Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

лекция Классификация и характеристики современных ЭВМ

Работа добавлена на сайт samzan.net: 2016-03-30

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.5.2024

3 лекция. Классификация и характеристики современных ЭВМ.

Вычислительная техника - одна из наиболее быстро и динамично развивающихся областей науки и техники. Ее динамика, с одной стороны, связана с широким проникновением вычислительной техники во все сферы человеческой деятельности, с другой стороны - с бурным ростом технических характеристик вычислительных машин и систем. С начала шестидесятых годов прошлого века период удвоения основных характеристик компьютеров не превышает двух лет. Такой стремительный рост приводит к неоднозначности используемой терминологии, к субъективной оценке сфер применения конкретных ЭВМ.

Современная вычислительная машина представляет собой сложную аппаратно-программную систему, состоящую из большого числа взаимосвязанных элементов. Каждый из этих элементов имеет свои характеристики, совокупность которых определяет технико-эксплуатационные характеристики всей вычислительной машины.

К технико-эксплуатационным характеристикам ЭВМ, определяющим их функциональные возможности, относят:

  1.  быстродействие;
  2.  разрядность;
  3.  формы представления чисел;
  4.  номенклатура и характеристики запоминающих устройств;
  5.  номенклатура и характеристики устройств ввода-вывода информации;
  6.  типы и характеристики внутренних и внешних интерфейсов;
  7.  наличие многопользовательских режимов и поддержка многопро-граммности;
  8.  типы и характеристики, используемых ОС;
  9.  система команд и их структура;
  10.  функциональные возможности программного обеспечения и его наличие;
  11.  программная совместимость с другими типами ЭВМ;
  12.  срок эксплуатации;
  13.  условия эксплуатации;
  14.  характеристики надежности;
  15.  состав и объем профилактических работ;
  16.  стоимостные характеристики;
  17.  совокупная стоимость владения.

Несмотря на сравнительно короткую историю современной вычислительной техники, до настоящего времени было предложено достаточно много подходов к систематизации всего многообразия средств вычислительной техники [40]. Работы в этом направлении продолжаются.

Любая классификация относительна и отражает только ограниченное многообразие свойств классифицируемых объектов или процессов. Но, как показал опыт, нахождение удачной классификации может предопределить успех развития целых научных и технических направлений. Характерный пример - периодическая таблица элементов Менделеева.

При разработке любой классификации важно понимать, для кого она создается и на решение каких задач направлена.

Используемый классификационный признак должен быть измеряемым и позволять относить классифицируемого объекта к единственному классу.

На практике эти требования часто удовлетворяются с допущениями. Примером служат большинство применяемых классификаций ЭВМ и вычислительных систем.

Для классификации компьютеров использовались следующие классификационные признаки:

  1.  принцип действия;
  2.  используемая элементная база;
  3.  назначение;
  4.  размеры и вычислительная мощность;
  5.  особенности архитектуры.
  6.  По принципу действия вычислительные машины делятся на цифровые, аналоговые и гибридные.

В основу классификации по этому признаку положена форма представления информации, с которой работают вычислительные машины.

  1.  Классификация ЭВМ по этапам создания. ЭВМ условно делятся на поколения с учетом используемой элементной базы.
  2.  Классификация ЭВМ по назначению.

По этому признаку вычислительные машины можно разделить на три группы: специализированные, универсальные и проблемно-ориентированные.

Универсальные ЭВМ позволяют решать задачи различных классов: математических, инженерно-технических, экономических, информационных и др.

Проблемно-ориентированные ЭВМ предназначены для решения круга задач более узкого: управление технологическими процессами; выполнение расчетов по сравнительно несложным алгоритмам; регистрация, накопление и обработка не очень больших объемов небольших данных. Они имеют более скромные по сравнению с универсальными ЭВМ программные и аппаратные ресурсы. Примером проблемно-ориентированным вычислительных систем могут служить и различные управляющие вычислительные комплексы. Специализированные вычислительные машины предназначены для решения узкого круга задач.

Характеристики и архитектура машин этого класса определяются спецификой тех задач, для решения которых они используются. Это обеспечивает их более высокую эффективность в соответствующем применении по сравнению с универсальными ЭВМ. К специализированным ЭВМ относятся контроллеры, управляющие несложными техническими устройствами и процессами и микропроцессоры специального назначения.

  1.  Классификация ЭВМ по размерам и вычислительной мощности.

В соответствии с этой классификации вычислительные машины делятся на суперЭВМ, большие, малые, сверхмалые. Эта классификация потеряла свою актуальность. Можно говорить только о существовании класса суперЭВМ (суперкомпьютеров).

