Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Сибирская государственная автомобильно-дорожная академия
(СибАДИ ИСИ)
Кафедра «Строительные конструкции»
Пояснительная записка
к курсовому проекту по дисциплине
«Строительные конструкции»
Тема: Проектирование сборных железобетонных
плит перекрытий многоэтажных
производственных зданий
Проект выполнил: студент 41 ПСК группы
Жадобин С. С.
Руководитель проекта: преподаватель
Разливкина Н.Н.
Омск
СОДЕРЖАНИЕ
[1] Исходные данные [2] 1. Разработка конструктивной схемы сборного перекрытия. [3] 2. Проектирование панели сборного перекрытия. [3.1] 2.1. Конструктивная схема. [3.2] 2.2. Расчетная схема и нагрузки. [3.3] 2.3. Статический расчет. [3.4] 2.4. Расчет по первой группе предельных состояний. [3.4.1] 2.4.1. Исходные данные. [3.4.2] 2.4.2. Расчет прочности нормальных сечений. [3.4.3] 2.4.3. Расчет прочности наклонных сечений на действие поперечных сил. [3.4.4] Проверка прочности наклонного сечения производится из условия: [3.4.5] 2.4.4. Армирование панелей. [3.5] 2.5. Расчет панелей по предельным состояниям второй группы. [3.5.1] 2.5.1. Проверка трещиностойкости. [3.5.2] 2.5.2. Проверка жесткости. [3.5.3] 2.5.3. Проверка для напрягаемой арматуры. [4] 3. Расчет в программе РДТ. [4.1] 3.1. Расчет для ненапрягаемой арматуры. [4.2] 3.2. Расчет для преднапрягаемой арматуры. [5] Библиографический список. |
В курсовом проекте необходимо запроектировать плиту перекрытия трех пролетного поперек и пятипролетного вдоль производственного многоэтажного здания с наружными кирпичными стенами.
При этом рассматривается здание с жесткой конструктивной схемой, в котором горизонтальные нагрузки передаются через жесткие в своей плоскости диски перекрытий на поперечные и продольные стены, обеспечивающие пространственную жесткость здания в целом. В этом случае железобетонные конструкции здания рассчитываются только на действие вертикальных нагрузок.
Плита перекрытия круглопустотная.
Размер ячейки здания вдоль 5,9 м, поперек – 6,3 м.
Нормативная нагрузка от массы пола составляет 1,5 кН/м2.
Толщина пола 11,0 см.
Нормативная временная нагрузка:
- длительная 4,3 кн/м2,
- кратковременная 3,0 кн/м2.
Выполнение проекта начинается с определения габаритных размеров в плане, привязке наружных стен к разбивочным осям и компоновки конструктивной схемы здания.
Длина здания в осях равна произведению продольного размера ячейки на число ячеек вдоль здания, т.е. а = 55,9 = 29,5 м. Ширина здания в осях равна произведению поперечного размера ячейки на число ячеек поперек здания, т.е. в = 36,3 = 18,9 м.
Привязка стен здания и их толщина принимается соответственно 200 и 640 мм.
Для обеспечения жесткости здания в поперечном направлении и во избежание утяжеления надоконных перемычек принимается поперечное расположение ригелей по осям простенков и продольное – панелей перекрытия.
Номинальная ширина каждой панели принимается одинаковой для всего перекрытия, должна быть в пределах 1,3…1,7 м, и составляет bн = 6,3/4 = 1,575 м.
Раскладка панелей показана на рис.1. Конструктивная ширина панелей назначается на 20 мм меньше в соответствии с п.5.51 [2]. bн = 1575–20 = 1555 мм.
Опалубочные размеры поперечного сечения панели принимаются в соответствии с рекомендациями табл.1 [1].
Рис.1. План расположения ригелей и панелей.
Производится расчет и конструирование панели перекрытия, опирающейся на ригели. Панель укладывается на полки ригелей по слою цементно-песчаного раствора.
Конструктивная схема и размеры плиты назначаются исходя из табл.1, рис.2 [1] и задания на курсовой проект. На рис.2 показано поперечное сечение панели с круглыми пустотами.
Рис.2. Поперечное сечение панели перекрытия.
