-критерий широко используется и при построении модели методом включения переменных и шаговым регрессионным методом.

Пример. Оценим качество уравнения, полученного в предыдущем параграфе. Сначала найдем значения парных коэффициентов корреляции:

;

;

.

Значения парных коэффициентов корреляции указывают на достаточно тесную связь сменной добычи угля на одного рабочего y с мощностью пласта  и на умеренную связь с уровнем механизации работ . В то же время межфакторная связь  не очень сильная (), что говорит о том, что оба фактора являются информативными, т.е. и , и  необходимо включить в модель.

Рассчитаем совокупный коэффициент корреляции . Для этого найдем определитель матрицы парных коэффициентов корреляции:

,

и определитель матрицы межфакторной корреляции:

.

Тогда коэффициент множественной корреляции по формуле (2.16):

.

Коэффициент детерминации , т.е. можно сказать, что 81,7% вариации результата объясняется вариацией представленных в уравнении факторов, что указывает на весьма тесную связь факторов с результатом.

Примерно тот же результат для коэффициента множественной регрессии получим, если воспользуемся формулами (2.12) и (2.15):

;

.

Скорректированный коэффициент множественной детерминации

указывает на умеренную связь между результатом и признаками. Это связано с малым количеством наблюдений.

Найдем частные коэффициенты корреляции по формулам (2.18а) и (2.19а):

;

.

;

.

Таким образом, можно сделать вывод, что фактор  оказывает более сильное влияние на результат, чем признак .

Оценим надежность уравнения регрессии в целом и показателя связи с помощью F-критерия Фишера. Фактическое значение F-критерия (2.22)

.

Табличное значение F-критерия при пятипроцентном уровне значимости (, , ): . Так как , то уравнение признается статистически значимым.

Оценим целесообразность включения фактора  после фактора  и  после  с помощью частного F-критерия Фишера (2.23а):

;

.

Табличное значение частного F-критерия при пятипроцентном уровне значимости (, , ): . Так как , а , то включение фактора  в модель статистически оправдано и коэффициент чистой регрессии  статистически значим, а дополнительное включение фактора , после того, как уже введен фактор , нецелесообразно.

Уравнение регрессии, включающее только один значимый аргумент :

.

2.4. Линейные регрессионные модели с гетероскедастичными остатками

При оценке параметров уравнения регрессии применяется метод наименьших квадратов (МНК). При этом делаются определенные предпосылки относительно случайной составляющей .

В модели

случайная составляющая  представляет собой ненаблюдаемую величину. После того как произведена оценка параметров модели, рассчитывая разности фактических и теоретических значений результативного признака y, можно определить оценки случайной составляющей . Поскольку они не являются реальными случайными остатками, их можно считать некоторой выборочной реализацией неизвестного остатка заданного уравнения, т.е. .

При изменении спецификации модели, добавлении в нее новых наблюдений выборочные оценки остатков  могут меняться. Поэтому в задачу регрессионного анализа входит не только построение самой модели, но и исследование случайных отклонений , т.е. остаточных величин.

При использовании критериев Фишера и Стьюдента делаются предположения относительно поведения остатков :

– остатки представляют собой независимые случайные величины и их среднее значение равно 0;

– они имеют одинаковую (постоянную) дисперсию;

– они подчиняются нормальному распределению.

После построения уравнения регрессии проводится проверка наличия у оценок  (случайных остатков) тех свойств, которые предполагались. Связано это с тем, что оценки параметров регрессии должны отвечать определенным критериям. Они должны быть несмещенными, состоятельными и эффективными. Эти свойства оценок, полученных по МНК, имеют чрезвычайно важное практическое значение в использовании результатов регрессии и корреляции.

Несмещенность1 оценки означает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям.

Оценки считаются эффективными, если они характеризуются наименьшей дисперсией. В практических исследованиях это означает возможность перехода от точечного оценивания к интервальному.

Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки. Большой практический интерес представляют те результаты регрессии, для которых доверительный интервал ожидаемого значения параметра регрессии  имеет предел значений вероятности, равный единице. Иными словами, вероятность получения оценки на заданном расстоянии от истинного значения параметра близка к единице.

Указанные критерии оценок (несмещенность, состоятельность и эффективность) обязательно учитываются при разных способах оценивания. Метод наименьших квадратов строит оценки регрессии на основе минимизации суммы квадратов остатков. Поэтому очень важно исследовать поведение остаточных величин регрессии . Условия, необходимые для получения несмещенных, состоятельных и эффективных оценок, представляют собой предпосылки МНК, соблюдение которых желательно для получения достоверных результатов регрессии.

Исследования остатков  предполагают проверку наличия следующих пяти предпосылок МНК:

  1.  случайный характер остатков;
  2.  нулевая средняя величина остатков, не зависящая от ;
  3.  гомоскедастичность – дисперсия каждого отклонения , одинакова для всех значений x;
  4.  отсутствие автокорреляции остатков – значения остатков  распределены независимо друг от друга;
  5.  остатки подчиняются нормальному распределению.

Если распределение случайных остатков  не соответствует некоторым предпосылкам МНК, то следует корректировать модель.

Прежде всего, проверяется случайный характер остатков  – первая предпосылка МНК. С этой целью стоится график зависимости остатков  от теоретических значений результативного признака (рис. 2.1). Если на графике получена горизонтальная полоса, то остатки  представляют собой случайные величины и МНК оправдан, теоретические значения  хорошо аппроксимируют фактические значения y.

Рис. 2.1. Зависимость случайных остатков  от теоретических значений .

Возможны следующие случаи, если  зависит от  то:

  1.  остатки  не случайны (рис. 2.2а);
  2.  остатки  не имеют постоянной дисперсии (рис. 2.2б);
  3.  остатки  носят систематический характер (рис. 2.2в).

а

б

в

Рис. 2.2. Зависимость случайных остатков  от теоретических значений .

В этих случаях необходимо либо применять другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки  не будут случайными величинами.

Вторая предпосылка МНК относительно нулевой средней величины остатков означает, что . Это выполнимо для линейных моделей и моделей, нелинейных относительно включаемых переменных.

Вместе с тем, несмещенность оценок коэффициентов регрессии, полученных МНК, зависит от независимости случайных остатков и величин x, что также исследуется в рамках соблюдения второй предпосылки МНК. С этой целью наряду с изложенным графиком зависимости остатков  от теоретических значений результативного признака  строится график зависимости случайных остатков  от факторов, включенных в регрессию  (рис. 2.3).

Рис. 2.3. Зависимость величины остатков от величины фактора .

Если остатки на графике расположены в виде горизонтальной полосы, то они независимы от значений . Если же график показывает наличие зависимости  и , то модель неадекватна. Причины неадекватности могут быть разные. Возможно, что нарушена третья предпосылка МНК и дисперсия остатков не постоянна для каждого значения фактора . Может быть неправильна спецификация модели и в нее необходимо ввести дополнительные члены от , например .

Предпосылка о нормальном распределении остатков позволяет проводить проверку параметров регрессии и корреляции с помощью F- и t-критериев. Вместе с тем, оценки регрессии, найденные с применением МНК, обладают хорошими свойствами даже при отсутствии нормального распределения остатков, т.е. при нарушении пятой предпосылки МНК.

Совершенно необходимым для получения по МНК состоятельных оценок параметров регрессии является соблюдение третьей и четвертой предпосылок.

В соответствии с третьей предпосылкой МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора  остатки  имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции (рис. 2.4).

а

б

в

Рис. 2.4. Примеры гетероскедастичности.

На рис. 2.4 изображено: а – дисперсия остатков растет по мере увеличения x; б – дисперсия остатков достигает максимальной величины при средних значениях переменной x и уменьшается при минимальных и максимальных значениях x; в – максимальная дисперсия остатков при малых значениях x и дисперсия остатков однородна по мере увеличения значений x.

Наличие гомоскедастичности или гетероскедастичности можно видеть и по рассмотренному выше графику зависимости остатков  от теоретических значений результативного признака . Так, для рис. 2.4а зависимость остатков от  представлена на рис. 2.5.

Рис. 2.5. Гетероскедастичность: большая дисперсия  для больших значений .

Соответственно для зависимости, изображенной на полях корреляции рис. 2.4б и 2.4в, гетероскедастичность остатков представлена на рис. 2.6 и 2.7.

Рис. 2.6. Гетероскедастичность, соответствующая полю корреляции на рис. 2.4б.

Рис. 2.7. Гетероскедастичность, соответствующая полю корреляции на рис. 2.4в.

Для множественной регрессии данный вид графиков является наиболее приемлемым визуальным способом изучения гомо- и гетероскедастичности.

При построении регрессионных моделей чрезвычайно важно соблюдение четвертой предпосылки МНК – отсутствие автокорреляции остатков, т.е. значения остатков , распределены независимо друг от друга. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений2. Коэффициент корреляции между  и , где  – остатки текущих наблюдений,  – остатки предыдущих наблюдений (например, ), может быть определен как

,

т.е. по обычной формуле линейного коэффициента корреляции. Если этот коэффициент окажется существенно отличным от нуля, то остатки автокоррелированы и функция плотности вероятности  зависит от j-й точки наблюдения и от распределения значений остатков в других точках наблюдения.

Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии. Особенно актуально соблюдение данной предпосылки МНК при построении регрессионных моделей по рядам динамики, где ввиду наличия тенденции последующие уровни динамического ряда, как правило, зависят от своих предыдущих уровней.

При несоблюдении основных предпосылок МНК приходится корректировать модель, изменяя ее спецификацию, добавлять (исключать) некоторые факторы, преобразовывать исходные данные для того, чтобы получить оценки коэффициентов регрессии, которые обладают свойством несмещенности, имеют меньшее значение дисперсии остатков и обеспечивают в связи с этим более эффективную статистическую проверку значимости параметров регрессии.

2.5. Обобщенный метод наименьших квадратов (ОМНК)

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLSOrdinary Least Squares) заменять обобщенным методом, т.е. методом GLS (Generalized Least Squares).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Рассмотрим использование ОМНК для корректировки гетероскедастичности.

Будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине , т.е.

,

где  – дисперсия ошибки при конкретном i-м значении фактора;  – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков;  – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что  неизвестна, а в отношении величин  выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения  при  модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе i-го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .

Иными словами, от регрессии y по x мы перейдем к регрессии на новых переменных:  и . Уравнение регрессии примет вид:

,

а исходные данные для данного уравнения будут иметь вид:

, .

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные y и x взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

.

Соответственно получим следующую систему нормальных уравнений:

Если преобразованные переменные x и y взять в отклонениях от средних уровней, то коэффициент регрессии b можно определить как

.

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии b определяется по формуле:

.