  1.  Классификация с учетом особенностей архитектуры

В качестве классификационных признаков используются: характеристики системы команд компьютера (количество команд, структура адресной части команд), разрядность машинных слов, организация обработки данных и команд процессором.

Классификация Флинна

Классификация М. Флинна [38303] является одной из самых ранних и наиболее известных классификацией архитектур вычислительных систем. В основу классификации положено понятие потока. Поток - это последовательность, под которой понимается последовательность данных или команд, обрабатываемых процессором. Рассматривая число потоков данных и потоков команд, М. Флинн предложил рассматривать следующие классы архитектур: MIMD, SIMD, SISDMISD.

Single Instruction Single Data [stream] - "один поток команд, один поток данных", архитектура SISD (ОКОД). Описание архитектуры компьютерной системы, подразумевающее исполнение одним процессором одного потока команд, который обрабатывает данные, хранящиеся в одной памяти (рис. 2.1а.).

Multiple Data stream processing - "один поток команд, много потоков данных", архитектура SIMD (ОКМД). Описание архитектуры параллельной компьютерной системы, подразумевающее исполнение одной текущей команды несколькими процессорами. Эта команда выбирается из памяти центральным контроллером SIMD-системы, но работает она над разными элементами данных (чаще всего - элементами массива). Для этого каждый процессор имеет ассоциированную с ним память, где хранятся массивы однородных данных. В эту категорию попадают, в частности, векторные процессоры. (рис. 2.1б.).

Multiple Instruction Single Data [stream] - "много потоков команд, один поток данных", архитектура MISD (МКОД). Одна из четырёх возможных архитектур параллельного компьютера в классификации М. Флинна. В этой архитектуре данные подаются на набор процессоров, каждый из которых исполняет свою программу их обработки. Подобная архитектура ещё никогда не была реализована (рис. 2.1в.).

Multiple Instructions - Multiple Data [stream] - "много потоков команд, много потоков данных", архитектура MIMD (МКМД). Одна из четырёх возможных архитектур параллельного компьютера. В этой архитектуре набор процессоров независимо выполняет различные наборы команд, обрабатывающих различные наборы данных. Системы в архитектуре MIMD делятся на системы с распределённой памятью (слабо связанные системы), к которым относятся кластеры, и системы с совместно используемой памятью (shared-memory multiprocessors). К последним относятся симметричные мультипроцессорные системы.

В класс SISD входят однопроцессорные последовательные компьютеры. Векторно-конвейерные компьютеры также могут быть отнесены к этому классу, если рассматривать вектор как одно неделимое данное для машинной команды. Это отмечают критики этой классификации.


Рис. 2.1. Классификация М. Флинна

К классу SIMD относятся классические процессорные матрицы. В них множество процессорных элементов контролируется общим управляющим устройством. Все процессорные элементы одновременно получают от устройства одинаковые команды и обрабатывают свои локальные данные. Если рассматривать каждый элемент вектора как отдельный элемент потока данных, то к этому классу можно отнести и векторно-конвейерные компьютеры.

Класс MIMD включает в себя все многообразие многопроцессорных систем. Если рассматривать конвейерную обработку как выполнение множества команд не над одиночным векторным потоком данных, а над

множественным скалярным потоком, то в этот класс могут быть включены векторно-конвейерные компьютеры.

Классификация Флинна широко используется и сегодня для начального описания вычислительных систем.

У этой классификации есть очевидные недостатки:

  1.  в нее четко не вписываются отдельные нашедшие применение архитектуры. Например, векторно-конвейерные компьютеры и компьютеры, управляемые потоками данных;
  2.  класс MIMD очень перегружен: в него вошли все многопроцессорные системы. При этом они существенно отличаются по ряду признаков (числом процессоров, природе и топологией и видами связей между ними, способами организации памяти и технологиями программирования).

Несколько классификаций, предложенных позже, расширяют классификацию М. Флинна. Примером такой классификации может служить классификация Ванга и Бригса.

Классификация Ванга и Бриггса

Эта классификация по сути, является дополнением к классификации Флинна. В ней сохранены четыре базовых класса (SISD, SIMD,MISD, MIMD), К. Ванг и Ф. Бриггс [42303] внесли следующие изменения.

В классе MIMD выделяются:

  1.  вычислительные системы со слабо связанными процессорами,
  2.  вычислительные системы с сильной связанными процессорами.

К первой группе относятся системы с распределенной памятью, ко второй - системы с общей памятью.

Класс SISD делится на два подкласса:

  1.  архитектуры, имеющие одно функциональное устройство;
  2.  архитектуры, в состав которых входит несколько функциональных устройств.

