Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Лекция 15
12. Тепловое излучение
12.1. Основные понятия. Закон Кирхгофа
До сих пор мы в основном занимались волнами как таковыми, необязательно конкретизируя природу волны. Соответственно, в определенном смысле, в разговорах часто присутствовало больше геометрии, чем физики. Хотя, конечно, физика без геометрии - это не физика.
Но вот теперь на первый план выходят очень непростые существенно физические проблемы и закономерности. И, в частности, разговор о тепловом излучении требует введения некоторых специальных понятий.
Говоря о тепловом излучении, мы будем говорить о равновесном состоянии, о равновесии между нагретыми телами - эти тела излучают тепловую энергию и поглощают ее. Иначе говоря, имеет место равновесие между телами и электромагнитным полем, в которые эти тела оказываются “погруженными”.
Для описания этих процессов нам понадобятся некоторые новые понятия. Прежде всего это энергетическая светимость R. В соответствии с определением, с элементарной поверхности s за время t излучается энергия W = Rst. Эта энергия относится ко всему частотному диапазону и излучается в пределах телесного угла .
Следующее понятие - испускательная способность . Она входит в выражение и определяет энергетическую светимость в диапазоне d. Однако, испускательная способность зависит также и от температуры. Поэтому обычно пишут . Тогда энергетическая светимость при некоторой температуре
.
Испускательную способность иногда удобно относить не к некоторому значению частоты, а к значению длины волны . Тогда пишут . Поскольку
и по смыслу , мы имеем:
;
;
.
Последнее выражение связывает величины r и r, и мы при необходимости можем переходить от одной к другой.
При падении лучистой энергии на поверхность часть ее, вообще говоря, поглощается. Поглощательная способность зависит от частоты и от температуры. Поэтому выражение для нее записывается в виде:
.
В знаменателе стоит поток падающей лучистой (электромагнитной) энергии, относящейся к интервалу d, в числителе - поглощенная часть потока. Если при любых частотах , тело называется абсолютно черным. При частичном поглощении падающего потока энергии говорят о сером теле. При этом подразумевается, что поглощательная способность не зависит от частоты: . Естественно, поглощательная способность не может быть больше единицы.
Таковы основные понятия, необходимые нам для разговора о тепловом излучении.
Мы уже говорили, что речь идет о тепловом равновесии между телом (его излучением) и окружающем его пространстве, заполненном лучистой энергии. Что будет, если имеется несколько тел с разными свойствами поверхностей? Оказывается, что отношение испускательных и поглощательных способностей обязаны быть равны:
.
Действительно, в противном случае у них были бы различные температуры и мы с легкостью получили бы вечный двигатель.
Это отношение представляет собой некоторую функцию частоты и температуры (или же длины волны и температуры):
.
Это соотношение между функциями следует из таких соображений. Для абсолютно черного тела и, стало быть,
.
Абсолютно черное тело является некоторой идеализацией - таких тел в природе просто не существует. Но к свойствам абсолютно черного тела могут быть сколь угодно близки свойства некоторого специального устройства. Оно представляет собой некую полость с, вообще говоря, зачерненной шероховатой внутренней поверхностью и небольшим отверстием. Проникшая через отверстие, электромагнитная волна любой частоты будет рассеиваться на внутренней поверхности полости, частично поглощаться и может выйти из нее только после многочисленных отражений. Доля вышедшей после многочисленных частичных поглощений при “соприкосновении” с внутренней поверхностью полости явно весьма незначительна.
Хотя поглощательная способность внутренней поверхности полости и не равна единице, при каждом отражении происходит поглощение части энергии, при многочисленных отражениях будет поглощена практически вся энергия.
Таким образом, входное отверстие такой полости, даже не являясь поверхностью какого-нибудь тела, обладает свойствами поверхности абсолютно черного тела. И для нас, конечно, важно не столько то, что (почти) вся падающая на эту “поверхность” энергия будет поглощена, сколько то, что ее излучение будет практически совпадать с излучением абсолютно черного тела. В соответствии с законом Кирхгофа.
12.2. Плотность лучистой энергии
V
d
R R
Рассмотрим детальнее равновесие элемента поверхности абсолютно черного тела и лучистой энергии, в которую оно “погружено”. Выделим элемент поверхности s и некоторый элементарный объем V в окружающем его пространстве.
Введя плотность энергии , мы можем записать выражение для части заключенной в выделенном объеме энергии, которая протечет через выделенную площадку:
.
Это выражение написано из таких соображений. Запасенная в выделенном объеме энергия будет распространяться в пределах телесного угла 4. Значит, через выделенную площадку пройдет часть этой энергии, равная отношению телесного угла , под которым из выделенного объема видна площадка, к полному телесному углу.
V
d
R R
Далее, в силу симметрии, элементарный объем можно выбрать в виде “бублика”, объем которого
.