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии b представляет собой взвешенную величину по отношению к обычному МНК с весом .

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида

,

для которой дисперсия остаточных величин оказалась пропорциональна .  представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих i значений факторов  и . Ввиду того, что

,

рассматриваемая модель примет вид

,

где ошибки гетероскедастичны.

Для того чтобы получить уравнение, где остатки  гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности K. Уравнение с преобразованными переменными составит

.

Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:

.

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности . В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки  пропорциональны значениям фактора. Так, если в уравнении

предположить, что , т.е.  и , то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:

.

Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных  имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример. Пусть y – издержки производства,  – объем продукции,  – основные производственные фонды,  – численность работников, тогда уравнение

является моделью издержек производства с объемными факторами. Предполагая, что  пропорциональна квадрату численности работников , мы получим в качестве результирующего показателя затраты на одного работника , а в качестве факторов следующие показатели: производительность труда  и фондовооруженность труда . Соответственно трансформированная модель примет вид

,

где параметры , ,  численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фондовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида

.

В нем новые переменные:  – затраты на единицу (или на 1 руб. продукции),  – фондоемкость продукции,  – трудоемкость продукции.

Гипотеза о пропорциональности остатков величине фактора может иметь реальное обоснование: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.

При наличии одной объясняющей переменной гипотеза  трансформирует линейное уравнение

в уравнение

,

в котором параметры a и b поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом.

Пример. Рассматривая зависимость сбережений y от дохода x, по первоначальным данным было получено уравнение регрессии

.

Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:

.

Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра b зависимости сбережений от дохода.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.

2.6. Регрессионные модели с переменной структурой (фиктивные переменные)

До сих пор в качестве факторов рассматривались экономические переменные, принимающие количественные значения в некотором интервале. Вместе с тем может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными.

Рассмотрим применение фиктивных переменных для функции спроса. Предположим, что по группе лиц мужского и женского пола изучается линейная зависимость потребления кофе от цены. В общем виде уравнение регрессии имеет вид:

,

где y – количество потребляемого кофе; x – цена.

Аналогичные уравнения могут быть найдены отдельно для лиц мужского пола:  и женского пола: .

Различия в потреблении кофе проявятся в различии средних  и . Вместе с тем сила влияния x на y может быть одинаковой, т.е. . В этом случае возможно построение общего уравнения регрессии с включением в него фактора «пол» в виде фиктивной переменной. Объединяя уравнения  и  и, вводя фиктивные переменные, можно прийти к следующему выражению:

,

где и  – фиктивные переменные, принимающие значения:

 

В общем уравнении регрессии зависимая переменная y рассматривается как функция не только цены x, но и пола . Переменная z рассматривается как дихотомическая переменная, принимающая всего два значения: 1 и 0. При этом когда , то , и наоборот.

Для лиц мужского пола, когда  и , объединенное уравнение регрессии составит: , а для лиц женского пола, когда  и : . Иными словами, различия в потреблении для лиц мужского и женского пола вызваны различиями свободных членов уравнения регрессии: . Параметр b является общим для всей совокупности лиц, как для мужчин, так и для женщин.

Однако при введении двух фиктивных переменных  и  в модель  применение МНК для оценивания параметров  и  приведет к вырожденной матрице исходных данных, а, следовательно, и к невозможности получения их оценок. Объясняется это тем, что при использовании МНК в данном уравнении появляется свободный член, т.е. уравнение примет вид

.

Предполагая при параметре A независимую переменную, равную 1, имеем следующую матрицу исходных данных:

.

В рассматриваемой матрице существует линейная зависимость между первым, вторым и третьим столбцами: первый равен сумме второго и третьего столбцов. Поэтому матрица исходных факторов вырождена. Выходом из создавшегося затруднения может явиться переход к уравнениям

или

,

т.е. каждое уравнение включает только одну фиктивную переменную  или .

Предположим, что определено уравнение

,

где  принимает значения 1 для мужчин и 0 для женщин.

Теоретические значения размера потребления кофе для мужчин будут получены из уравнения

.

Для женщин соответствующие значения получим из уравнения

.

Сопоставляя эти результаты, видим, что различия в уровне потребления мужчин и женщин состоят в различии свободных членов данных уравнений: A – для женщин и  – для мужчин.

Теперь качественный фактор принимает только два состояния, которым соответствуют значения 1 и 0. Если же число градаций качественного признака-фактора превышает два, то в модель вводится несколько фиктивных переменных, число которых должно быть меньше числа качественных градаций. Только при соблюдении этого положения матрица исходных фиктивных переменных не будет линейно зависима и возможна оценка параметров модели.

Пример. Проанализируем зависимость цены двухкомнатной квартиры от ее полезной площади. При этом в модель могут быть введены фиктивные переменные, отражающие тип дома: «хрущевка», панельный, кирпичный.

При использовании трех категорий домов вводятся две фиктивные переменные:  и . Пусть переменная  принимает значение 1 для панельного дома и 0 для всех остальных типов домов; переменная  принимает значение 1 для кирпичных домов и 0 для остальных; тогда переменные  и  принимают значения 0 для домов типа «хрущевки».

Предположим, что уравнение регрессии с фиктивными переменными составило:

.

Частные уравнения регрессии для отдельных типов домов, свидетельствуя о наиболее высоких ценах квартир в панельных домах, будут иметь следующий вид: «хрущевки» – ; панельные – ; кирпичные – .

Параметры при фиктивных переменных  и  представляют собой разность между средним уровнем результирующего показателя для соответствующей группы и базовой группы. В рассматриваемом примере за базу сравнения цены взяты дома «хрущевки», для которых . Параметр при , равный 2200, означает, что при одной и той же полезной площади квартиры цена ее в панельных домах в среднем на 2200 долл. США выше, чем в «хрущевках». Соответственно параметр при  показывает, что в кирпичных домах цена выше в среднем на 1600 долл. при неизменной величине полезной площади по сравнению с указанным типом домов.

В отдельных случаях может оказаться необходимым введение двух и более групп фиктивных переменных, т.е. двух и более качественных факторов, каждый из которых может иметь несколько градаций. Например, при изучении потребления некоторого товара наряду с факторами, имеющими количественное выражение (цена, доход на одного члена семьи, цена на взаимозаменяемые товары и др.), учитываются и качественные факторы. С их помощью оцениваются различия в потреблении отдельных социальных групп населения, дифференциация в потреблении по полу, национальному составу и др. При построении такой модели из каждой группы фиктивных переменных следует исключить по одной переменной. Так, если модель будет включать три социальные группы, три возрастные категории и ряд экономических переменных, то она примет вид:

,

где y – потребление;

– экономические (количественные) переменные.

До сих пор мы рассматривали фиктивные переменные как факторы, которые используются в регрессионной модели наряду с количественными переменными. Вместе с тем возможна регрессия только на фиктивных переменных. Например, изучается дифференциация заработной платы рабочих высокой квалификации по регионам страны. Модель заработной платы может иметь вид:

,

где y – средняя заработная плата рабочих высокой квалификации по отдельным предприятиям;

………………………………………………………………………..

Поскольку последний район, указанный в модели, обозначен , то в исследование включено  район.

Раздел 3. Системы эконометрических уравнений

При использовании отдельных уравнений регрессии, например для экономических расчетов, в большинстве случаев предполагается, что аргументы (факторы) можно изменять независимо друг от друга. Однако это предположение является очень грубым: практически изменение одной переменной, как правило, не может происходить при абсолютной неизменности других. Ее изменение повлечет за собой изменения во всей системе взаимосвязанных признаков. Следовательно, отдельно взятое уравнение множественной регрессии не может характеризовать истинные влияния отдельных признаков на вариацию результирующей переменной. Именно поэтому в последние десятилетия в экономических исследованиях важное место заняла проблема описания структуры связей между переменными системой так называемых одновременных уравнений, называемых также структурными уравнениями.

Система уравнений в эконометрических исследованиях может быть построена по-разному.

Возможна система независимых уравнений, когда каждая зависимая переменная y рассматривается как функция одного и того же набора факторов :

        (3.1)

Набор факторов  в каждом уравнении может варьировать. Каждое уравнение системы независимых уравнений может рассматриваться самостоятельно. Для нахождения его параметров используется метод наименьших квадратов. По существу, каждое уравнение этой системы является уравнением регрессии. Так как фактические значения зависимой переменной отличаются от теоретических на величину случайной ошибки, то в каждом уравнении присутствует величина случайной ошибки .

Если зависимая переменная y одного уравнения выступает в виде фактора x в другом уравнении, то строится модель в виде системы рекурсивных уравнений:

  (3.2)

В данной системе зависимая переменная y включает в каждое последующее уравнение в качестве факторов все зависимые переменные предшествующих уравнений наряду с набором собственно факторов x. Каждое уравнение этой системы может рассматриваться самостоятельно, и его параметры определяются методом наименьших квадратов (МНК).

Наибольшее распространение в эконометрических исследованиях получила система взаимозависимых уравнений. В ней одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других уравнениях – в правую часть системы:

 (3.3)

Система взаимозависимых уравнений получила название системы совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. В эконометрике эта система уравнений называется также структурной формой модели. В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим. С этой целью используются специальные приемы оценивания.

3.1. Структурная и приведенная формы модели

Система совместных, одновременных уравнений (или структурная форма модели) обычно содержит эндогенные и экзогенные переменные.

Эндогенные переменные – это зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через y.

Экзогенные переменные – это предопределенные переменные, влияющие на эндогенные переменные, но не зависящие от них. Обозначаются через x.

Классификация переменных на эндогенные и экзогенные зависит от теоретической концепции принятой модели. Экономические переменные могут выступать в одних моделях как эндогенные, а в других как экзогенные переменные. Внеэкономические переменные (например, климатические условия, социальное положение, пол, возрастная категория) входят в систему только как экзогенные переменные. В качестве экзогенных переменных могут рассматриваться значения эндогенных переменных за предшествующий период времени (лаговые переменные).

Структурная форма модели позволяет увидеть влияние изменений любой экзогенной переменной на значения эндогенной переменной. Целесообразно в качестве экзогенных переменных выбирать такие переменные, которые могут быть объектом регулирования. Меняя их и управляя ими, можно заранее иметь целевые значения эндогенных переменных.

Структурная форма модели в правой части содержит при эндогенных переменных коэффициенты  и экзогенных переменных – коэффициенты , которые называются структурными коэффициентами модели. Все переменные в модели выражены в отклонениях от среднего уровня, т.е. под x подразумевается , а под y – соответственно . Поэтому свободный член в каждом уравнении системы (3.3) отсутствует.

Использование МНК для оценивания структурных коэффициентов модели дает, как принято считать в теории, смещенные и несостоятельные оценки. Поэтому обычно для определения структурных коэффициентов модели структурная форма модели преобразуется в приведенную форму модели.