Класс SIMD с учетом способа обработки данных делится на два подкласса:

  1.  архитектуры с разрядно-последовательной обработкой данных;
  2.  архитектуры с пословно-последовательной обработкой данных.

Классификация Фенга

Т. Фенг предложил в основу классификации вычислительных систем положить две простые характеристики [42303]:

  1.  число бит  в машинном слове, которые обрабатываются параллель но при выполнении машинных команд;
  2.  числу слов , одновременно обрабатываемых вычислительной системой. Используя эту терминологию работу любого компьютера можно интерпретировать как параллельную обработку n битовых слоев. В каждом слое независимо преобразуются  бит. При такой интерпретации, вторую характеристику называют шириной битового слоя.

Иcпользуя предельные верхние значения числа бит n и числа слов m, вычислительную систему можно охарактеризовать двумя числами (  ). Величина  определяет интегральную характеристику потенциала параллельности P архитектуры. Эта характеристика называется максимальной степенью параллелизма вычислительной системы: . По сути, это значение характеризует пиковую производительность. Рассматривая в качестве классификационного признака вычислительных систем способ обработки информации, заложенный в их архитектуру, введенные понятия позволяют разделить все вычислительные системы на следующие классы.

  1.  Разрядно-последовательные, пословно-последовательные (  ).
  2.  Разрядно-параллельные, пословно-последовательные (  ). К этому классу можно отнести большинство классических последовательных компьютеров.
  3.  Разрядно-последовательные, пословно-параллельные (  ).
  4.  Разрядно-параллельные, пословно-параллельные (  ). К этому классу относится большинство современных параллельных вычислительных систем.

Эта классификация имеет ограничения. Они связаны со способом вычисления ширины битового слоя .

В соответствии с этой классификацией отсутствуют различия между многопроцессорными системами, векторно-конвейерными компьютерами и процессорными матрицами.

Данная классификация не позволяет понять специфику той или иной высокопроизводительной вычислительной системы.

Достоинством классификации Фенга является введение единой числовой характеристики для всех типов вычислительных систем, которая позволяет сравнивать их между собой.

Из интересных видов классификации можно отметить подход Базу, который строит классификацию по последовательности решений, принимаемых на этапе проектирования архитектуры. Согласно А. Базу (A. Basu), любую параллельную вычислительную систему можно однозначно описать последовательностью решений, принятых на этапе ее проектирования, а сам процесс проектирования представить в виде дерева [42].

В корне "дерева Базу" размещается вычислительная система, последующие ярусы дерева служат для описания иерархии принятия решений

при проектировании вычислительной системы. В итоге формируется описание проектируемой системы, представляемое значениями классификационных признаков в системе Базу.

Таким образом, на основе приведенных данных можно утверждать:

  1.  Ни одна из существующих классификаций не является полной по системе классификационных признаков и, как правило, не дает однозначного ответа на вопрос: "К какому классу относится конкретная вычислительная система?".
  2.  Классификация Флинна на настоящее время является базовой для остальных классификаций, которые ее детализируют, отражая другие, более узкие отличия в архитектуре.

Классификация по принципу действия.

Компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

По принципу действия вычислительные машины делятся на три больших класса: аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).

Критерием деления вычислительных машин на эти три класса являются форма представления информации, с которой они работают.

  1.  ЦВМ – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.
  2.  АВМ - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, то есть в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).
  3.  ГВМ – вычислительные машины комбинированного действия работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Две формы представления информации в машинах: а – аналоговая; б – цифровая импульсная

Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5 %). На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.

Наиболее широкое распространение получили ЦВМ с электрическим представлением дискретной информации – электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами.

Классификация по этапам создания.

По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

  1.  Первое поколение, 50-е годы; ЭВМ на электронных вакуумных лампах.
  2.  Второе поколение, 60-е годы; ЭВМ на дискретных полупроводниковых приборах (транзисторах).
  3.  Третье поколение, 70-е годы; ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни – тысячи транзисторов в одном корпусе).
  4.  Четвертое поколение, 80-е годы; ЭВМ на больших и сверхбольших интегральных схемах – микропроцессорах (десятки тысяч – миллионы транзисторов в одном
  5.  Пятое поколение, 90-е годы; ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;
  6.  Шестое и последующие поколения; оптоэлектронные ЭВМ с массовым параллелизмом и нейтронной структурой – с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейтронных биологических систем.

Каждое следующее поколение ЭВМ имеет по сравнению с предыдущими существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличивается, как правило, больше чем на порядок.

Классификация по назначению.