Поскольку возможен свободный поворот опорных сечений, расчетная схема панели представляет собой статически определимую однопролетную балку, загруженную равномерно распределенной нагрузкой, в состав которой входят постоянная, включающая вес пола и собственный вес панели, и временная.
Нормативная нагрузка от собственной массы панели определяется:
, кН/м2
где = 2500 кг/м3 - плотность железобетона;
Аполн - площадь поперечного сечения панели по номинальным размерам.
Аполн = bнhп = 1,5750,24 = 0,378 м2;
Апуст – суммарная площадь пустот в пределах габарита сечения.
Апуст= nd2/4 = 73,140,182/4 = 0,178 м2;
;
Нормативная нагрузка от массы 1 м2 конструкции пола равна 1,5 кН/м2. Коэффициенты надежности по нагрузке для временных равномерно распределенных нагрузок на перекрытия принимаются согласно п. 3.7 [3], и равны 1,2, т.к. нормативное значение эквивалентной равномерно распределенной нагрузки длительно действующей и кратковременно действующей - Pн 2 кН/м2 . Подсчет нормативных и расчетных нагрузок представлен в табл.1.
Таблица1. Нормативные и расчетные нагрузки на панель перекрытия.
Наименование нагрузки |
На 1 м2 панели |
На 1 пог. метр панели |
|||
нормативная, кН/м2 |
коэффициент надежности |
расчетная, кН/м2 |
норматив-ная, кН/м |
расчет-ная, кН/м |
|
1.Постоянная (длительно действующая) |
|||||
1)От собственного веса панели |
3,17 |
1,1 |
3,49 |
5,0 |
5,5 |
2)От собственного веса конструкции пола |
1,5 |
1,3 |
1,95 |
2,36 |
3,07 |
Итого |
- |
- |
5,44 |
7,36 |
8,57 |
2.Временная нагрузка |
|||||
3)Длительно действующая часть нагрузки |
4,3 |
1,2 |
5,16 |
6,77 |
8,13 |
4)Кратковремен-но действующая часть нагрузки |
3,0 |
1,2 |
3,6 |
4,73 |
5,67 |
Итого |
- |
- |
8,76 |
11,5 |
13,8 |
Всего |
- |
- |
14,2 |
18,86 |
22,37 |
В том числе длительная нормативная |
14,14 |
Для выполнения расчетов по первой и второй группе предельных состояний необходимо вычислить:
- изгибающий момент от полной нормативной нагрузки;
;
- изгибающий момент от полной нормативной нагрузки;
;
- изгибающий момент от нормативной длительно действующей нагрузки
;
;
где - расчетный пролет.
Рис.3. Опирание панели на колонны.
Плиты перекрытий запроектированы из тяжелого бетона класса B20, подвергаемого тепловой обработке при атмосферном давлении. Характеристики бетона принимаются по табл.5 [1]:
b2= 0,9; Rb= 10,35 МПа ; Rbt=0,81 МПа ; Eb=24103 МПа.
Класс арматуры принимается в соответствии с указаниями п.2.19 а, б, в и п.2.24 [2]. По таблицам 19, 20, 22, 23, 29 [2] определяются характеристики арматуры. В соответствии с [2] арматура в растянутую зону принимается класса А-, поперечная и конструктивная Вр -, петли А-.
При расчете прочности нормальных и наклонных сечений поперечное сечение панели приводится к тавровому профилю в соответствии с рекомендациями рис.4. [1].
Вводимая в расчет ширина полки приведенного сечения bf = bbk = 1525мм для круглопустотной панели. Рабочая высота сечения панели равна: h0 = h – a = 240 – 30 = 210мм, где а – расстояние от наиболее растянутого края сечения до центра тяжести растянутой арматуры панели, принимается равным 30мм (расположение арматуры в один ряд). Ширина ребра равна: b = 2b1 + b2 = 257,5 + 625 = 265мм.
Рис.4. Приведенное сечение круглопустотной плиты.
Расчет прочности нормальных сечений производится в соответствии с п.3.16 [2]. Предполагается, что продольной сжатой арматуры по расчету не требуется.