Приведенная форма модели представляет собой систему линейных функций эндогенных переменных от экзогенных:

       (3.4)

где  – коэффициенты приведенной формы модели,  – остаточная величина для приведенной формы.

По своему виду приведенная форма модели ничем не отличается от системы независимых уравнений, параметры которой оцениваются традиционным МНК. Применяя МНК, можно оценить , а затем оценить значения эндогенных переменных через экзогенные.

Коэффициенты приведенной формы модели представляют собой нелинейные функции коэффициентов структурной формы модели.

Рассмотрим пример простейшей структурной модели, Выразим коэффициенты приведенной формы модели через коэффициенты структурной модели.

Для структурной модели вида

          (3.5)

приведенная форма модели имеет вид

         (3.6)

Из первого уравнения (3.5) можно выразить  следующим образом (ради упрощения опускаем случайную величину):

.

Подставляя во второе уравнение (3.5), имеем

,

откуда

.

Поступая аналогично со вторым уравнением системы (3.5), получим

,

т.е. система (3.5) принимает вид

Таким образом, можно сделать вывод о том, что коэффициенты приведенной формы модели будут выражаться через коэффициенты структурной формы следующим образом:

Следует заметить, что приведенная форма модели хотя и позволяет получить значения эндогенной переменной через значения экзогенных переменных, но аналитически она уступает структурной форме модели, так как в ней отсутствуют оценки взаимосвязи между эндогенными переменными.

3.2. Проблема идентификации

При переходе от приведенной формы модели к структурной сталкиваются с проблемой идентификации. Идентификация – это единственность соответствия между приведенной и структурной формами модели.

Структурная модель (3.3) в полном виде содержит  параметров, а приведенная форма модели в полном виде содержит  параметров. Т.е. в полном виде структурная модель содержит большее число параметров, чем приведенная форма модели. Соответственно  параметров структурной модели не могут быть однозначно определены из  параметров приведенной формы модели.

С позиции идентифицируемости структурные модели можно подразделить на три вида:

  1.  идентифицируемые;
  2.  неидентифицируемые;
  3.  сверхидентифицируемые.

Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели. В этом случае структурные коэффициенты модели оцениваются через параметры приведенной формы модели и модель идентифицируема.

Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.

Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. В этой модели число структурных коэффициентов меньше числа коэффициентов приведенной формы. Сверхидентифицируемая модель в отличие от неидентифицируемой модели практически решаема, но требует для этого специальных методов исчисления параметров.

Структурная модель всегда представляет собой систему совместных уравнений, каждое из которых требуется проверять на идентификацию. Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель считается неидентифицируемой. Сверхидентифицируемая модель содержит хотя бы одно сверхидентифицируемое уравнение.

Выполнение условия идентифицируемости модели проверяется для каждого уравнения системы. Чтобы уравнение было идентифицируемо, необходимо, чтобы число предопределенных переменных, отсутствующих в данном уравнении, но присутствующих в системе, было равно числу эндогенных переменных в данном уравнении без одного.

Если обозначить число эндогенных переменных в i-м уравнении системы через H, а число экзогенных (предопределенных) переменных, которые содержатся в системе, но не входят в данное уравнение, – через D, то условие идентифицируемости модели может быть записано в виде следующего счетного правила:

Таблица 4.1

уравнение идентифицируемо

уравнение неидентифицируемо

уравнение сверхидентифицируемо

Для оценки параметров структурной модели система должна быть идентифицируема или сверхидентифицируема.

Рассмотренное счетное правило отражает необходимое, но недостаточное условие идентификации. Более точно условия идентификации определяются, если накладывать ограничения на коэффициенты матриц параметров структурной модели. Уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой не равен нулю, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного.

Целесообразность проверки условия идентификации модели через определитель матрицы коэффициентов, отсутствующих в данном уравнении, но присутствующих в других, объясняется тем, что возможна ситуация, когда для каждого уравнения системы выполнено счетное правило, а определитель матрицы названных коэффициентов равен нулю. В этом случае соблюдается лишь необходимое, но недостаточное условие идентификации.

В эконометрических моделях часто наряду с уравнениями, параметры которых должны быть статистически оценены, используются балансовые тождества переменных, коэффициенты при которых равны . В этом случае, хотя само тождество и не требует проверки на идентификацию, ибо коэффициенты при переменных в тождестве известны, в проверке на идентификацию собственно структурных уравнений системы тождества участвуют.

Рассмотрим пример. Изучается модель вида

где  – расходы на потребление в период t,  – совокупный доход в период t,  – инвестиции в период t,  – процентная ставка в период t,  – денежная масса в период t,  – государственные расходы в период t,  – расходы на потребление в период ,  инвестиции в период . Первое уравнение – функция потребления, второе уравнение – функция инвестиций, третье уравнение – функция денежного рынка, четвертое уравнение – тождество дохода.

Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.

Модель включает четыре эндогенные переменные  и четыре предопределенные переменные (две экзогенные переменные –  и  и две лаговые переменные –  и ).

Проверим необходимое условие идентификации для каждого из уравнений модели.

Первое уравнение: . Это уравнение содержит две эндогенные переменные  и  и одну предопределенную переменную . Таким образом, , а , т.е. выполняется условие . Уравнение сверхидентифицируемо.

Второе уравнение: . Оно включает две эндогенные переменные  и  и одну экзогенную переменную . Выполняется условие . Уравнение сверхидентифицируемо.

Третье уравнение: . Оно включает две эндогенные переменные  и  и одну экзогенную переменную . Выполняется условие . Уравнение сверхидентифицируемо.

Четвертое уравнение: . Оно представляет собой тождество, параметры которого известны. Необходимости в идентификации нет.

Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.

I уравнение

–1

0

0

0

0

0

II уравнение

0

–1

0

0

0

0

III уравнение

0

0

–1

0

0

0

Тождество

1

1

0

–1

0

0

0

1

В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.

Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

II уравнение

–1

0

0

III уравнение

0

–1

0

0

Тождество

1

0

0

0

1

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы  не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

I уравнение

–1

0

0

III уравнение

0

0

0

Тождество

1

–1

0

0

1

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы  не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

I уравнение

–1

0

0

0

II уравнение

0

–1

0

0

Тождество

1

1

0

0

1

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы  не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом:

3.3. Методы оценки параметров структурной формы модели

Коэффициенты структурной модели могут быть оценены разными способами в зависимости от вида системы одновременных уравнений. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели:

  1.  косвенный метод наименьших квадратов;
  2.  двухшаговый метод наименьших квадратов;
  3.  трехшаговый метод наименьших квадратов;
  4.  метод максимального правдоподобия с полной информацией;
  5.  метод максимального правдоподобия при ограниченной информации.

Рассмотрим вкратце сущность каждого из этих методов.

Косвенный метод наименьших квадратов (КМНК) применяется в случае точно идентифицируемой структурной модели. Процедура применения КМНК предполагает выполнение следующих этапов работы.

  1.  Структурная модель преобразовывается в приведенную форму модели.
  2.  Для каждого уравнения приведенной формы модели обычным МНК оцениваются приведенные коэффициенты .
  3.  Коэффициенты приведенной формы модели трансформируются в параметры структурной модели.

Если система сверхидентифицируема, то КМНК не используется, ибо он не дает однозначных оценок для параметров структурной модели. В этом случае могут использоваться разные методы оценивания, среди которых наиболее распространенным и простым является двухшаговый метод наименьших квадратов (ДМНК).

Основная идея ДМНК – на основе приведенной формы модели получить для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения.

Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения. Метод получил название двухшагового МНК, ибо дважды используется МНК: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменной  и на втором шаге применительно к структурному сверхидентифицируемому уравнению при определении структурных коэффициентов модели по данным теоретических (расчетных) значений эндогенных переменных.

Сверхидентифицируемая структурная модель может быть двух типов:

  1.  все уравнения системы сверхидентифицируемы;
  2.  система содержит наряду со сверхидентифицируемыми точно идентифицируемые уравнения.

Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.

Метод максимального правдоподобия рассматривается как наиболее общий метод оценивания, результаты которого при нормальном распределении признаков совпадают с МНК. Однако при большом числе уравнений системы этот метод приводит к достаточно сложным вычислительным процедурам. Поэтому в качестве модификации используется метод максимального правдоподобия при ограниченной информации (метод наименьшего дисперсионного отношения), разработанный в 1949 г. Т. Андерсоном и Н. Рубиным.

В отличие от метода максимального правдоподобия в данном методе сняты ограничения на параметры, связанные с функционированием системы в целом. Это делает решение более простым, но трудоемкость вычислений остается достаточно высокой. Несмотря на его значительную популярность, к середине 60-х годов он был практически вытеснен двухшаговым методом наименьших квадратов (ДМНК) в связи с гораздо большей простотой последнего.

Дальнейшим развитием ДМНК является трехшаговый МНК (ТМНК), предложенный в 1962 г. А. Зельнером и Г. Тейлом. Этот метод оценивания пригоден для всех видов уравнений структурной модели. Однако при некоторых ограничениях на параметры более эффективным оказывается ДМНК.

Раздел 4. Временные ряды

При построении эконометрической модели используются два типа данных:

  1.  данные, характеризующие совокупность различных объектов в определенный момент времени;
  2.  данные, характеризующие один объект за ряд последовательных моментов времени.

Модели, построенные по данным первого типа, называются пространственными моделями. Модели, построенные на основе второго типа данных, называются моделями временных рядов.

Временной ряд (ряд динамики) – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

  1.  факторы, формирующие тенденцию ряда;
  2.  факторы, формирующие циклические колебания ряда;
  3.  случайные факторы.

Рассмотрим воздействие каждого фактора на временной ряд в отдельности.

Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Все эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию. На рис. 4.1 показан гипотетический временной ряд, содержащий возрастающую тенденцию.

Рис. 4.1.

Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года (например, цены на сельскохозяйственную продукцию в летний период ниже, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка. На рис. 4.2 представлен гипотетический временной ряд, содержащий только сезонную компоненту.

Рис. 4.2.

Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты. Пример ряда, содержащего только случайную компоненту, приведен на рис. 4.3.

Рис. 4.3.

Очевидно, что реальные данные не следуют целиком и полностью из каких-либо описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача эконометрического исследования отдельного временного ряда – выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

4.1. Автокорреляция уровней временного ряда

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Формула для расчета коэффициента автокорреляции имеет вид:

        (4.1)

где

.

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка, так как он измеряет зависимость между соседними уровнями ряда  и .

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями  и  и определяется по формуле:

        (4.2)

где

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше .

Свойства коэффициента автокорреляции.