Таким образом, чтобы подсчитать энергию, которая пройдет через выделенную площадку за время , нам надо взять интеграл по d :
.
В условиях равновесия за то же время площадкой s будет испущена такая же по величине энергия. Поэтому,
;
.
Мы нашли связь между испускательной способностью абсолютно черного тела и плотностью электромагнитной энергии в условиях равновесия.
12.3. Лучистая энергия
Мы нашли связь между функциями испускательной способности и плотности электромагнитной энергии. Но представляется совершенно неясным, каким способом можно было бы найти вид этих функций. Здесь нужны какие-то дополнительные гипотезы о способе существования, что ли, лучистой, волновой энергии. Ясно, что такое описание распределения энергии по частотам (это функции частоты!) при определенной температуре должно быть вероятностным, но в основе должно предположить существование какой-то функции распределения, подобно тому, как мы в свое время нашли вид функции распределения Максвелла для молекул (атомов).
;
Z
Y
d
b
0 a X
Такой гипотезой явилось предположение, что лучистая энергия могла бы существовать в виде стоячих волн. Стоячими волнами мы ранее немного занимались, но теперь нам надо исследовать этот вопрос детальнее.
Пусть у нас имеется полость в виде прямоугольного параллелепипеда со сторонами a,b,c. Условием существования стоячей волны вида
является выполнение условий
.
Речь, разумеется, идет о плоской волне, и только при выполнении этих условий любой луч волны окажется замкнутым. Причем в любую “стартовую” точку волна будет возвращаться с неизменной фазой.
Теперь можно говорить о некотором распределении стоячих волн по оси частот - они могут принимать лишь некоторые дискретные значения.
Перейдем в декартово пространство, в котором по осям отложены значения составляющих векторов . Концы векторов, удовлетворяющих условию стоячей волны, будут иметь координаты . Это позволяет нам говорить о плотности таких точек в k - пространстве: поскольку , элементарный объем на одну точку (конец вектора ) . Равная обратной величине элементарного объема, плотность точек Nk в k - пространстве оказывается величиной постоянной: .
Собственно, нас интересуют количества векторов в модулем от k до k+k. Чтобы подсчитать это количество, выберем элементарный объем в k - пространстве в виде тонкого шарового слоя радиуса k и толщиной k и умножим его на плотность точек:
.
Теперь нам надо проделать еще такие операции. Во-первых, перейдем от волновых векторов k к частотам : . Затем нам надо умножить полученное число на 2, поскольку имеется два взаимно перпендикулярных направления колебаний - это будут разные стоячие волны. Тогда на единицу объема мы получаем такое количество волн с частотой :
.
Y
kX<0 kX>0
kY>0
X
kY<0
Теперь попробуем понять, что мы, собственно, получили. Это выражение дает нам число волн с частотой в единице объема. Но это еще не количество стоячих волн. При каждом отражении волна изменяет направление распространения, но это остается та же волна с частотой . При нашем же подсчете они считались различными волнами - с определенным модулем волнового числа k и независимо от направления вектора . Поэтому полученное количество волн нам надо разделить на 8 и вот почему.
При каждом отражении изменяется знак одной из проекций вектора . Как видно из рисунка, изменение знаков проекций kX и kY дает четыре возможные направления вектора . Но остается еще возможность изменения знака kZ - итого получается 8 возможных направлений распространения (одной и той же) волны с частотой . Таким образом, переходя к дифференциалам, мы получаем нужное выражение:
.
Эти стоячие волны заманчиво трактовать как колебательные степени свободы для лучистой энергии. Тогда на каждую стоячую волну пришлась бы порция энергии kT. Но здесь нас ждет большая неприятность: количество стоячих волн (вплоть до ) неограничено, плотность энергии оказывается бесконечной, что, конечно, никак не может отвечать реальности.
Тем не менее не стоит приходить в отчаяние. Нам еще придется сделать некоторые уточнения, связанные с более глубоким пониманием физики. Тогда мы и получим разумный результат.
12.4. Формула Планка
Изучение теплового равновесного излучения как и других явлений привело физиков к идее квантования. Каждой колебательной степени свободы пришлось приписать энергию в несколько энергетических квантов - порций энергии величиной .
Количество стоячих волн с энергией определяется распределением Больцмана:
.
С увеличением частоты количество волн с большой энергией уменьшается и тем самым снимается проблема бесконечной плотности энергии.
Подсчитаем среднюю энергию стоячей волны с частотой :
.
Мы ввели обозначение .
Выражение под знаком логарифма представляет собой сумму членов бесконечной геометрической прогрессии со знаменателем . Поэтому средняя энергия стоячей волны
.
Умножив это значение на количество волн в интервале d, получим энергию в этом интервале:
,
мы получим для плотности лучистой энергии выражение
,
которое носит название формулы Планка.