Требуемая площадь сечения растянутой арматуры определяется в зависимости от положения нейтральной оси:
MRbbfhf(h0 – 0,5hf) 100 (1)
861300010,35152,53(21 - 0,53) 100 = 9233000 Нсм
Условие (1) соблюдается, следовательно, нейтральная ось проходит в пределах полки, и сечение рассчитывается как прямоугольное с шириной bf. Таким образом, определяя 0, можно определить требуемую площадь растянутой арматуры Аs1.
(2)
Коэффициент определяется по табл.7 [1] в зависимости от 0.
(3)
Требуемая арматура подбирается с минимально возможным превышением по сортаменту: принимается 6 16 А- с фактической площадью Аs = 12,06 см2.
Размещение принятой арматуры проводится в соответствии с п.5.12; 5.18 [2] и рис.3 [1]. В многопустотной панели обязательна установка стержней в крайних ребрах, в промежуточных возможна установка не в каждом ребре.
Необходима корректировка значений а и h0:
а = 20 + 16/2 = 28мм, т.к. величина защитного слоя бетона составляет 20мм, (диаметр принятой арматуры не превышает 20мм).
h0 = h – a = 240 – 28 = 212мм.
Проверка прочности нормального сечения.
Для проверки прочности определяется положение нейтральной линии из условия:
RsAsRb bf hf; (4)
36512,0610,35152,53;
4401,9 4735,1
Выполнение условия (4) означает, что нейтральная ось находится в полке, высота сжатой зоны вычисляется по формуле:
< hf = 3см.
Несущая способность сечения:
Несущая способность сечения считается достаточной, если ММu:
86130008721000;
Условие выполнено, следовательно, прочность нормального сечения обеспечена.
Необходимость расчета определяется условием п. 3.32 [2]:
Qb3Rbtbh0100 (5)
b3 = 0,6 для тяжелого бетона;
620800,60,8126,521,2100 = 27303 Н;
Т.к. условие (5) не выполняется, поперечная арматура определяется расчетом. Для этого предварительно назначается диаметр поперечных стержней dw = 4 мм класса Вр-, и шаг S = 12 см, Asw = 0,126 см2 исходя из конструктивных условий и рис.5 [1].
Для поперечных стержней, устанавливаемых по расчету, должно выполняться условие:
≥ (6)
Asw = Asw1n = 0,1266 = 0,756 см2;
, но не более 0,5, т.е. f = 0,5;
= 1669,5 > = 965,9 Н/см.
Длина проекции опасного наклонного сечения на продольную ось элемента:
== 41,6 см;
где = 2 для тяжелого бетона.
Поперечное усилие, воспринимаемое бетоном:
;
где С = 48 см, округленное C0 в большую сторону до целого числа S;
Поперечное усилие, воспринимаемое хомутами, пересеченными наклонной трещиной:
;
QQb+Qsw; (7)
6208040197+60102 = 100299 Н;
Проверка прочности наклонной полосы между трещинами на действие сжимающих напряжений производится из условия:
Q0,3w1b1Rbbh0100; (8)
;
w1= 1+5w = 1+57,0830,00024 = 1,085 < 1,3;
b1= 1- 0,01∙Rb = 1- 0,0110,35= 0,8965;
620800,31,0850,896510,3526,521,2100 = 169677 Н;
Условие (8) выполняется, следовательно, прочность наклонного сечения обеспечена.
Армирование плит П-1.
Плита армируется сварной сеткой С-2, расположенной в нижней полке. Рабочая арматура пустотной панели является продольной арматурой сварной сетки, расположенной в нижней полке. Распределительная арматура этой сетки принимается из стержней класса Вр -, диаметром 4 мм. Шаг стержней распределительной арматуры равен 500 мм.
Верхняя полка армируется конструктивной сеткой 200/200/3/3 из стали класса Вр -.
Поперечные стержни объединяются с продольной монтажной арматурой того же диаметра, что и хомуты в короткие плоские каркасы КР-1, устанавливаемые в приопорных участках ребер плиты. Каркасы должны быть обязательно установлены в крайних ребрах, а в промежуточных могут устанавливаться через ребро.
Петли П-1 для подъема закладываются впотай в пустотных панелях на расстоянии 0,5 м от концов панели. Петли должны быть надежно заанкерованы.