  1.  Он строится по аналогии с линейным коэффициентом корреляции и также характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.
  2.  По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а, следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , то ряд содержит циклические колебания с периодичностью в  моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической (сезонной) компоненты.

Рассмотрим пример. Пусть имеются некоторые условные данные об общем объеме потребления электроэнергии на одном из предприятий города.

Таблица 4.1

Год

Квартал

t

Объем потребления

электроэнергии, , кВт

1999

I

1

375

II

2

371

III

3

869

IV

4

1015

2000

I

5

357

II

6

471

III

7

992

IV

8

1020

2001

I

9

390

II

10

355

III

11

992

IV

12

905

2002

I

13

461

II

14

454

III

15

920

IV

16

927

Построим поле корреляции:

Рис. 4.4.

Уже исходя из графика видно, что значения y образуют пилообразную фигуру.

Рассчитаем несколько последовательных коэффициентов автокорреляции. Для этого составляем первую вспомогательную таблицу (см. табл. 4.2).

Следует заметить, что среднее значение получается путем деления не на 16, а на 15, т.к. у нас теперь на одно наблюдение меньше.

Теперь вычисляем коэффициент автокорреляции первого порядка по формуле (4.1):

.

Составляем вспомогательную таблицу 4.3 для расчета коэффициента автокорреляции второго порядка.

Следовательно

.

Аналогично находим коэффициенты автокорреляции более высоких порядков, а все полученные значения заносим в сводную таблицу 4.4.


Таблица 4.2

t

1

2

3

4

5

6

7

8

1

375

2

371

375

–328,33

–288,13

94601,72

107800,59

83018,90

3

869

371

169,67

–292,13

–49565,70

28787,91

85339,94

4

1015

869

315,67

205,87

64986,98

99647,55

42382,46

5

357

1015

–342,33

351,87

–120455,66

117189,83

123812,50

6

471

357

–228,33

–306,13

69898,66

52134,59

93715,58

7

992

471

292,67

–192,13

–56230,69

85655,73

36913,94

8

1020

992

320,67

328,87

105458,74

102829,25

108155,48

9

390

1020

–309,33

356,87

–110390,60

95685,05

127356,20

10

355

390

–344,33

–273,13

94046,85

118563,15

74600,00

11

992

355

292,67

–308,13

–90180,41

85655,73

94944,10

12

905

992

205,67

328,87

67638,69

42300,15

108155,48

13

461

905

–238,33

241,87

–57644,88

56801,19

58501,10

14

454

461

–245,33

–202,13

49588,55

60186,81

40856,54

15

920

454

220,67

–209,13

–46148,72

48695,25

43735,36

16

927

920

227,67

256,87

58481,59

51833,63

65982,20

Сумма

10499

9947

9,05

0,05

74085,16

1153766,39

1187469,73

Среднее

значение

699,933

663,133


Таблица 4.3

t

1

2

3

4

5

6

7

8

1

375

2

371

3

869

375

145,57

–269,79

-39273,33

21190,62

72786,64

4

1015

371

291,57

–273,79

-79828,95

85013,06

74960,96

5

357

869

–366,43

224,21

-82157,27

134270,94

50270,12

6

471

1015

–252,43

370,21

-93452,11

63720,90

137055,44

7

992

357

268,57

–287,79

-77291,76

72129,84

82823,08

8

1020

471

296,57

–173,79

-51540,90

87953,76

30202,96

9

390

992

–333,43

347,21

-115770,23

111175,56

120554,78

10

355

1020

–368,43

375,21

-138238,62

135740,66

140782,54

11

992

390

268,57

–254,79

-68428,95

72129,84

64917,94

12

905

355

181,57

-289,79

-52617,17

32967,66

83978,24

13

461

992

–262,43

347,21

-91118,32

68869,50

120554,78

14

454

905

–269,43

260,21

-70108,38

72592,52

67709,24

15

920

461

196,57

-183,79

-36127,60

38639,76

33778,76

16

927

454

203,57

-190,79

-38839,12

41440,74

36400,82

Сумма

10128

9027

–0,02

-0,06

-1034792,71

1037835,43

1116776,36

Среднее

значение

723,43

644,79


Таблица 4.4

Лаг

Коэффициент

автокорреляции

уровней

1

0,063294

2

–0,961183

3

–0,036290

4

0,964735

5

0,050594

6

–0,976516

7

–0,069444

8

0,964629

9

0,162064

10

-0,972918

11

-0,065323

12

0,985761

Коррелограмма:

Рис. 4.5.

Анализ коррелограммы и графика исходных уровней временного ряда позволяет сделать вывод о наличии в изучаемом временном ряде сезонных колебаний периодичностью в четыре квартала.

4.2. Моделирование тенденции временного ряда

Распространенным способом моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.

Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции:

– линейный тренд: ;

– гипербола: ;

– экспоненциальный тренд:  (или );

– степенная функция: ;

– полиномы различных степеней: .

Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время , а в качестве зависимой переменной – фактические уровни временного ряда . Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни  и  тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, когда ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и средней ошибки аппроксимации. Этот метод легко реализуется при компьютерной обработке данных.

4.3. Моделирование сезонных колебаний

Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий:

.             (4.3)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.

Общий вид мультипликативной модели выглядит так:

.             (4.4)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (T), сезонной (S) и случайной (E) компонент.

Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений T, S и E для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

  1.  Выравнивание исходного ряда методом скользящей средней.
  2.  Расчет значений сезонной компоненты S.
  3.  Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели.
  4.  Аналитическое выравнивание уровней () или () и расчет значений T с использованием полученного уравнения тренда.
  5.  Расчет полученных по модели значений () или ().
  6.  Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

Методику построения каждой из моделей рассмотрим на примерах.

Пример. Построение аддитивной модели временного ряда. 

Обратимся к данным, представленным в табл. 4.1.

Было показано, что данный временной ряд содержит сезонные колебания периодичностью 4, т.к. объем потребления электроэнергии в первый-второй кварталы ниже, чем в третий-четвертый. Рассчитаем компоненты аддитивной модели временного ряда.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (гр. 3 табл. 4.5).

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 4.5). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 4.5).


Таблица 4.5

№ квартала,

t

Объем потребления

электроэнергии,

Итого за

четыре квартала

Скользящая средняя

за четыре квартала

Центрированная

скользящая

средняя

Оценка

сезонной

компоненты

1

2

3

4

5

6

1

375

2

371

2630

657,5

3

869

2612

653

655,25

213,75

4

1015

2712

678

665,5

349,5

5

357

2835

708,75

693,75

-336,75

6

471

2840

710

709,375

-238,375

7

992

2873

718,25

714,125

277,875

8

1020

2757

689,25

703,75

316,25

9

390

2757

689,25

689,25

-299,25

10

355

2642

660,5

674,875

-319,875

11

992

2713

678,25

669,375

322,625

12

905

2812

703

690,625

214,375

13

461

2740

685

694

-233

14

454

2762

690,5

687,75

-233,75

15

920

16

927


Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 4.5). Используем эти оценки для расчета значений сезонной компоненты S (табл. 4.6). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Таблица 4.6

Показатели

Год

№ квартала, i

I

II

III

IV

1999

213,75

349,5

2000

-336,75

-238,375

277,875

316,25

2001

-299,25

-319,875

322,625

214,375

2002

-233

-233,75

Всего за i-й квартал

-869

-792

814,25

880,125

Средняя оценка сезонной компоненты для i-го квартала,

-289,667

-264

271,417

293,375

Скорректированная сезонная компонента,

-292,448

-266,781

268,636

290,593

Для данной модели имеем:

.

Корректирующий коэффициент: .

Рассчитываем скорректированные значения сезонной компоненты () и заносим полученные данные в таблицу 4.6.

Проверим равенство нулю суммы значений сезонной компоненты:

.

Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины  (гр. 4 табл. 4.7). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

Шаг 4. Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда () с помощью линейного тренда. Результаты аналитического выравнивания следующие:

.

Подставляя в это уравнение значения , найдем уровни T для каждого момента времени (гр. 5 табл. 4.7).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням T значения сезонной компоненты для соответствующих кварталов (гр. 6 табл. 4.7).

На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.


Таблица 4.7

t

T

1

2

3

4

5

6

7

8

1

375

-292,448

667,448

672,700

380,252

-5,252

27,584

2

371

-266,781

637,781

673,624

406,843

-35,843

1284,721

3

869

268,636

600,364

674,547

943,183

-74,183

5503,117

4

1015

290,593

724,407

675,470

966,063

48,937

2394,830

5

357

-292,448

649,448

676,394

383,946

-26,946

726,087

6

471

-266,781

737,781

677,317

410,536

60,464

3655,895

7

992

268,636

723,364

678,240

946,876

45,124

2036,175

8

1020

290,593

729,407

679,163

969,756

50,244

2524,460

9

390

-292,448

682,448

680,087

387,639

2,361

5,574

10

355

-266,781

621,781

681,010

414,229

-59,229

3508,074

11

992

268,636

723,364

681,933

950,569

41,431

1716,528

12

905

290,593

614,407

682,857

973,450

-68,450

4685,403

13

461

-292,448

753,448

683,780

391,332

69,668

4853,630

14

454

-266,781

720,781

684,703

417,922

36,078

1301,622

15

920

268,636

651,364

685,627

954,263

-34,263

1173,953

16

927

290,593

636,407

686,550

977,143

-50,143

2514,320


Рис. 4.6.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.

.

Следовательно, можно сказать, что аддитивная модель объясняет 97% общей вариации уровней временного ряда по кварталам за 4 года.

Шаг 6. Прогнозирование по аддитивной модели. Предположим, что по нашему примеру необходимо дать прогноз об общем объеме потребления электроэнергии на I и II кварталы 2003 года. Прогнозное значение  уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны:  и . Таким образом,

;

.

Т.е. в первые два квартала 2003 г. следовало ожидать объема потребления электроэнергии порядка 395 и 422 кВт соответственно.

Построение мультипликативной модели рассмотрим на данных предыдущего примера.

Шаг 1. Методика, применяемая на этом шаге, полностью совпадает с методикой построения аддитивной модели.

