Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

где ~ дважды непрерывно дифференцируемая векторфункция

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024

5

Рассмотрим систему

, ,

(1)

где   дважды непрерывно дифференцируемая вектор-функция. Пусть некоторая траектория системы (1), содержащаяся при  в ограниченной области . В дальнейшем будем также предполагать, что  в замыкании  области .

Введём в рассмотрение симметричную не особую матрицу , где – дважды непрерывно дифференцируемые вектор-функции, и  дважды непрерывно дифференцируемую вектор-функцию , удовлетворяющую неравенству

 .

Пусть – некоторая симметричная  – матрица, –дифференцируемая функция,  и –числовые последовательности, удовлетворяющие условиям , , . Здесь  и – некоторые числа.

Введём также обозначение

.

Теорема. Пусть выполнено неравенство

  1.   .

Тогда если квадратичная форма  на множестве  положительно определена и выполнено неравенство

  1.  , то траектория  орбитально асимптотически устойчива.

Если  квадратичная форма  на множестве  не вырождена, может принимать отрицательные значения и выполнены неравенства

  1.  , , , то траектория  будет орбитально неустойчивой.

Доказательство. Рассмотрим множество . Здесь   некоторое достаточно малое число.

Зафиксируем некоторую точку  и будем изучать поверхность  в некоторой достаточно малой окрестности точки . Из  следует, что найдётся число  такое, что , . Возьмём число , близкое к . В этом случае .Определим теперь отображение  точки  в гиперплоскость  таким образом, чтобы

.

(2)

При этом число  будем выбирать так, чтобы , а матрицу  такой, чтобы имело место соотношение (2). Ясно, что

.

Здесь , считаем, что величина  является большой. Отсюда следует, что для выполнения соотношения (2) достаточно, чтобы выполнялось равенство

Из соотношения (2) следует, что вектор ,нормальный к  в точке , может быть определён следующим образом:

,

где

,

.

Заметим, что

.

Поэтому

.

Отсюда и из соотношения (3) получим, что

.

(4)

Покажем теперь, что траектория  системы (1), проходящая в момент времени  через точку , удовлетворяет с точностью до  соотношению

.

(5)

Для этого отметим, что при малых  .Поэтому вектор  с точностью до  принадлежит гиперплоскости , которая параллельна гиперплоскости, касательной к поверхности , и проходит через точку

.

Ясно также, что  проходит через расположенную в гиперплоскости  точку , где

.

Отсюда, из соотношения  и того факта, что векторы, нормальные к  и  в точке , совпадают с точностью до , следует соотношение (5).

Из включения (5), равенства (4) и условия 1) теоремы вытекает при всех  соотношение , где – некоторая непрерывная функция, удовлетворяющая неравенству

.

Используя это неравенство, условия 2), 3) теоремы и стандартную ляпуновскую технику, получим утверждение теоремы.

В случае , , , , получим широко известный признак Пуанкаре.


Список использованных источников

  1.  Демидович Б. П. Обыкновенные дифференциальные уравнения. М., 1970.
  2.  Леонов Г. А. Многомерный аналог признака орбитальной устойчивости Пуанкаре.// Дифференциальные уравнения, 1988 №9

Хартман Ф. Обыкновенные дифференциальные уравнения. М., 1970.




1. тематике в 5 классе Тема урока Доли
2. Обжалование результатов выездной налоговой проверки
3. Сравнение характеристик внешних устройств памяти
4. Технология сотовой связи в стандарте GSM.html
5. Особенности российского избирательного процесса
6. The term ldquo;Ecologyrdquo; ws introduced by-E
7. Лекция ’1 Экономика производства Введение План- Сущность экономики предмет и содержание; Принци.html
8. Сравнительный анализ имиджа телеведущих Михаила Осокина и Анатолия Лазарева
9. I ст
10. Мозг и творчество
11. Букера и Гринцане Кавур за роман Не уходи
12. Cheerful Temper From my fther I received the best inheritnce nmely ldquo;good temper
13. Измерения в маркетинговых исследованиях
14. мысленного понятийного
15. Греки на русской службе
16. Реалист но бывает ласков и сентиментален с теми кого любит
17. а философия науки вырабатывает нормативную методологию на основе которой историк реконструирует ldquo;внут
18. ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра философии Муза Д
19. Расчеты по целевому финансированию КРЕДИТ 86 ~ начислены средства целевого финансирования.html
20. статьям калькуляции