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Характерными чертами универсальных ЭВМ является:

  1.  высокая производительность;
  2.  разнообразие форм обрабатываемых данных: двоичных, десятиричных, символьных, при большом диапазоне их изменения и высокой степени их представления;
  3.  обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных;
  4.  большая емкость оперативной памяти;
  5.  развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адептеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами согласования и сопряжения работы узлов вычислительных систем.К таким компьютерам также относятся, например, бортовые компьютеры автомобилей, судов, самолетов, космических аппаратов. Бортовые компьютеры управляют средствами ориентации и навигации, осуществляют контроль за состоянием бортовых систем, выполняют некоторые функции автоматического управления и связи, а также большинство функций оптимизации параметров работы объекта (например, оптимизацию расхода топлива объекта в зависимости от конкретных условий движения). Специализированные мини-ЭВМ, ориентированные на работу с графикой, называют графическими станциями. Специализированные компьютеры, объединяющие компьютеры предприятия в одну сеть, называют файловыми серверами. Компьютеры, обеспечивающие передачу информации между различными участниками всемирной компьютерной сети, называют сетевыми серверами.

Во многих случаях с задачами специализированных компьютерных систем могут справляться и обычные универсальные компьютеры, но считается, что использование специализированных систем все-таки эффективнее. Критерием оценки эффективности выступает отношение производительности оборудования к величине его стоимости.

Классификация по размерам.

По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие, большие, малые, сверхмалые (микроЭВМ).

Функциональные возможности ЭВМ обусловливают важнейшие технико-эксплуатационные характеристики:

  1.  быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;
  2.  разрядность и формы представления чисел, с которыми оперирует ЭВМ;
  3.  номенклатура, емкость и быстродействие всех запоминающих устройств;
  4.  номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;
  5.  типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутримашинного интерфейса);
  6.  способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);
  7.  типы и технико-эксплутационные характеристики операционных систем, используемых в машине;
  8.  наличие и функциональные возможности программного обеспечения;
  9.  способность выполнять программы, написанные для других типов ЭВМ (программная совместимость с другими типами ЭВМ);
  10.  система и структура машинных команд;
  11.  возможность подключения к каналам связи и к вычислительной сети;
  12.  эксплуатационная надежность ЭВМ;
  13.  коэффициент полезного использования ЭВМ во времени, определяемый соотношением времени полезной работы и времени профилактики.

Схема классификации ЭВМ, исходя из их вычислительной мощности и габаритов.

Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции. Первая большая ЭВМ ЭНИАК была создана в 1946 году. Эта машина имела массу более 50 т., быстродействие несколько сотен операций в секунду, оперативную память емкостью 20 чисел; занимала огромный зал площадью 100 кв.м.

Производительность больших ЭВМ оказалась недостаточной для ряда задач: прогнозирования метеообстановки, управления сложными оборонными комплексами, моделирования экологических систем и др. Это явилось предпосылкой для разработки и создания суперЭВМ, самых мощных вычислительных систем, интенсивно развивающихся и в настоящее время.

Появление в 70-х годах малых ЭВМ обусловлено, с одной стороны, прогрессом в области электронной элементной базы, а с другой – избыточностью ресурсов больших ЭВМ для ряда приложений. Малые ЭВМ используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ.

Дальнейшие успехи в области элементной базы и архитектурных решений привели к возникновению супермини-ЭВМ – вычислительной машины, относящейся по архитектуре, размерам и стоимости к классу малых ЭВМ, но по производительности сравнимой с большой ЭВМ.

Изобретение в 1969 году микропроцессора привело к появлению в 70-х годах еще одного класса ЭВМ – микроЭВМ. Именно наличие микропроцессора служило первоначально определяющим признаком микроЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ.

СуперЭВМ

К СуперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов – десятки миллиардов операций в секунду.

Типовая модель суперЭВМ 2000 г. по прогнозу будет иметь следующие характеристики:

  1.  высокопараллельная многопроцессорная вычислительная система с быстродействием примерно 100000 MFLOPS;
  2.  емкость: оперативной памяти 10 Гбайт, дисковой памяти 1 – 10 Тбайт (или 1000 Гбайт);
  3.  разрядность 64; 128 бит.

Фирма Cray Research намерена в 2000 г. создать суперЭВМ производительностью 1 TFLOPS = 1000000 MFLOPS.

Создать такую высокопроизводительную ЭВМ по современной технологии на одном микропроцессоре не представляется возможным в виду ограничения, обусловленного конечным значением скорости распространения электромагнитных волн (300000 км/с), ибо время распространения сигнала на расстояние несколько миллиметров (линейный размер стороны микропроцессора) при быстродействии 100 млрд. оп/с становится соизмеримым с временем выполнения одной операции. Поятому суперЭВМ создаются в виде высокопараллельных многопроцессорных вычислительных систем (МПВС).