Таблица 4.8

№ квартала,

t

Объем

потребления

электроэнергии,

Итого

за четыре

квартала

Скользящая

средняя

за четыре

квартала

Центрированная

скользящая

средняя

Оценка

сезонной

компоненты

1

2

3

4

5

6

1

375

2

371

2630

657,5

3

869

2612

653

655,25

1,3262

4

1015

2712

678

665,5

1,5252

5

357

2835

708,75

693,75

0,5146

6

471

2840

710

709,375

0,6640

7

992

2873

718,25

714,125

1,3891

8

1020

2757

689,25

703,75

1,4494

9

390

2757

689,25

689,25

0,5658

10

355

2642

660,5

674,875

0,5260

11

992

2713

678,25

669,375

1,4820

12

905

2812

703

690,625

1,3104

13

461

2740

685

694

0,6643

14

454

2762

690,5

687,75

0,6601

15

920

16

927

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 4.8). Эти оценки используются для расчета сезонной компоненты S (табл. 4.9). Для этого найдем средние за каждый квартал оценки сезонной компоненты . Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Таблица 4.9

Показатели

Год

№ квартала, i

I

II

III

IV

1999

1,3262

1,5252

2000

0,5146

0,6640

1,3891

1,4494

2001

0,5658

0,5260

1,4820

1,3104

2002

0,6643

0,6601

Всего за i-й квартал

1,7447

1,8501

4,1973

4,2850

Средняя оценка сезонной компоненты для i-го квартала,

0,5816

0,6167

1,3991

1,4283

Скорректированная сезонная компонента,

0,5779

0,6128

1,3901

1,4192

Имеем

.

Определяем корректирующий коэффициент:

.

Скорректированные значения сезонной компоненты  получаются при умножении ее средней оценки  на корректирующий коэффициент k.

Проверяем условие равенство 4 суммы значений сезонной компоненты:

.

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины  (гр. 4 табл. 4.10), которые содержат только тенденцию и случайную компоненту.

Таблица 4.10

t

T

1

2

3

4

5

6

7

1

375

0,5779

648,9012

654,9173

378,4767

0,9908

2

371

0,6128

605,4178

658,1982

403,3439

0,9198

3

869

1,3901

625,1349

661,4791

919,5221

0,9451

4

1015

1,4192

715,1917

664,7600

943,4274

1,0759

5

357

0,5779

617,7539

668,0409

386,0608

0,9247

6

471

0,6128

768,6031

671,3218

411,3860

1,1449

7

992

1,3901

713,6177

674,6027

937,7652

1,0578

8

1020

1,4192

718,7148

677,8836

962,0524

1,0602

9

390

0,5779

674,8572

681,1645

393,6450

0,9907

10

355

0,6128

579,3081

684,4454

419,4281

0,8464

11

992

1,3901

713,6177

687,7263

956,0083

1,0377

12

905

1,4192

637,6832

691,0072

980,6774

0,9228

13

461

0,5779

797,7159

694,2881

401,2291

1,1490

14

454

0,6128

740,8616

697,5690

427,4703

1,0621

15

920

1,3901

661,8229

700,8499

974,2515

0,9443

16

927

1,4192

653,1849

704,1308

999,3024

0,9277

Шаг 4. Определим компоненту T в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни . В результате получим уравнение тренда:

.

Подставляя в это уравнение значения , найдем уровни T для каждого момента времени (гр. 5 табл. 4.10).

Шаг 5. Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл. 4.10). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.

Рис. 4.7.

Расчет ошибки в мультипликативной модели производится по формуле:

.

Для сравнения мультипликативной модели и других моделей временного ряда можно, по аналогии с аддитивной моделью, использовать сумму квадратов абсолютных ошибок :

.

Сравнивая показатели детерминации аддитивной и мультипликативной моделей, делаем вывод, что они примерно одинаково аппроксимируют исходные данные.

Шаг 6. Прогнозирование по мультипликативной модели. Если предположить, что по нашему примеру необходимо дать прогноз об общем объеме потребления электроэнергии на I и II кварталы 2003 года, прогнозное значение  уровня временного ряда в мультипликативной модели есть произведение трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны:  и . Таким образом

;

.

Т.е. в первые два квартала 2003 г. следовало ожидать объема потребления электроэнергии порядка 409 и 436 кВт соответственно.

Таким образом, аддитивная и мультипликативная модели дают примерно одинаковый результат по прогнозу.

4.4. Автокорреляция в остатках. Критерий Дарбина-Уотсона

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

  1.  Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.
  2.  В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего эти остатки могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени t.

От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках.

Один из более распространенных методов определения автокорреляции в остатках – это расчет критерия Дарбина-Уотсона:

.           (4.5)

Т.е. величина d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.

Можно показать, что при больших значениях n существует следующее соотношение между критерием Дарбина-Уотсона d и коэффициентом автокорреляции остатков первого порядка :

.            (4.6)

Таким образом, если в остатках существует полная положительная автокорреляция и , то . Если в остатках полная отрицательная автокорреляция, то  и, следовательно, . Если автокорреляция остатков отсутствует, то  и . Т.е. .

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза  об отсутствии автокорреляции остатков. Альтернативные гипотезы  и  состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам (см. Приложение 2) определяются критические значения критерия Дарбина-Уотсона  и  для заданного числа наблюдений n, числа независимых переменных модели m и уровня значимости . По этим значениям числовой промежуток  разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью  осуществляется следующим образом:

– есть положительная автокорреляция остатков,  отклоняется, с вероятностью  принимается ;

– зона неопределенности;

– нет оснований отклонять , т.е. автокорреляция остатков отсутствует;

– зона неопределенности;

– есть отрицательная автокорреляция остатков,  отклоняется, с вероятностью  принимается .

Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .

Пример. Проверим гипотезу о наличии автокорреляции в остатках для аддитивной модели нашего временного ряда. Исходные данные и промежуточные расчеты заносим в таблицу:

Таблица 4.11

t

1

2

3

4

5

6

1

375

-5,252

27,584

2

371

-35,843

-5,252

935,8093

1284,7

3

869

-74,183

-35,843

1469,956

5503,1

4

1015

48,937

-74,183

15158,53

2394,8

5

357

-26,946

48,937

5758,23

726,09

6

471

60,464

-26,946

7640,508

3655,9

7

992

45,124

60,464

235,3156

2036,2

8

1020

50,244

45,124

26,2144

2524,5

9

390

2,361

50,244

2292,782

5,574

10

355

-59,229

2,361

3793,328

3508,1

11

992

41,431

-59,229

10132,44

1716,5

12

905

-68,450

41,431

12073,83

4685,4

13

461

69,668

-68,45

19076,58

4853,6

14

454

36,078

69,668

1128,288

1301,6

15

920

-34,263

36,078

4947,856

1174

16

927

-50,143

-34,263

252,1744

2514,3

Сумма

-0,002

50,141

84921,85

37911,97

Фактическое значение критерия Дарбина-Уотсона для данной модели составляет:

.

Сформулируем гипотезы:  – в остатках нет автокорреляции;  – в остатках есть положительная автокорреляция;  – в остатках есть отрицательная автокорреляция. Зададим уровень значимости . По таблице значений критерия Дарбина-Уотсона определим для числа наблюдений  и числа независимых параметров модели  (мы рассматриваем только зависимость от времени t) критические значения  и . Фактическое значение d-критерия Дарбина-Уотсона попадает в интервал  (1,37<2,24<2,63). Следовательно, нет основания отклонять гипотезу  об отсутствии автокорреляции в остатках.

Существует несколько ограничений на применение критерия Дарбина-Уотсона.

  1.  Он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака.
  2.  Методика расчета и использования критерия Дарбина-Уотсона направлена только на выявление автокорреляции остатков первого порядка.
  3.  Критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.


Приложение 1

Случайные переменные

Дискретная случайная переменная

Случайная переменная – это любая переменная, значение которой не может быть точно предсказано. Дискретной называется случайная величина, имеющая определенный набор возможных значений. Пример – сумма выпавших очков при бросании двух игральных костей. Пример случайной величины, не являющейся дискретной, – температура в комнате. Она может принять любое из непрерывного диапазона значений и является примером непрерывной случайной величины.

Рассматривая пример с двумя игральными костями, предположим, что одна из них зеленая, а другая – красная. Если их бросить, то возможны 36 элементарных исходов эксперимента, поскольку на зеленой кости может выпасть любое число от 1 до 6 и то же самое – на красной. Случайная переменная, определенная как их сумма, которую мы обозначим через X, может принимать только одно из 11 числовых значений — от 2 до 12. Взаимосвязь между исходами эксперимента и значениями случайной величины в данном случае показана в табл. 1.

Таблица 1

Красная

Зеленая

1

2

3

4

5

6

1

2

3

4

5

6

7

2

3

4

5

6

7

8

3

4

5

6

7

8

9

4

5

6

7

8

9

10

5

6

7

8

9

10

11

6

7

8

9

10

11

12

Предположив, что кости «правильные», мы можем воспользоваться табл. 1 для определения вероятности каждого значения x. Поскольку на костях имеется 36 различных комбинаций, каждый исход имеет вероятность 1/36. Лишь одна из возможных комбинаций {зеленая=1, красная=1} дает сумму, равную 2, так что вероятность  равна 1/36. Чтобы получить сумму , нам потребуются сочетания {зеленая=1, красная=6}, либо {зеленая=2, красная=5}, либо {зеленая=3, красная=4}, либо {зеленая=4, красная=3}, либо {зеленая=5, красная=2}, либо {зеленая=6, красная=1}. В данном случае нас устроят 6 возможных исходов, и поэтому вероятность получения 7 равна 6/36. Все эти вероятности приведены в табл. 2. Если все их сложить, то получится ровно 1. Это будет так, поскольку с вероятностью 100% рассматриваемая сумма примет одно из значений от 2 до 12.

Таблица 2

Значения x

2

3

4

5

6

7

8

9

10

11

12

Вероятность

1/36

2/36

3/36

4/36

5/36

6/36

5/36

4/36

3/36

2/36

1/36

Совокупность всех возможных значений случайной переменной описывается генеральной совокупностью, из которой извлекаются эти значения. В нашем случае генеральная совокупность – это набор чисел от 2 до 12.

Математическое ожидание дискретной случайной величины

Математическое ожидание дискретной случайной величины – это взвешенное среднее всех ее возможных значений, причем в качестве весового коэффициента берется вероятность соответствующего исхода. Мы можем рассчитать его, перемножив все возможные значения случайной величины на их вероятности и просуммировав полученные произведения. Математически если случайная величина обозначена как x, то ее математическое ожидание обозначается как  или .

Предположим, что x может принимать  конкретных значений  и что вероятность получения  равна . Тогда

.        (1)

В случае с двумя костями величинами от  до  были числа от 2 до 12. Математическое ожидание рассчитывается так:

.

Рассмотрим еще один простой пример случайной переменной – число очков, выпадающее при бросании лишь одной игральной кости.

В данном случае возможны шесть исходов: , , …, . Каждый исход имеет вероятность 1/6, поэтому здесь

.     (2)

В данном случае математическим ожиданием случайной переменной является число, которое само по себе не может быть получено при бросании кости.

Математическое ожидание случайной величины часто называют ее средним по генеральной совокупности. Для случайной величины x это значение часто обозначается как .