Для монтажных петель принимается арматурная сталь класса А - . Диаметр петель назначается по требуемой площади поперечного сечения одной петли, определяемой при условии распределения веса плиты на три петли.
Принимаем по табл.8 [1] 4 петли 12 (As= 1,131 см2).
Армирование плит П-1н.
Рабочей арматурой пустотной плиты являются продольные преднапряженные стержни, расположенные в нижней полке.
Для анкеровки преднапряженной арматуры на концевых ее участках закладываются сетки С-3 (корытообразные) на длину 300 мм. Стержни сетки принимаются конструктивно диаметром 3…4 мм класса Вр -.
Верхняя полка армируется конструктивной сеткой 200/200/3/3 из стали класса Вр -.
Поперечные стержни, определяемые из условия прочности наклонных сечений, объединяются с продольной монтажной арматурой того же диаметра, что и хомуты в короткие плоские каркасы КР-1, устанавливаемые в приопорных участках ребер плиты. Каркасы должны быть обязательно установлены в крайних ребрах, а в промежуточных могут устанавливаться через ребро.
Петли П-1 для подъема закладываются впотай в пустотных панелях на расстоянии 0,5 м от концов панели. Петли должны быть надежно заанкерованы.
К трещиностойкости панелей перекрытия предъявляются требования третьей категории [2, п.1.16, табл.2,3], согласно которым предельно -допустимая ширина продолжительного раскрытия трещин аcrc2 = 0,3 мм.
Предельно-допустимый прогиб определяется согласно п.1.20 [2].
Определение ширины раскрытия трещин и прогибов производится от нагрузки с коэффициентом надежности по нагрузке f = 1.
Расчет ширины раскрытия трещин производится из условия [2, п.4.5]:
Mr ≤ Mcrc (9)
Mr = Mндл = 54440 Нм;
Для определения Mcrc необходимо сечение панели привести к эквивалентному по моменту инерции, т.е. к двутавровому в соответствии с рис.9 [1] и просчитать геометрические характеристики сечения по рис.10 [1].
Рис.5. Геометрические характеристики приведенного сечения.
;
Момент сопротивления приведенного сечения с учетом упругих деформаций бетона растянутой зоны:
где = 1,5 для двутаврового сечения;
Внешняя растягивающая сила равна:
Эксцентриситет приложения силы Р относительно центра тяжести приведенного сечения:
Расстояние от центра тяжести приведенного сечения до верхней ядровой точки:
7262000≥1975428;
Условие (9) не выполняется, следовательно, необходимо произвести расчет ширины раскрытия трещин, нормальных к продольной оси панели.
acrc2 [acrc2] (10)
0,02;
Для определения a необходимо подсчитать параметры сечения после образования трещин.
где = 0,15 при длительном действии нагрузки;
Относительная высота сжатой зоны бетона сечения с трещиной:
где = 1,8 для тяжелого бетона,
x = h0 = 0,18221,2 = 3,86;
Т.к. xhf, то сечение рассчитывается как прямоугольное с шириной b = bf; вторично определяются параметры , , f, , .
Плечо внутренней пары сил:
Напряжение в растянутой арматуре в сечении с трещиной:
≤
По табл.2 п.1.16 [2] [acrc2]= 0,3 мм.
0,185≤0,3
Условие (10) выполняется.
Проверка жесткости заключается в определении прогиба:
fm ≤ [fm]; (11)
b = 0,9 по п.4.27 [2];
ls = 0,8 при длительном действии нагрузок;
s = 1,25 - lsm = 1,25 - 0,80,43 = 0,906 ≤1;
3,52 > 2,78.
Условие (11) не выполняется, т.к. значение fm превышает предельно допустимое значение прогиба. Необходимо увеличить площадь сечения растянутой арматуры или повысить класс бетона.
Арматура натягивается на упоры электротермическим способом. Стержень с высаженными головками разогревают электрическим током до 300–3500С, заводят в форму и закрепляют на концах в упорах форм. Арматура при восстановлении начальной длины в процессе остывания натягивается на упоры. При восстановлении упругих деформаций в условиях сцепления с бетоном, арматура обжимает окружающий бетон.
Рис.6. Натяжение арматуры на упорах форм.