Высокопараллельные МПВС имеют несколько разновидностей:

  1.  магистральные (конвейерные) МПВС, в которых процессоры одновременно выполняют разные операции над последовательным потоком обрабатываемых данных; по принятой классификации такие МПВС относятся к системам с многократным потоком команд и однократным потоком данных (МКОД или MISD)
  2.  векторные МПВС, в которых все процессоры одновременно выполняют одну команду над различными данными – однократный поток команд с многократным потоком данных (ОКМД или SIMD).
  3.  матричные МПВС, в которых микропроцессоры одновременно выполняют разные операции над несколькими последовательными потоками обрабатываемых данных (МКМД или MIMD).

В суперЭВМ используются все три варианта архитектуры МПВС:

  1.  структура MIMD в классическом ее варианте (например, в суперкомпьютере BSP фирмы Burroughs
  2.  параллельно-конвейерная модификация, иначе, MMISD, т.е. многопроцессорная MISD- архитектура (например, в суперкомпьютере «Эльбрус 3»).
  3.  параллельно-векторная модификация, иначе, MSIMD, т.е. многопроцессорная SIMD-архитектура (например, в суперкомпьтере Cray 2).

Наибольшую эффективность показала MSIMD-архитектура, поэтому в современных суперЭВМ чаще всего используется именно она (суперкомпьютеры фирм Cray, Fujistu, NEC, Hitachi и др.)

Большие ЭВМ

Это самые мощные компьютеры. Их применяют для обслуживания очень крупных организаций и даже целых отраслей народного хозяйства. За рубежом компьютеры этого класса называют мэйнфреймами (mainframe). В России за ними закрепился термин большие ЭВМ. Штат обслуживания большой ЭВМ составляет до многих десятков человек. На базе таких суперкомпьютеров создают вычислительные центры, включающие в себя несколько отделов или групп:

  1.  Центральный Процессор — основной блок ЭВМ, в котором непосредственно и происходит обработка данных и вычисление результатов. Обычно центральный процессор представляет собой несколько стоек аппаратуры и размещается в отдельном помещении, в котором соблюдаются повышенные требования по температуре, влажности, защищенности от электромагнитных помех, пыли и дыма.
  2.  Группа системного программирования занимается разработкой, отладкой и внедрением программного обеспечения, необходимого для функционирования самой вычислительной системы. Работников этой группы называют системными программистами. Они должны хорошо знать техническое устройство всех компонентов ЭВМ, поскольку их программы предназначены в первую очередь для управления физическими устройствами. Системные программы обеспечивают взаимодействие программ более высокого уровня с оборудованием, то есть группа системного программирования обеспечивает программно-аппаратный интерфейс вычислительной системы.
  3.  Группа прикладного программирования занимается созданием программ для выполнения конкретных операций с данными. Работников этой группы называют прикладными программистами. В отличие от системных программистов им не надо знать техническое устройство компонентов ЭВМ, поскольку их программы работают не с устройствами, а с программами, подготовленными системными программистами. С другой стороны, с их программами работают пользователи, то есть конкретные исполнители работ. Поэтому можно говорить о том, что группа прикладного программирования обеспечивает пользовательский интерфейс вычислительной системы.
  4.  Группа подготовки данных занимается подготовкой данных, с которыми будут работать программы, созданные прикладными программистами. Во многих случаях сотрудники этой группы сами вводят данные с помощью клавиатуры, но они могут выполнять и преобразование готовых данных из одного вида в другой. Так, например, они могут получать иллюстрации, нарисованные художниками на бумаге, и преобразовывать их в электронный вид с помощью специальных устройств, называемых сканерами.
  5.  Группа технического обеспечения занимается техническим обслуживанием всей вычислительной системы, ремонтом и наладкой устройств, а также подключением новых устройств, необходимых для работы прочих подразделений.
  6.  Группа информационного обеспечения обеспечивает технической информацией все прочие подразделения вычислительного центра по их заказу. Эта же группа создает и хранит архивы ранее разработанных программ и накопленных данных. Такие архивы называют библиотеками программ или банками данных.
  7.  Отдел выдачи данных получает данные от центрального процессора и преобразует их в форму, удобную для заказчика. Здесь информация распечатывается на печатающих устройствах (принтерах) или отображается на экранах дисплеев.

К мейнфреймам относятся, как правило, компьютеры, имеющие следующие характеристики:

  1.  производительность не менее 10 MIPS;
  2.  основную память емкостью от 64 до 10000 MIPS;
  3.  внешнюю память не менее 50 Гбайт;
  4.  многопользовательский режим работы (обслуживают одновременно от 16 до 1000 пользователей).