Математические ожидания функций дискретных случайных переменных

Пусть  – некоторая функция от x. Тогда  – математическое ожидание  записывается как

,           (3)

где суммирование производится по всем возможным значениям x. В табл. 3 показана последовательность практического расчета математического ожидания функции от x.

Таблица 3

x

Вероятность

Функция от x

Функция, взвешенная

по вероятности

1

2

3

4

Всего

Предположим, что x может принимать n различных значений от  до  с соответствующими вероятностями от  до . В первой колонке записываются все возможные значения x. Во второй – записываются соответствующие вероятности. В третьей колонке рассчитываются значения функции для соответствующих величин x. В четвертой колонке перемножаются числа из колонок 2 и 3. Ответ приводится в суммирующей строке колонки 4.

Рассчитаем математическое ожидание величины . Для этого рассмотрим пример с числами, выпадающими при бросании одной кости. Использовав схему, приведенную в табл. 3, заполним табл. 4.

Таблица 4

1

2

3

4

1

1/6

1

0,167

2

1/6

4

0,667

3

1/6

9

1,500

4

1/6

16

2,667

5

1/6

25

4,167

6

1/6

36

6,000

Всего

15,167

В четвертой ее колонке даны шесть значений , взвешенных по соответствующим вероятностям, которые в данном примере все равняются 1/6. По определению, величина  равна , она приведена как сумма в четвертой колонке и равна 15,167.

Математическое ожидание x, как уже было показано, равно 3,5, и 3,5 в квадрате равно 12,25. Таким образом, величина  не равна , и, следовательно, нужно аккуратно проводить различия между  и .

Правила расчета математического ожидания

Существуют три правила расчета математического ожидания и они одинаково применимы для дискретных и непрерывных случайных переменных.

Правило 1. Математическое ожидание суммы нескольких переменных равно сумме их математических ожиданий. Например, если имеются три случайные переменные x, y и z, то

.       (4)

Правило 2. Если случайная переменная умножается на константу, то ее математическое ожидание умножается на ту же константу. Если x – случайная переменная и a – константа, то

.          (5)

Правило 3. Математическое ожидание константы есть она сама. Например, если a – константа, то

.             (6)

Следствие из трех правил:

.

Независимость случайных переменных

Две случайные переменные x и y называются независимыми, если

       (7)

для любых функций  и . Из независимости следует как важный частный случай, что .

Теоретическая дисперсия дискретной случайной переменной

Теоретическая дисперсия является мерой разброса для вероятностного распределения. Она определяется как математическое ожидание квадрата разности между величиной x и ее средним, т.е. величины , где  – математическое ожидание x. Дисперсия обычно обозначается как  или , и если ясно, о какой переменной идет речь, то нижний индекс может быть опущен:

.        (8)

Из  можно получить  – среднее квадратическое отклонение – столь же распространенную меру разброса для распределения вероятностей; среднее квадратическое отклонение случайной переменной есть квадратный корень из ее дисперсии.

Проиллюстрируем расчет дисперсии на примере с одной игральной костью. Поскольку , то  в этом случае равно . Мы рассчитаем математическое ожидание величины , используя схему, представленную в табл. 5. Дополнительный столбец  представляет определенный этап расчета . Суммируя последний столбец в табл. 5, получим значение дисперсии , равное 2,92. Следовательно, стандартное отклонение () равно , то есть 1,71.

Таблица 5

1

2

3

4

5

1

1/6

–2,5

6,25

1,042

2

1/6

–1,5

2,25

0,375

3

1/6

–0,5

0,25

0,042

4

1/6

0,5

0,25

0,042

5

1/6

1,5

2,25

0,375

6

1/6

2,5

6,25

1,042

Всего

2,92

Одним из важных приложений правил расчета математического ожидания является формула расчета теоретической дисперсии случайной переменной, которая может быть записана как

.           (9)

Это выражение иногда оказывается более удобным, чем первоначальное определение.

Вероятность в случае непрерывной случайной величины

С дискретными случайными переменными легко обращаться, поскольку они по определению принимают значения из некоторого конечного набора. Каждое из этих значений связано с определенной вероятностью, характеризующей его «вес». Если эти «веса» известны, то не составит труда рассчитать теоретическое среднее (математическое ожидание) и дисперсию.

Можно представить указанные «веса» как определенные количества «пластичной массы», равные вероятностям соответствующих значений. Сумма вероятностей и, следовательно, суммарный «вес» этой «массы» равен единице. Это показано на рис. 1 для примера, где величина есть сумма очков, выпавших при бросании двух игральных костей. Величина  принимает значения от 2 до 12, и для всех этих значений показано количество соответствующей «массы».

Рис. 1.

К сожалению, часто проводится анализ для непрерывных случайных величин, которые могут принимать бесконечное число значений. Поскольку невозможно представить себе «пластичную массу», разделенную на бесконечное число частей, используем далее другой подход.

Проиллюстрируем наши рассуждения на примере температуры в комнате. Для определенности предположим, что она меняется в пределах от 55 до 75° по Цельсию, и вначале допустим, что все значения в этом диапазоне равновероятны.

Поскольку число различных значений, принимаемых показателем температуры, бесконечно, здесь бессмысленно пытаться разделить «пластичную массу» на малые части. Вместо этого можно «размазать» ее по всему диапазону. Поскольку все температуры от 55 до 75°C равновероятны, она должна быть «размазана» равномерно, как это показано на рис. 2.

Рис. 2.

В этом примере, как и во всех остальных, будем полагать, что «пластичная масса размазана» на единичной площади. Это связано с тем, что совокупная вероятность всегда равняется единице. В данном случае наша «масса» покрыла прямоугольник, и поскольку основание этого прямоугольника равно 20, его высота h определяется из соотношения:

,              (10)

так как произведение основания и высоты равно площади. Следовательно, высота равна 0,05, как это показано на рисунке.

Найдя высоту прямоугольника, мы можем ответить на вопросы типа: с какой вероятностью температура будет находиться в диапазоне от 65 до 70°C? Ответ определяется величиной «замазанной» площади (или, говоря более формально, совокупной вероятностью), лежащей в диапазоне от 65 до 70°C, представленной заштрихованной фигурой на рис. 3. Основание заштрихованного прямоугольника равно 5, его высота равна 0,05 и, соответственно, площадь – 0,25. Искомая вероятность равна 1/4, что в любом случае очевидно, поскольку промежуток от 65 до 70°C составляет 1/4 всего диапазона.

Рис. 3.

Высота заштрихованной площади представляет то, что формально называется плотностью вероятности в этой точке, и если эта высота может быть записана как функция значений случайной переменной, то эта функция называется функцией плотности вероятности. В нашем примере она записывается как , где x – температура, и

.          (11)

В качестве первого приближения функция плотности вероятности показывает вероятность нахождения случайной переменной внутри единичного интервала вокруг данной точки. В нашем примере эта функция всюду равна 0,05, откуда вытекает, что температура находится, например, между 60 и 61°C с вероятностью 0,05.

В нашем случае график функции плотности вероятности горизонтален, и ее указанная интерпретация точна, однако в общем случае эта функция непрерывно меняется, и ее интерпретация дает лишь приближение. Рассмотрим пример, когда эта функция непостоянна, поскольку не все температуры равновероятны. Предположим, что температура никогда не падает ниже 65°C, а в жаркие дни температура превосходит этот уровень, не превышая, как и ранее, 75°C. Будем считать, что плотность вероятности максимальна при температуре 65°C и далее она равномерно убывает до нуля при 75°C (рис. 4).

Рис. 4.

Общая «замазанная» площадь, как всегда, равна единице, поскольку совокупная вероятность равна единице. Площадь треугольника равна половине произведения основания на высоту, поэтому получаем:

,             (12)

и высота при 65°C равна 0,20.

Предположим, что мы хотим знать вероятность нахождения температуры в промежутке между 65 и 70°C. Она представлена заштрихованной площадью на рис. 5, и она равна 0,75. Это означает, что с вероятностью 75% температура попадет в диапазон 65-70°C и только с вероятностью 25% – в диапазон 70-75C.

Рис. 5.

В данном случае функция плотности вероятности записывается как , где

.          (13)

Постоянная и случайная составляющие случайной переменной

Часто вместо рассмотрения случайной величины как единого целого можно и удобно разбить ее на постоянную и чисто случайную составляющие, где постоянная составляющая всегда есть ее математическое ожидание. Если x – случайная переменная и  – ее математическое ожидание, то декомпозиция случайной величины записывается следующим образом:

,             (14)

где  – чисто случайная составляющая.

Из формулы (14) следует, что случайная составляющая  определяется как разность между x и

.             (15)

Из определения следует, что математическое ожидание величины  равно нулю:

.

Поскольку весь разброс значений  обусловлен , следовательно, и теоретическая дисперсия  равна теоретической дисперсии . Последнее нетрудно доказать. По определению,

и

.

Таким образом,  может быть эквивалентно определена как дисперсия x или .

Обобщая, можно утверждать, что если x – случайная переменная, определенная по формуле (14), где  – заданное число и  – случайный член с  и , то математическое ожидание величины x равно , а дисперсия – .

Способы оценивания и оценки

До сих пор мы предполагали, что имеется точная информация о рассматриваемой случайной переменной, в частности – об ее распределении вероятностей (в случае дискретной переменной) или о функции плотности распределения (в случае непрерывной переменной). С помощью этой информации можно рассчитать теоретическое математическое ожидание, дисперсию и любые другие характеристики, в которых мы можем быть заинтересованы.

Однако на практике, за исключением искусственно простых случайных величин (таких, как число выпавших очков при бросании игральной кости), мы не знаем точного вероятностного распределения или плотности распределения вероятностей. Это означает, что неизвестны также и теоретическое математическое ожидание, и дисперсия. Мы, тем не менее, можем нуждаться в оценках этих или других теоретических характеристик генеральной совокупности.

Процедура оценивания всегда одинакова. Берется выборка из n наблюдений, и с помощью подходящей формулы рассчитывается оценка нужной характеристики. Нужно следить за терминами, делая важное различие между способом или формулой оценивания и рассчитанным по ней для данной выборки числом, являющимся значением оценки. Способ оценивания – это общее правило, или формула, в то время как значение оценки – это конкретное число, которое меняется от выборки к выборке.

В табл. 6 приведены формулы оценивания для двух важнейших характеристик генеральной совокупности. Выборочное среднее  обычно дает оценку для математического ожидания, а формула  – оценку дисперсии генеральной совокупности.

Таблица 6

Характеристики генеральной

совокупности

Формулы оценивания

Среднее,

Дисперсия,

Отметим, что это обычные формулы оценки математического ожидания и дисперсии генеральной совокупности, однако не единственные. Причина, по которой в действительности используется , в том, что эта оценка в наилучшей степени соответствует двум очень важным критериям – несмещенности и эффективности. Эти критерии будут рассмотрены ниже.

