Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
ТЕМА №8
Кинетика диффузионных процессов в твердых телах.
Определение диффузии. Первое и второе уравнения Фика.
Определим диффузию как процесс переноса вещества из одной части системы в другую, происходящий под действием градиента концентрации. Отметим, однако, что градиент концентрации важная, но не единственная причина, вызывающая перенос вещества в системе.
При свободной диффузии не взаимодействующих между собой частиц (в отсутствии приложенных внешних сил) в однородном и изотропном твердом теле поток диффузионных частиц пропорционален градиенту концентрации (для одномерного случая). Связь между ними определяется первым законом Фика:
, (8.1)
где - коэффициент диффузии атомов. Из выражения (8.1) можем определить коэффициент диффузии как скорость, с которой система способна при заданных условиях сделать нулевой разность концентраций. Знак “минус” в выражении означает, что поток атомов направлен из области с большей концентрацией в область с меньшей концентрацией. Для трехмерной задачи первое уравнение Фика имеет вид:
, (8.2)
где - оператор Набла, который записывается .
В случае независимости коэффициента диффузии от концентрации легирующих частиц, применение закона сохранения вещества при диффузии в форме уравнения непрерывности для потока частиц позволяет перейти ко второму уравнению Фика, устанавливающему связь между концентрацией диффундирующих частиц в различных точках тела и временем диффузии:
. (8.3)
Для трехмерного случая:
или , (8.4)
где - оператор Лапласа, который записывается .
Второй закон Фика, как закон сохранения вещества, можно записать в форме уравнения непрерывности:
. (8.5)
Размерность плотности потока вещества зависит от размерности концентрации. Если , то .
Одним из основных параметров диффузии является коэффициент диффузии, вводимый как коэффициент пропорциональности между потоком и градиентом концентрации вещества в уравнении (8.1). В зависимости от условий проведения диффузионного опыта, различают несколько типов коэффициента диффузии.
1. Для описания взаимной диффузии при контакте двух образцов неограниченно растворимых один в одном, пользуются понятием коэффициента взаимной диффузии , который зависит от подвижности взаимно диффундирующих компонентов и взаимодействия компонентов между собой.
2. Подвижность каждого компонента в свою очередь характеризуется собственным коэффициентом диффузии , равным коэффициенту взаимной диффузии, если собственные коэффициенты диффузии компонентов равны между собой, т.е. (в случае двух компонентов и ).
3. Кроме того, подвижность - того компонента сплава может быть охарактеризована порциальными коэффициентами диффузии , которые вводятся следующим образом:
. (8.6)
Порциальные коэффициенты можно определить как для собственной, так и для взаимной диффузии. Все введенные до сих пор коэффициенты являются коэффициентами гитеродиффузии (химической диффузии), т.е. такой диффузии, которая имеет место при наличии только градиента концентрации.
Диффузия в реальных кристаллах происходит вследствие четырех основных механизмов:
Таким образом, мы видим, что в твердых телах благодаря тепловому движению происходит непрерывное перемешивание частиц. Скорость перемешивания зависит от среднего времени нахождения частицы в одном из положений равновесия. Это время экспоненциально зависит от температуры:
, (8.7)
где - энергия активации диффузии; - постоянная, равная по порядку величины периоду собственных колебаний атомов в узлах решетки . Энергия активации диффузии представляет собой высоту потенциального барьера, который должна преодолевать частица, чтобы перейти из одного положения в другое. Так как с изменением температуры изменяются межатомные силы в кристаллах, то энергия активации сильно зависит от температуры. Приближенно эту зависимость можно представить соотношением , где - энергия активации при К, а коэффициент зависит от характера колебаний атомов.
В большинстве случаев коэффициент диффузии в твердых телах увеличивается с ростом температуры по закону, имеющему вид уравнения Аррениуса:
, (8.8)
где - предэкспоненциальный множитель (фактор), численно равный коэффициенту диффузии при бесконечно большой температуре.
Процессы взаимной диффузии в поликристаллических пленках металлов приводят к образованию интерметаллидов. При этом можно выделить следующие изменения их свойств:
Отмеченные выше процессы приводят к деградации электрических параметров и зависят от количества продиффундированного в структуру вещества. Поэтому особенно важно уметь находить зависимости распределения концентрации диффундирующих примесей в структурах от времени и температуры процесса диффузии. Это можно сделать, решив второе уравнение Фика или уравнение диффузии.
Уравнение диффузии представляет собой дифференциальное уравнение в частных производных и для его решения необходимо сформулировать начальные и граничные условия, которым должна удовлетворять концентрация и первоначальное распределение диффундирующего вещества. Эти условия определяют на основе анализа конкретной ситуации, в которой происходит процесс диффузии. Здесь важно отметить, что внутри твердого тела концентрация является непрерывной функцией координат и времени, а ее первая производная по времени и первая и вторая производные по , и также непрерывны. Указанные предположения не применимы для поверхности твердого тела, для внутренних границ раздела и для некоторого момента времени, с которого начинается поступление диффундирующего вещества. В этих точках и в этот моменты времени концентрация и ее производные могут претерпевать разрыв.
Начальное распределение концентрации может быть произвольным, но чаще всего эта функция постоянна либо равна нулю. Что касается граничных условий (условий на поверхности), то обычно в задачах диффузии задана либо концентрация на поверхности , либо поток . В частных случаях эти величины могут быть постоянными либо равными нулю.
Уравнение диффузии (в физике его чаще называют уравнением теплопроводности) можно решить различными методами. Обычно пользуются следующими:
Следует отметить, что в настоящее время процесс диффузии усовершенствован до такой степени, что можно создавать переходы, глубина которых контролируется с точностью до долей микрометра.
Как можно задавать начальное распределение концентрации и граничные условия (условия на поверхности) при решении уравнения диффузии?
5