Основные направления эффективного применения мейнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Последнее направление – использование мейнфреймов в качестве больших серверов вычислительных сетей часто отмечается специалистами среди наиболее актуальных.

Большие ЭВМ отличаются высокой стоимостью оборудования и обслуживания, поэтому работа таких суперкомпьютеров организована по непрерывному циклу. Наиболее трудоемкие и продолжительные вычисления планируют на ночные часы, когда количество обслуживающего персонала минимально. В дневное время ЭВМ исполняет менее трудоемкие, но более многочисленные задачи. При этом для повышения эффективности компьютер работает одновременно с несколькими задачами и, соответственно, с несколькими пользователями. Он поочередно переключается с одной задачи на другую и делает это настолько быстро и часто, что у каждого пользователя создается впечатление, будто компьютер работает только с ним. Такое распределение ресурсов вычислительной системы носит название принципа разделения времени.

Родоначальником современных больших ЭВМ, по стандартам которой в последние несколько десятилетий развивались ЭВМ этого класса в большинстве стран мира, является фирма IBM.

Среди лучших современных разработок мейнфреймов за рубежом в первую очередь следует отметить: американский IBM 390, IBM 4300, (4331, 4341, 4361, 4381), пришедшие на смену IBM 380 в 1979 году, и IBM ES/9000, созданные в 1990 году, а также японские компьютеры M 1800 фирмы Fujitsu.

Мини

Надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мейнфреймами возможностями и, соответственно меньшей стоймостью. Такие компьютеры используются крупными предприятиями, научными учреждениями и некоторыми высшими учебными заведениями, сочетающими учебную деятельность с научной. Мини-ЭВМ (и наиболее мощные из них супермини-ЭВМ) обладают следующими характеристиками:

  1.  производительность до 100 MIPS;
  2.  емкость основной памяти – 4-512 Мбайт;
  3.  емкость дисковой памяти - 2-100 Гбайт;
  4.  число поддерживаемых пользователей – 16-512.

Все модели мини-ЭВМ разрабатываются на основе микропроцессорных наборов интегральных микросхем, 16-, 32-, 64-разрядных микропроцессоров. Основные их особенности: широкий диапазон производительности в конкретных условиях применения, аппаративная реализация большинства системных функций ввода-вывода информации, простая реализация микропроцессорных и многомашинных систем, высокая скорость обработки прерываний, возможность работы с форматами данных различной длины.

К достоинствам мини-ЭВМ можно отнести: специфичную архитектуру с большой модульностью, лучше, чем у мейнфреймов, соотношение производительность/цена, повышенная точность вычислений.

Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов. Традиционная для подобных комплексов широкая номенклатура периферийных устройств дополняется блоками межпроцессорной связи, благодаря чему обеспечивается реализация вычислительных систем с изменяемой структурой.

Мини-ЭВМ часто применяют для управления производственными процессами. Например, в механическом цехе компьютер может поддерживать ритмичность подачи заготовок, узлов и комплектующих на рабочие места, управлять гибкими автоматизированными линиями и промышленными роботами, собирать информацию с инструментальных постов технического контроля и сигнализировать о необходимости замены изношенных инструментов и приспособлений, готовить данные для станков с числовым программным управлением, а также своевременно информировать цеховые и заводские службы о необходимости выполнения мероприятий по переналадке оборудования. Например, он может помогать экономистам в осуществлении контроля за себестоимостью продукции, нормировщикам в оптимизации времени технологических операций, конструкторам в автоматизации проектирования станочных приспособлений, бухгалтерии в осуществлении учета первичных документов и подготовки регулярных отчетов для налоговых органов. Для организации работы с мини-ЭВМ тоже требуется специальный вычислительный центр, хотя и не такой многочисленный, как для больших ЭВМ.

Наряду с использованием для управления технологическими процессами мини-ЭВМ успешно применяется для вычислений в многопользовательских вычислительных системах, в системах автоматизированного проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.

МикроЭВМ

Компьютеры данного класса доступны многим предприятиям. Организации, использующие микро-ЭВМ, обычно не создают вычислительные центры. Для обслуживания такого компьютера им достаточно небольшой вычислительной лаборатории в составе нескольких человек. В число сотрудников вычислительной лаборатории обязательно входят программисты, хотя напрямую разработкой программ они не занимаются. Необходимые системные программы обычно покупают вместе с микроЭВМ, а разработку нужных прикладных программ заказывают более крупным вычислительным центрам или специализированным организациям.