Оценки как случайные величины

Получаемая оценка представляет частный случай случайной переменной. Причина здесь в том, что сочетание значений x в выборке случайно, поскольку x – случайная переменная и, следовательно, случайной величиной является и функция набора ее значений. Возьмем, например,  – оценку математического ожидания:

.

Выше было показано, что величина x в i-м наблюдении может быть разложена на две составляющие: постоянную часть  и чисто случайную составляющую :

.              (17)

Следовательно,

,              (18)

где  – выборочное среднее величин .

Отсюда можно видеть, что , подобно x, имеет как фиксированную, так и чисто случайную составляющие. Ее фиксированная составляющая – , то есть математическое ожидание x, а ее случайная составляющая – , то есть среднее значение чисто случайной составляющей в выборке.

Функции плотности вероятности для x и  показаны на одинаковых графиках (рис. 6). Величина x считается нормально распределенной. Можно видеть, что распределения, как x, так и , симметричны относительно  – теоретического среднего. Разница между ними в том, что распределение  уже и выше. Величина , вероятно, должна быть ближе к , чем значение единичного наблюдения x, поскольку ее случайная составляющая  есть среднее от чисто случайных составляющих  в выборке, которые, по-видимому, «гасят» друг друга при расчете среднего. Далее теоретическая дисперсия величины  составляет лишь часть теоретической дисперсии .

Рис. 6.

Величина  – оценка теоретической дисперсии x – также является случайной переменной. Вычитая (18) из (17), имеем:

.

Следовательно,

.

Таким образом,  зависит только от чисто случайной составляющей наблюдений x в выборке. Поскольку эти составляющие меняются от выборки к выборке, также от выборки к выборке меняется и величина оценки .

Несмещенность

Поскольку оценки являются случайными переменными, их значения лишь по случайному совпадению могут в точности равняться характеристикам генеральной совокупности. Обычно будет присутствовать определенная ошибка, которая может быть большой или малой, положительной или отрицательной, в зависимости от чисто случайных составляющих величин x в выборке.

Хотя это и неизбежно, на интуитивном уровне желательно, тем не менее, чтобы оценка в среднем за достаточно длительный период была аккуратной. Выражаясь формально, мы хотели бы, чтобы математическое ожидание оценки равнялось бы соответствующей характеристике генеральной совокупности. Если это так, то оценка называется несмещенной. Если это не так, то оценка называется смещенной, и разница между ее математическим ожиданием и соответствующей теоретической характеристикой генеральной совокупности называется смещением.

Начнем с выборочного среднего. Является ли оно несмещенной оценкой теоретического среднего? Равны ли  и ? Да, это так, что непосредственно вытекает из (18).

Величина x включает две составляющие –  и . Значение  равно средней чисто случайных составляющих величин x в выборке, и, поскольку математическое ожидание такой составляющей в каждом наблюдении равно нулю, математическое ожидание  равно нулю. Следовательно,

.        (19)

Тем не менее, полученная оценка – не единственно возможная несмещенная оценка . Предположим для простоты, что у нас есть выборка всего из двух наблюдений –  и . Любое взвешенное среднее наблюдений  и  было бы несмещенной оценкой, если сумма весов равна единице. Чтобы показать это, предположим, что мы построили обобщенную формулу оценки:

.            (20)

Математическое ожидание Z равно:

.    (21)

Если сумма  и  равна единице, то мы имеем  и Z является несмещенной оценкой .

Таким образом, в принципе число несмещенных оценок бесконечно. Как выбрать одну из них? Почему в действительности мы всегда используем выборочное среднее с ?

До сих пор мы рассматривали только оценки теоретического среднего. Выше утверждалось, что величина , определяемая в соответствии с табл. 6, является оценкой теоретической дисперсии . Можно показать, что математическое ожидание  равно , и эта величина является несмещенной оценкой теоретической дисперсии, если наблюдения в выборке независимы друг от друга. Доказательство этого математически несложно, но трудоемко, и поэтому мы его опускаем.

Эффективность

Несмещенность – желательное свойство оценок, но это не единственное такое свойство. Еще одна важная их сторона – это надежность. Конечно, немаловажно, чтобы оценка была точной в среднем за длительный период. Мы хотели бы, чтобы наша оценка с максимально возможной вероятностью давала бы близкое значение к теоретической характеристике, что означает желание получить функцию плотности вероятности, как можно более «сжатую» вокруг истинного значения. Один из способов выразить это требование – сказать, что мы хотели бы получить сколь возможно малую дисперсию.

Предположим, что мы имеем две оценки теоретического среднего, рассчитанные на основе одной и той же информации, что обе они являются несмещенными и что их функции плотности вероятности показаны на рис. 7. Поскольку функция плотности вероятности для оценки B более «сжата», чем для оценки A, с ее помощью мы скорее получим более точное значение. Формально говоря, эта оценка более эффективна.

Рис. 7.

Мы говорили о желании получить оценку как можно с меньшей дисперсией, и эффективная оценка – это та, у которой дисперсия минимальна. Сейчас мы рассмотрим дисперсию обобщенной оценки теоретического среднего и покажем, что она минимальна в том случае, когда оба наблюдения имеют равные веса.

Если наблюдения  и  независимы, теоретическая дисперсия обобщенной оценки равна:

.         (21)

Мы уже выяснили, что для несмещенности оценки необходимо равенство единице суммы  и . Следовательно, для несмещенных оценок  и

.         (22)

Поскольку мы хотим выбрать  так, чтобы минимизировать дисперсию, нам нужно минимизировать при этом . Эту задачу можно решить графически или с помощью дифференциального исчисления. В любом случае минимум достигается при . Следовательно,  также равно 0,5.

Итак, мы показали, что выборочное среднее имеет наименьшую дисперсию среди оценок рассматриваемого типа. Это означает, что оно имеет наиболее «сжатое» вероятностное распределение вокруг истинного среднего и, следовательно (в вероятностном смысле), наиболее точно. Строго говоря, выборочное среднее – это наиболее эффективная оценка среди всех несмещенных оценок. Конечно, мы показали это только для случая с двумя наблюдениями, но сделанные выводы верны для выборок любого размера, если наблюдения не зависят друг от друга.

Два замечания: во-первых, эффективность оценок можно сравнивать лишь тогда, когда они используют одну и ту же информацию, например один и тот же набор наблюдений нескольких случайных переменных. Если одна из оценок использует в 10 раз больше информации, чем другая, то она вполне может иметь меньшую дисперсию, но было бы неправильно считать ее более эффективной. Во-вторых, мы ограничиваем понятие эффективности сравнением распределений несмещенных оценок. Существуют определения эффективности, обобщающие это понятие на случай возможного сравнения смещенных оценок.

Противоречия между несмещенностью и минимальной дисперсией

Установлено, что для оценки желательны несмещенность и наименьшая возможная дисперсия. Эти критерии совершенно различны, и иногда они могут противоречить друг другу. Может случиться так, что имеются две оценки теоретической характеристики, одна из которых является несмещенной (A на рис. 8), другая же смещена, но имеет меньшую дисперсию (B).

Рис. 8.

Оценка A хороша своей несмещенностью, но преимуществом оценки B является то, что ее значения практически всегда близки к истинному значению. Какую из них выбрать?

Данный выбор зависит от обстоятельств. Если возможные ошибки не очень тревожат при условии, что за длительный период они «погасят» друг друга, то, по-видимому, вы выберете A. С другой стороны, если для вас приемлемы малые ошибки, но неприемлемы большие, то вам следует выбрать B.

Формально говоря, выбор определяется функцией потерь, стоимостью сделанной ошибки как функцией ее размера. Обычно выбирают оценку, дающую наименьшее ожидание потерь, и делается это путем взвешивания функции потерь по функции плотности вероятности.

Влияние увеличения размера выборки на точность оценок

Будем по-прежнему предполагать, что мы исследуем случайную переменную x с неизвестным математическим ожиданием  и теоретической дисперсией  и что для оценивания  используется . Каким образом точность оценки x зависит от числа наблюдений n?

При увеличении n оценка , вообще говоря, становится более точной. В единичном эксперименте большая по размеру выборка необязательно даст более точную оценку, чем меньшая выборка, но общая тенденция должна быть именно такой. Поскольку дисперсия  выражается формулой , она тем меньше, чем больше размер выборки, и, значит, тем сильнее «сжата» функция плотности вероятности для .

Это показано на рис. 9. Предположим, что x нормально распределена со средним 25 и стандартным отклонением 50. Если размер выборки равен 25, то стандартное отклонение величины , равное , составит: . Если размер выборки равен 100, то это стандартное отклонение равно 5. На рис. 9 показаны соответствующие функции плотности вероятности. Вторая () выше первой в окрестности , что говорит о более высокой вероятности получения с ее помощью аккуратной оценки. За пределами этой окрестности вторая функция всюду ниже первой.

Рис. 9.

Чем больше размер выборки, тем уже и выше будет график функции плотности вероятности для . Если n становится действительно большим, то график функции плотности вероятности будет неотличим от вертикальной прямой, соответствующей . Для такой выборки случайная составляющая x становится действительно очень малой, и поэтому  обязательно будет очень близкой к . Это вытекает из того факта, что стандартное отклонение , равное , становится очень малым при больших n.

В пределе, при стремлении n к бесконечности,  стремится к нулю и  стремится в точности к .

Состоятельность

Вообще говоря, если предел оценки по вероятности равен истинному значению характеристики генеральной совокупности, то эта оценка называется состоятельной. Иначе говоря, состоятельной называется такая оценка, которая дает точное значение для большой выборки независимо от входящих в нее конкретных наблюдений.

В большинстве конкретных случаев несмещенная оценка является и состоятельной.

Иногда бывает, что оценка, смещенная на малых выборках, является состоятельной (иногда состоятельной может быть даже оценка, не имеющая на малых выборках конечного математического ожидания). На рис. 10 показано, как при различных размерах выборки может выглядеть распределение вероятностей. Тот факт, что при увеличении размера выборки распределение становится симметричным вокруг истинного значения, указывает на асимптотическую несмещенность. То, что, в конечном счете, оно превращается в единственную точку истинного значения, говорит о состоятельности оценки.

Рис. 10.

Оценки, типа показанных на рис. 10, весьма важны в регрессионном анализе. Иногда невозможно найти оценку, несмещенную на малых выборках. Если при этом вы можете найти хотя бы состоятельную оценку, это может быть лучше, чем не иметь никакой оценки, особенно если вы можете предположить направление смещения на малых выборках.