Необходимо определить величину предварительного напряжения рабочей арматуры sp.
0,3Rs,ser + P ≤ sp ≤ Rs,ser - P
0,3390 + 93,8 ≤ sp ≤ 390 - 93,8;
sp,min = 210,8 ≤ sp ≤ 296,2 = sp,max ;
Потери напряжения:
1 = 0,03sp,max = 0,03296,2 = 8,89;
2 = 0;
3 =
l = 1,25 + 0,1516 = 3,65мм;
5 = 0;
sp = sp,max - 1 - 3 = 296,2 - 8,89 - 129,4 = 157,9 МПа ≤ 210,8 МПа;
Принимаем sp = sp,min = 210,8 МПа = 2108 кг/см2.
ИСХОДНЫЕ ДАННЫЕ
╔═══════════════════════════════════════════════════════════════════╗
║ ┌──────┬──────┬─────┬──────┬─────────┬────────┬────────┬────────┐ ║
║ │ AMSP │ AMS1 │ AMS2│ D │ ESP │ ES1 │ ES2 │ ES1H │ ║
║ ├──────┼──────┼─────┼──────┼─────────┼────────┼────────┼────────┤ ║
║ │ 2.8 2.8 2.8 │ 16 │ 0 2000000 │ 0 0
║ └──────┴──────┴─────┴──────┴─────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬─────────┬────────┬────────┐ ║
║ │ ES2H │ EB │ RERSP │ RERS1 │ RERS2 │ SIGSP │ ║
║ ├────────┼────────┼────────┼─────────┼────────┼────────┤ ║
║ │ 0 │ 245000 │ 0 │ 4000 │ 0 │ 0 │ ║
║ └────────┴────────┴────────┴─────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬─────────┬────────┬────────┐ ║
║ │ RBSER │ RBTSER │ RBP │ RBSERP │ SERP │ SIG8 │ ║
║ ├────────┼────────┼────────┼─────────┼────────┼────────┤ ║
║ │ 153 │ 14.3 │ 183.3 107.1 10.0 │ 350 │ ║
║ └────────┴────────┴────────┴─────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬─────────┬────────┬────────┐ ║
║ │ K │ K1 │ AL │ BET │ KDEL │ FIB1 │ ║
║ ├────────┼────────┼────────┼─────────┼────────┼────────│ ║
║ │ 0 │ 0 │ 0 0 │ 0 │ 0.85 │ ║
║ └────────┴────────┴────────┴─────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬─────────┬───────┐ ║
║ │ BET1 │ PSIB │ ETA │ VB │ VB1 │ ║
║ ├────────┼────────┼────────┼─────────┼───────│ ║
║ │ 1.8 │ 0.9 │ 1 │ 1 │ 0 │ ║
║ └────────┴────────┴────────┴─────────┴───────┘ ║
║ ┌────────┬────────┬────────┬─────────┬───────┬────────┐ ║
║ │ L │ N │ DOP │ KOH │ T8 │ T9 │ ║
║ ├────────┼────────┼────────┼─────────┼───────┼────────┤ ║
║ │ 555 │ 1 │ 1 │ 0 │ 0 │ 0 │ ║
║ └────────┴────────┴────────┴─────────┴───────┴────────┘ ║
║ ┌────────┬────────┬────────┬────────┐ ║
║ │ FIB2 │ NU │ FILS │ FIL0 │ ║
║ ├────────┼────────┼────────┼────────│ ║
║ │ 2 │ 0.15 │ 0.8 │ 0 │ ║
║ └────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬────────┐ ║
║ │ FIB2K │ NUK │ FILSK │ FIL0K │ ║
║ ├────────┼────────┼────────┼────────│ ║
║ │ 1 │ 0.45 │ 1.1 │ 1 │ ║
║ └────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┐ ║
║ │ FD │ ACRC1D │ ACRC2D │ ║
║ ├────────┼────────┼────────│ ║
║ │ 2.78 │ 0.4 │ 0.3 │ ║
║ └────────┴────────┴────────┘ ║
╚═══════════════════════════════════════════════════════════════════╝
╔═══════════════════════════════════════════════════════════════╗
║ ┌────────┬────────┬─────────┬─────────┐ ║
║ │ СЕЧ │ MW │ MTOT │ MF │ ║
║ ├────────┼────────┼─────────┼─────────┤ ║