Программисты вычислительной лаборатории занимаются внедрением приобретенного или заказанного программного обеспечения, выполняют его доводку и настройку, согласовывают его работу с другими программами и устройствами компьютера. Хотя программисты этой категории и не разрабатывают системные и прикладные программы, они могут вносить в них изменения, создавать или изменять отдельные фрагменты. Это требует высокой квалификации и универсальных знаний. Программисты, обслуживающие микро-ЭВМ, часто сочетают в себе качества системных и прикладных программистов одновременно.

Можно привести следующую классификацию микроЭВМ:

Универсальные

Многопользовательские микроЭВМ – это мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.

Персональные компьютеры(ПК) – однопользовательские микроЭВМ удовлетворяющие требованиям общедоступности и универсальности применения, рассчитанные на одного пользователя и управляемые одним человеком. Пеpсональный компьютеp должен удовлетворять следующим требованиям:

  1.  стоимость от нескольких сотен до 5-10 тысяч доллаpов;
  2.  наличие внешних ЗУ на магнитных дисках;
  3.  объём оперативной памяти не менее 4 Мбайт;
  4.  наличие операционной системы;
  5.  способность работать с программами на языках высокого уровня;
  6.  ориентация на пользователя-непрофессионала (в простых моделях).

Портативные компьютеры обычно нужны руководителям предприятий, менеджерам, учёным, журналистам, которым приходится работать вне офиса — дома, на презентациях или во время командировок.

Основные разновидности портативных компьютеров:

Laptop (наколенник, от lap — колено и top — поверх). По размерам близок к обычному портфелю. По основным характеристикам (быстродействие, память) примерно соответствует настольным ПК. Сейчас компьютеры этого типа уступают место ещё меньшим.

Notebook (блокнот, записная книжка). По размерам он ближе к книге крупного формата. Имеет вес около 3 кг. Помещается в портфель-дипломат. Для связи с офисом его обычно комплектуют модемом. Ноутбуки зачастую снабжают приводами CD-ROM. Многие современные ноутбуки включают взаимозаменяемые блоки со стандартными разъёмами. Такие модули предназначены для очень разных функций. В одно и то же гнездо можно по мере надобности вставлять привод компакт-дисков, накопитель на магнитных дисках, запасную батарею или съёмный винчестер. Ноутбук устойчив к сбоям в энергопитании. Даже если он получает энергию от обычной электросети, в случае какого-либо сбоя он мгновенно переходит на питание от аккумуляторов.

Palmtop (наладонник) — самые маленькие современные персональные компьютеры. Умещаются на ладони. Магнитные диски в них заменяет энергонезависимая электронная память. Нет и накопителей на дисках — обмен информацией с обычными компьютерами идет линиям связи. Если Palmtop дополнить набором деловых программ, записанных в его постоянную память, получится персональный цифровой помощник (Personal Digital Assistant).

Специализированные

Рабочие станции представляют собой однопользовательские мощные микроЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.)

Несмотря на относительно невысокую производительность по сравнению с большими ЭВМ, микро-ЭВМ находят применение и в крупных вычислительных центрах. Там им поручают вспомогательные операции, для которых нет смысла использовать дорогие суперкомпьютеры. К таким задачам, например, относится предварительная подготовка данных.

Серверы

Серверы – многопользовательские мощные микроЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети.

Серверы обычно относят к микроЭВМ, но по своим характеристикам мощные серверы скорее можно отнести к малым ЭВМ и даже к мэйнфреймам, а суперсерверы приближаются к суперЭВМ.

Сервер – выделенный для обработки запросов от всех станций вычислительной сети компьютер, предоставляющий этим станциям доступ к общим системным ресурсам (вычислительным мощностям, базам данных, библиотекам программ, принтерам, факсам и др.) и распределяющий эти ресурсы. Такой универсальный сервер часто называют сервером приложений.

Серверы в сети часто специализируются. Специализированные серверы используются для устранения наиболее "узких" мест в работе сети: создание и управление базами данных и архивами данных, поддержка многоадресной факсимильной связи и электронной почты, управление многопользовательскими терминалами (принтеры, плоттеры) и др.

Файл-сервер ( File Server ) используется для работы с файлами данных, имеет объемные дисковые запоминающие устройства, часто на отказоустойчивых дисковых массивах RAID емкостью до 1 Тбайта.

Архивационный сервер (сервер резервного копирования, Storage Express System ) служит для резервного копирования информации в крупных многосерверных сетях, использует накопители на магнитной ленте (стриммеры) со сменными картриджами емкостью до 5 Гбайт; обычно выполняет ежедневное автоматическое архивирование со сжатием информации от серверов и рабочих станций по сценарию, заданному администратором сети (естественно, с составлением каталога архива).