Приложение 2

Математико-статистические таблицы

2.1. Таблица значений F-критерия Фишера при

уровне значимости

1

2

3

4

5

6

8

12

24

1

2

3

4

5

6

7

8

9

10

11

1

161,5

199,5

215,7

224,6

230,2

233,9

238,9

243,9

249,0

254,3

2

18,51

19,00

19,16

19,25

19,30

19,33

19,37

19,41

19,45

19,50

3

10,13

9,55

9,28

9,12

9,01

8,94

8,84

8,74

8,64

8,53

4

7,71

6,94

6,59

6,39

6,26

6,16

6,04

5,91

5,77

5,63

5

6,61

5,79

5,41

5,19

5,05

4,95

4,82

4,68

4,53

4,36

6

5,99

5,14

4,76

4,53

4,39

4,28

4,15

4,00

3,84

3,67

7

5,59

4,74

4,35

4,12

3,97

3,87

3,73

3,57

3,41

3,23

8

5,32

4,46

4,07

3,84

3,69

3,58

3,44

3,28

3,12

2,93

9

5,12

4,26

3,86

3,63

3,48

3,37

3,23

3,07

2,90

2,71

10

4,96

4,10

3,71

3,48

3,33

3,22

3,07

2,91

2,74

2,54

11

4,84

3,98

3,59

3,36

3,20

3,09

2,95

2,79

2,61

2,40

12

4,75

3,88

3,49

3,26

3,11

3,00

2,85

2,69

2,50

2,30

13

4,67

3,80

3,41

3,18

3,02

2,92

2,77

2,60

2,42

2,21

14

4,60

3,74

3,34

3,11

2,96

2,85

2,70

2,53

2,35

2,13

15

4,54

3,68

3,29

3,06

2,90

2,79

2,64

2,48

2,29

2,07

16

4,49

3,63

3,24

3,01

2,85

2,74

2,59

2,42

2,24

2,01

17

4,45

3,59

3,20

2,96

2,81

2,70

2,55

2,38

2,19

1,96

18

4,41

3,55

3,16

2,93

2,77

2,66

2,51

2,34

2,15

1,92

19

4,38

3,52

3,13

2,90

2,74

2,63

2,48

2,31

2,11

1,88

20

4,35

3,49

3,10

2,87

2,71

2,60

2,45

2,28

2,08

1,84

21

4,32

3,47

3,07

2,84

2,68

2,57

2,42

2,25

2,05

1,81

22

4,30

3,44

3,05

2,82

2,66

2,55

2,40

2,23

2,03

1,78

23

4,28

3,42

3,03

2,80

2,64

2,53

2,38

2,20

2,00

1,76

24

4,26

3,40

3,01

2,78

2,62

2,51

2,36

2,18

1,98

1,73

25

4,24

3,38

2,99

2,76

2,60

2,49

2,34

2,16

1,96

1,71

26

4,22

3,37

2,98

2,74

2,59

2,47

2,32

2,15

1,95

1,69

27

4,21

3,35

2,96

2,73

2,57

2,46

2,30

2,13

1,93

1,67

28

4,20

3,34

2,95

2,71

2,56

2,44

2,29

2,12

1,91

1,65

29

4,18

3,33

2,93

2,70

2,54

2,43

2,28

2,10

1,90

1,64

30

4,17

3,32

2,92

2,69

2,53

2,42

2,27

2,09

1,89

1,62

35

4,12

3,26

2,87

2,64

2,48

2,37

2,22

2,04

1,83

1,57

40

4,08

3,23

2,84

2,61

2,45

2,34

2,18

2,00

1,79

1,51

45

4,06

3,21

2,81

2,58

2,42

2,31

2,15

1,97

1,76

1,48

50

4,03

3,18

2,79

2,56

2,40

2,29

2,13

1,95

1,74

1,44

60

4,00

3,15

2,76

2,52

2,37

2,25

2,10

1,92

1,70

1,39

70

3,98

3,13

2,74

2,50

2,35

2,23

2,07

1,89

1,67

1,35

80

3,96

3,11

2,72

2,49

2,33

2,21

2,06

1,88

1,65

1,31

90

3,95

3,10

2,71

2,47

2,32

2,20

2,04

1,86

1,64

1,28

100

3,94

3,09

2,70

2,46

2,30

2,19

2,03

1,85

1,63

1,26

125

3,92

3,07

2,68

2,44

2,29

2,17

2,01

1,83

1,60

1,21

150

3,90

3,06

2,66

2,43

2,27

2,16

2,00

1,82

1,59

1,18

200

3,89

3,04

2,65

2,42

2,26

2,14

1,98

1,80

1,57

1,14

300

3,87

3,03

2,64

2,41

2,25

2,13

1,97

1,79

1,55

1,10

400

3,86

3,02

2,63

2,40

2,24

2,12

1,96

1,78

1,54

1,07

500

3,86

3,01

2,62

2,39

2,23

2,11

1,96

1,77

1,54

1,06

1000

3,85

3,00

2,61

2,38

2,22

2,10

1,95

1,76

1,53

1,03

3,84

2,99

2,60

2,37

2,21

2,09

1,94

1,75

1,52

1

2.2. Критические значения t-критерия Стьюдента при уровне значимости 0,10, 0,05, 0,01 (двухсторонний)

Число степеней свободы d.f.

Число степеней свободы d.f.

00,10

0,05

0,01

00,10

0,05

0,01

1

6,3138

12,706

63,657

18

1,7341

2,1009

2,8784

2

2,9200

4,3027

9,9248

19

1,7291

2,0930

2,8609

3

2,3534

3,1825

5,8409

20

1,7247

2,0860

2,8453

4

2,1318

2,7764

4,5041

21

1,7207

2,0796

2,8314

5

2,0150

2,5706

4,0321

22

1,7171

2,0739

2,8188

6

1,9432

2,4469

3,7074

23

1,7139

2,0687

2,8073

7

1,8946

2,3646

3,4995

24

1,7109

2,0639

2,7969

8

1,8595

2,3060

3,3554

25

1,7081

2,0595

2,7874

9

1,8331

2,2622

3,2498

26

1,7056

2,0555

2,7787

10

1,8125

2,2281

3,1693

27

1,7033

2,0518

2,7707

11

1,7959

2,2010

3,1058

28

1,7011

2,0484

2,7633

12

1,7823

2,1788

3,0545

29

1,6991

2,0452

2,7564

13

1,7709

2,1604

3,0123

30

1,6973

2,0423

2,7500

14

1,7613

2,1448

2,9768

40

1,6839

2,0211

2,7045

15

1,7530

2,1315

2,9467

60

1,6707

2,0003

2,6603

16

1,7459

2,1199

2,9208

120

1,6577

1,9799

2,6174

17

1,7396

2,1098

2,8982

1,6449

1,9600

2,5758

2.3. Значения статистик Дарбина-Уотсона

при 5%-ном уровне значимости

n

6

0,61

1,40

7

0,70

1,36

0,47

1,90

8

0,76

1,33

0,56

1,78

0,37

2,29

9

0,82

1,32

0,63

1,70

0,46

2,13

10

0,88

1,32

0,70

1,64

0,53

2,02

11

0,93

1,32

0,66

1,60

0,60

1,93

12

0,97

1,33

0,81

1,58

0,66

1,86

13

1,01

1,34

0,86

1,56

0,72

1,82

14

1,05

1,35

0,91

1,55

0,77

1,78

15

1,08

1,36

0,95

1,54

0,82

1,75

0,69

1,97

0,56

2,21

16

1,10

1,37

0,98

1,54

0,86

1,73

0,74

1,93

0,62

2,15

17

1,13

1,38

1,02

1,54

0,90

1,71

0,78

1,90

0,67

2,10

18

1,16

1,39

1,05

1,53

0,93

1,69

0,82

1,87

0,71

2,06

19

1,18

1,40

1,08

1,53

0,97

1,68

0,85

1,85

0,75

2,02

20

1,20

1,41

1,10

1,54

1,00

1,68

0,90

1,83

0,79

1,99

21

1,22

1,42

1,13

1,54

1,03

1,67

0,93

1,81

0,83

1,96

22

1,24

1,43

1,15

1,54

1,05

1,66

0,96

1,80

0,86

1,94

23

1,26

1,44

1,17

1,54

1,08

1,66

0,99

1,79

0,90

1,92

24

1,27

1,45

1,19

1,55

1,10

1,66

1,01

1,78

0,93

1,99

25

1,29

1,45

1,21

1,55

1,12

1,66

1,04

1,77

0,95

1,89

26

1,30

1,46

1,22

1,55

1,14

1,65

1,06

1,76

0,98

1,88

27

1,32

1,47

1,24

1,56

1,16

1,65

1,08

1,76

1,01

1,86

28

1,33

1,48

1,26

1,56

1,18

1,65

1,10

1,75

1,03

1,85

29

1,34

1,48

1,27

1,56

1,20

1,65

1,12

1,74

1,05

1,84

30

1,35

1,49

1,28

1,57

1,21

1,65

1,14

1,74

1,07

1,83

1 См. приложение 1

2 Подробнее об автокорреляции см. в разделе 4.

тр. 61 из 61




1.  НЕЛЬЗЯ КРАХ СУДЕБНОЙ СИСТЕМЫ КАКОВА ЦЕНА СОГЛАШЕНИЮ ДВОЕВЛАСТИЕ ПРИГОВОР ПУТЧ КЛАССИФИКАЦИЯ ОБЩЕСТВА ОБРА
2. IV За'ы 'олданушылар назарына 'олданушылар'а ы'айлы болуы 'шін Р'АО мазм'нды жасады
3. ПЧ9 2.1 Організаційно ~ економічна характеристика підприємства Донецька дистанція колії є структур.html
4. Маркетинг в туризме
5. Влияние физической культуры на формирование здорового образа жизни школьников 15-17 лет
6. Кооперативный идеал и социалистическая идея
7. основы менеджмента Понятие управление и менеджмент
8. Задание ’ 1 Модель работы токарного станка Постановка задачи Детали поступают на станок каждые 334 мин.html
9. Империя и местное самоуправление идеология реформ в русском Туркестане в конце XIX начале XX вв
10. 4 По каждому несчастному случаю на производстве вызвавшему необходимость перевода работ.html
11. Правова організація працевлаштування громадян
12. Триггеры и их разновидности
13. Автоматизированное рабочее место специалиста по кадрам
14. Педология
15. Истории религий- Восемь бессмертных Даосизма
16. Коммерциялы~ банк термині банк ісіні~ ертеректегі даму кезе~інде банктерді~ сауда тауар айырбасы опера
17. О программе необходимо показывать диалоговое окно с произвольным не пустым содержанием.html
18. Организация выездного мероприятия сотрудников фирмы на примере отеля Чайка
19. Численность, состав, организационная структура партии Эсеров в начале 1900-х годо
20. Уральский федеральный университет имени первого Президента России Б