║ │ 1 │ 134400 726200 544400 │ ║
║ └────────┴────────┴─────────┴─────────┘ ║
║ ┌────────┬────────┬────────┬────────┬────────┬────────┐ ║
║ │ H │ B │ HFH │ BFH │ HF │ BF │ ║
║ ├────────┼────────┼────────┼────────┼────────┼────────│ ║
║ │ 24 │ 39.1 │ 3.9 │ 152.5 │ 3.9 │ 152.5 │ ║
║ └────────┴────────┴────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬────────┬────────┐ ║
║ │ AP │ AM1 │ AM2 │ A1H │ A2H │ ║
║ ├────────┼────────┼────────┼────────┼────────│ ║
║ │ 0 │ 2.8 0 │ 0 │ 0 │ ║
║ └────────┴────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬────────┬────────┐ ║
║ │ ASP │ AS1 │ AS2 │ AS1H │ AS2H │ ║
║ ├────────┼────────┼────────┼────────┼────────┤ ║
║ │ 0 │ 12.06 0 │ 0 │ 0 │ ║
║ └────────┴────────┴────────┴────────┴────────┘ ║
╚═══════════════ ══════════════════════════════════════════════╝
ПРОГРАММА РДТ2
---------------
РЕЗУЛЬТАТЫ СЧЕТА:
-----------------
При действии постоянных и длительных нагрузок:
Прогиб F= 3.41
Жесткость :
не достаточна -- дефицит 22.65 процентов
Ширина нормальных трещин ACRC2= .185 мм
Трещиностойкость :
достаточна -- резерв 38.43 процентов
Момент трещинообразования MCRC= 201300.00 кгс*см
При действии постоянных, длит. и кратковрем. нагрузок:
Прогиб F 4.38 см
Жесткость :
не достаточна -- дефицит 57.60 процентов
Ширина нормальных трещин ACRC1= .228 мм
Трещиностойкость :
достаточна -- резерв 43.07 процентов
Момент трещинообразования MCRC= 201300.00 кгс*см
ИСХОДНЫЕ ДАННЫЕ
╔═══════════════════════════════════════════════════════════════════╗
║ ┌──────┬──────┬─────┬──────┬─────────┬────────┬────────┬────────┐ ║
║ │ AMSP │ AMS1 │ AMS2│ D │ ESP │ ES1 │ ES2 │ ES1H │ ║
║ ├──────┼──────┼─────┼──────┼─────────┼────────┼────────┼────────┤ ║
║ 2.8 │ 2.8 │ 2.8 │ 16 │ 2000000 0 │ 0 │ 0 │ ║
║ └──────┴──────┴─────┴──────┴─────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬─────────┬────────┬────────┐ ║
║ │ ES2H │ EB │ RERSP │ RERS1 │ RERS2 │ SIGSP │ ║
║ ├────────┼────────┼────────┼─────────┼────────┼────────┤ ║
║ │ 0 │ 245000 4000 │ 0 │ 0 │ 2108 │ ║
║ └────────┴────────┴────────┴─────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬─────────┬────────┬────────┐ ║
║ │ RBSER │ RBTSER │ RBP │ RBSERP │ SERP │ SIG8 ║
║ ├────────┼────────┼────────┼─────────┼────────┼────────┤ ║
║ │ 153 │ 14.3 │ 183.3 │ 107.1 │ 10.00 │ 350 │ ║
║ └────────┴────────┴────────┴─────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬─────────┬────────┬────────┐ ║
║ │ K │ K1 │ AL │ BET │ KDEL │ FIB1 │ ║
║ ├────────┼────────┼────────┼─────────┼────────┼────────│ ║
║ │ 1 │ 1 │ 0.6 │ 2.5 │ 1 │ 0.85 │ ║
║ └────────┴────────┴────────┴─────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬─────────┬───────┐ ║
║ │ BET1 │ PSIB │ ETA │ VB │ VB1 │ ║
║ ├────────┼────────┼────────┼─────────┼───────│ ║
║ │ 1.8 │ 0.9 │ 1 │ 1 │ 0 │ ║
║ └────────┴────────┴────────┴─────────┴───────┘ ║