Факс-сервер ( Net SatisFaxion ) – выделенная рабочая станция для организации эффективной многоадресной факсимильной связи с несколькими факс-модемными платами, со специальной защитой информации от несанкционированного доступа в процессе передачи, с системой хранения электронных факсов.

Почтовый сервер ( Mail Server ) – то же, что и факс-сервер, но для организации электронной почты, с электронными почтовыми ящиками.

Сервер печати ( Print Server , Net Port ) предназначен для эффективного использования системных принтеров.

Сервер телеконференций имеет систему автоматической обработки видеоизображений и др.

Рабочая станция

Рабочей станцией называется совокупность аппаратных и программных средств, предназначенных для решения профессиональных задач. Это специализированный высокопроизводительный компьютер для тех, кому необходима надежная и производительная система, гарантирующая стабильную и эффективную работу приложений. Использование рабочих станций позволяет вывести ваше предприятие на новый профессиональный уровень вне зависимости от того, в какой области вы развиваетесь.

Рабочие станции решают широкий спектр задач:

  1.  Инженерно-технические задачи – 3D-проектирование и конструирование, расчетные работы.
  2.  Профессиональная работа с трехмерной графикой – визуализация, 3D-моделирование, мультипликация, спецэффекты.
  3.  Цифровая обработка фото и видео материала - верстка, монтаж, дизайн.
  4.  Работа с большими объемами данных – статистика, аналитика, прогнозирование.

Основные приемущества:

  1.  Эффективность

Решения, использующие последние технологии, позволяют рабочим станциям более эффективно справиться с высокими вычислительными нагрузками. Рабочие станции адаптированы на решение профессиональных задач за счет оптимизации как аппаратной части, так и драйверов.

  1.  Надежность

Повышенная надежность достигается за счет использования только высококачественной компонентной базы, длительному стресс-тестированию на этапе разработки и тотальному контролю качества при производстве изделия.

  1.  Специализация

Отдельным сегментом в линейке рабочих станций являются графические станции, оснащаемые профессиональными видеоадаптерами, созданными специально для решения профессиональных задач, связанных со сложной визуализацией, конструированием и 3D-моделированием, разработкой и производством, созданием медиа контента и научной деятельностью.

  1.  Адаптация к программному обеспечению

Графические станции проходят тестирование и сертифицирование на совместимость и эффективную работу с приложениями от ведущих разработчиков профессионального профильного программного обеспечения, таких как Catia и SolidWorks от Dassault Systemes, AutoCAD и Inventor от Autodesk, Компас 3D от Аскон, ProEngineer от ProTechnologies, NX от Siemens PLM Software, с продуктами компаний ANSYS, Adobe и многих других.

  1.  Возможности расширения

Платформы рабочих станций предоставляют большую гибкость в модернизации. Большее количество слотов PCI и PCI-E дает возможность установки профильных плат расширения. Большее количество слотов памяти и возможность установки второго процессора в двухпроцессорных системах увеличивает диапазон выбора производительности.

Конечно, вышеприведенная классификация весьма условна, ибо мощный современный персональный компьютер, оснащенные проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как полноправная рабочая станция, и как многопользовательная микроЭВМ, и как хороший сервер, но по своим характеристикам почти не уступающий малым ЭВМ.




1. Введение Цель данной курсовой работы ~ охарактеризовать машинный автоматизированный способ производ
2. неба. І хоча за часів рабовласництва і феодалізму панувала ідея про права вільних людей її розвиток спри
3. Разработка дизайна веб-продукта
4. ВСТУП Актуальність роботи
5. реферату- Соціологічні дослідження і суспільна практикаРозділ- Соціологія Соціологічні дослідження і сусп
6. ТюменНИИгипрогаз В
7. Реферат на тему- Запровадження християнства на Русі В чорноморських грецьких містах так само на
8. Технология производства и исследование качества сыра
9. Анализ привлекательности рынка детской одежды
10. ЗАДАНИЕ 2 для группы 42121 номер варианта соответствует номеру по списку ~ номер варианта Найти-
11. ПОЯСНИТЕЛЬНАЯ ЗАПИСКАк проекту закона СанктПетербурга
12. СТАВРОПОЛЬСКИЙ ИНСТИТУТ УПРАВЛЕНИЯ Кафедра бухгалтерского учета Утверждаю Ректор к
13. Имущественные права и обязанности супругов
14. ТУРКМЕНСКИХ ОТНОШЕНИЙ
15. Экономическая теория
16. объективных к которым относятся официальная государственная статистика статистика министерств и ве
17. рефератов по курсу Безопасность труда
18. Сочинение- Михаил Павлович Гастфер
19. Реферат на тему- Церкви Києва Київ
20. Вариант