║ ┌────────┬────────┬────────┬─────────┬───────┬────────┐ ║
║ │ L │ N │ DOP │ KOH │ T8 │ T9 │ ║
║ ├────────┼────────┼────────┼─────────┼───────┼────────┤ ║
║ │ 555 │ 1 │ 0 │ 0 │ 0 │ 0 │ ║
║ └────────┴────────┴────────┴─────────┴───────┴────────┘ ║
║ ┌────────┬────────┬────────┬────────┐ ║
║ │ FIB2 │ NU │ FILS │ FIL0 │ ║
║ ├────────┼────────┼────────┼────────│ ║
║ │ 2 │ 0.15 │ 0.8 │ 0 │ ║
║ └────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬────────┐ ║
║ │ FIB2K │ NUK │ FILSK │ FIL0K │ ║
║ ├────────┼────────┼────────┼────────│ ║
║ │ 1 │ 0.45 │ 1.1 │ 1 │ ║
║ └────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┐ ║
║ │ FD │ ACRC1D │ ACRC2D │ ║
║ ├────────┼────────┼────────│ ║
║ │ 2.82 │ 0.4 │ 0.3 │ ║
║ └────────┴────────┴────────┘ ║
╚═══════════════════════════════════════════════════════════════════╝
╔═══════════════════════════════════════════════════════════════╗
║ ┌────────┬────────┬─────────┬─────────┐ ║
║ │ СЕЧ │ MW │ MTOT │ MF │ ║
║ ├────────┼────────┼─────────┼─────────┤ ║
║ │ 1 │134400 726200 │ 544400 │ ║
║ └────────┴────────┴─────────┴─────────┘ ║
║ ┌────────┬────────┬────────┬────────┬────────┬────────┐ ║
║ │ H │ B │ HFH │ BFH │ HF │ BF │ ║
║ ├────────┼────────┼────────┼────────┼────────┼────────│ ║
║ │ 24 │ 39.1 │ 3.9 │ 152.5 │ 3.9 │ 152.5 │ ║
║ └────────┴────────┴────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬────────┬────────┐ ║
║ │ AP │ AM1 │ AM2 │ A1H │ A2H │ ║
║ ├────────┼────────┼────────┼────────┼────────│ ║
║ │ 2.8 │ 0 │ 0 │ 0 │ 0 │ ║
║ └────────┴────────┴────────┴────────┴────────┘ ║
║ ┌────────┬────────┬────────┬────────┬────────┐ ║
║ │ ASP │ AS1 │ AS2 │ AS1H │ AS2H │ ║
║ ├────────┼────────┼────────┼────────┼────────┤ ║
║ │ 12.06 0 0 │ 0 │ 0 │ ║
║ └────────┴────────┴────────┴────────┴────────┘ ║
╚═══════════════════════════════════════════════════════════════╝
ПРОГРАММА РДТ2
---------------
РЕЗУЛЬТАТЫ СЧЕТА:
-----------------
При действии постояных и длительных нагрузок:
Прогиб F= 1.41
Жесткость :
достаточна -- резерв 50.17 процентов
Ширина нормальных трещин ACRC2= .076 мм
Трещиностойкость :
достаточна -- резерв 74.55 процентов
Момент трещинообразования MCRC= 536657.10 кгс*см
При действии постояных, длит. и кратковрем. нагрузок:
Прогиб F 2.03 см
Жесткость :
достаточна -- резерв 28.18 процентов
Ширина нормальных трещин ACRC1= .119 мм
Трещиностойкость :
достаточна -- резерв 70.25 процентов
Момент трещинообразования MCRC= 536657.10 кгс*см
1. В.С.Мартемьянов, В.И.Саунин, Н.В.Стачева. Проектирование сборных железобетонных плит перекрытий многоэтажных производственных зданий. Методические указания к курсовому проекту по железобетонным конструкциям. Омск, редакционно-издательский отдел СибАДИ, 1986-36с.
2. СНиП 2.03.01-84. Бетонные и железобетонные конструкции.
3. СНиП 2.01.07-85. Нагрузки и воздействия.