У вас вопросы?
У нас ответы:) SamZan.net

Математическая логика и теория алгоритмов

Работа добавлена на сайт samzan.net: 2016-03-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 6.4.2025

Библиотека 5баллов.ru

Соглашение об использовании 

Материалы данного файла могут быть использованы без ограничений для написания собственных работ с целью последующей сдачи в учебных заведениях.

Во всех остальных случаях полное или частичное воспроизведение, размножение или распространение материалов данного файла допускается только с письменного разрешения администрации проекта www.5ballov.ru.

РосБизнесКонсалтинг

Математическая логика и теория алгоритмов

Содержание.

  1.  Постановка задачи.
  2.  Построение модели.  
  3.  Описание алгоритма
  4.  Доказательство правильности алгоритма
  5.  Блок-схема алгоритма
  6.  Описание переменных и программа
  7.  Расчёт вычислительной сложности
  8.  Тестирование
  9.  Список литературы

Постановка задачи.

Перечислить все способы расстановки n ферзей на шахматной доске n на n, при которых они не бьют друг друга.

Построение модели.

Очевидно, на каждой из n горизонталей должно  стоять  по ферзю. Будем называть k-позицией (для k = 0, 1,...,n) произвольную расстановку k ферзей на k нижних горизонталях (ферзи могут бить друг друга). Нарисуем "дерево позиций": его корнем будет единственная 0-позиция, а из каждой  k-позиции  выходит  n стрелок  вверх в (k+1)-позиции. Эти n позиций отличаются положением ферзя на (k+1)-ой горизонтали. Будем считать, что расположение их на рисунке соответствует положению этого ферзя: левее та позиция, в которой ферзь расположен левее.

Дерево позиций для n = 2

Данное дерево представлено только для наглядности и простоты представления для n=2.

Среди позиций этого дерева нам надо отобрать те n-позиции, в которых ферзи не бьют друг друга. Программа будет "обходить  дерево" и искать их. Чтобы не делать лишней работы, заметим вот что: если в какой-то k-позиции ферзи бьют друг друга, то ставить дальнейших ферзей смысла нет. Поэтому, обнаружив это, мы будем прекращать построение дерева в этом направлении.

Точнее, назовем k-позицию допустимой, если после удаления верхнего ферзя оставшиеся не бьют друг друга. Наша программа будет рассматривать только допустимые позиции.

Описание алгоритма.

Разобьем задачу на две части: (1) обход произвольного дерева и (2) реализацию дерева допустимых позиций.

Сформулируем задачу обхода произвольного дерева. Будем считать, что у нас имеется Робот, который в каждый момент находится в одной из вершин дерева. Он умеет выполнять команды:

вверх_налево  (идти по самой левой из выходящих вверх стрелок)

вправо (перейти в соседнюю  справа вершину)

вниз (спуститься вниз на один уровень)

вверх_налево

вправо

вниз

и проверки, соответствующие возможности выполнить каждую из команд,   называемые "есть_сверху", "есть_справа", "есть_снизу" (последняя истинна всюду, кроме корня). Обратите внимание, что команда "вправо" позволяет перейти лишь к "родному брату", но не к "двоюродному".

Будем считать, что у Робота есть команда "обработать" и что его задача - обработать все листья (вершины, из которых нет стрелок вверх, то есть где условие "есть_сверху" ложно). Для нашей  шахматной задачи команде обработать будет соответствовать проверка и печать позиции ферзей.

Доказательство правильности приводимой далее программы использует такие определения. Пусть фиксировано положение Робота в одной из вершин дерева. Тогда все листья дерева разбиваются на три  категории: над Роботом, левее Робота и правее Робота. (Путь из корня в лист может проходить через вершину с Роботом, сворачивать влево,  не доходя до нее и сворачивать вправо, не доходя до нее.) Через (ОЛ) обозначим условие "обработаны все листья левее Робота", а через (ОЛН) - условие "обработаны все листья левее и над Роботом".

Нам понадобится такая процедура:

 procedure вверх_до_упора_и_обработать

{дано: (ОЛ), надо: (ОЛН)}

 begin

     {инвариант: ОЛ}

while есть_сверху do begin

вверх_налево

   end

   {ОЛ, Робот в листе}

обработать;

{ОЛН}

 end;

Основной алгоритм:

дано: Робот в корне, листья не обработаны

надо: Робот в корне, листья обработаны

 {ОЛ}

вверх_до_упора_и_обработать

{инвариант: ОЛН}

while есть_снизу do begin

if есть_справа then begin {ОЛН, есть справа}

вправо;

{ОЛ}

вверх_до_упора_и_обработать;

   end else begin

   {ОЛН, не есть_справа, есть_снизу}

вниз;

  end;

end;

{ОЛН, Робот в корне => все листья обработаны}

Осталось воспользоваться следующими свойствами команд Робота (сверху записаны условия, в которых выполняется команда, снизу - утверждения о результате ее выполнения):

  1.  {ОЛ, не есть_сверху} обработать {ОЛН}
  2.  {ОЛ} вверх_налево {ОЛ}
  3.  {есть_справа, ОЛН} вправо {ОЛ}
  4.  {не есть_справа, ОЛН} вниз{ОЛН}

Теперь решим задачу об обходе дерева, если мы хотим, чтобы обрабатывались все вершины (не только листья).

Решение. Пусть x - некоторая вершина. Тогда любая вершина  y относится к одной из четырех категорий. Рассмотрим путь из корня в y. Он может:

а) быть частью пути из корня в x (y ниже x);

б) свернуть налево с пути в x (y левее x);

в) пройти через x (y над x);

г) свернуть направо с пути в x (y правее x);

В частности, сама вершина x относится к категории в). Условия теперь будут такими:

(ОНЛ) обработаны все вершины ниже и левее;

(ОНЛН) обработаны все вершины ниже, левее и над.

Вот как будет выглядеть программа:

procedure вверх_до_упора_и_обработать

{дано: (ОНЛ), надо: (ОНЛН)}

 begin

  {инвариант: ОНЛ}

while есть_сверху do begin

обработать

вверх_налево

  end

  {ОНЛ, Робот в листе}

обработать;

{ОНЛН}

 end;

Основной алгоритм:

 дано: Робот в корне, ничего не обработано

надо: Робот в корне, все вершины обработаны

 {ОНЛ}

вверх_до_упора_и_обработать

{инвариант: ОНЛН}

while есть_снизу do begin

if есть_справа then begin {ОНЛН, есть справа}

вправо;

{ОНЛ}

вверх_до_упора_и_обработать;

  end else begin

    {ОЛН, не есть_справа, есть_снизу}

вниз;

  end;

end;

 {ОНЛН, Робот в корне => все вершины обработаны}

Приведенная только что программа обрабатывает вершину до того, как обработан любой из ее потомков. Теперь изменим ее, чтобы каждая вершина, не являющаяся листом, обрабатывалась дважды: один раз до, а другой раз после всех своих потомков. Листья по-прежнему обрабатываются по разу:

Под "обработано ниже и левее" будем понимать "ниже обработано по разу, слева обработано полностью (листья по  разу, остальные по два)". Под "обработано ниже, левее и над" будем понимать "ниже обработано по разу, левее и над - полностью".

Программа будет такой:

procedure вверх_до_упора_и_обработать

{дано: (ОНЛ), надо: (ОНЛН)}

 begin

  {инвариант: ОНЛ}

while есть_сверху do begin

обработать

вверх_налево

  end

  {ОНЛ, Робот в листе}

обработать;

{ОНЛН}

 end;

Основной алгоритм:

 дано: Робот в корне, ничего не обработано

надо: Робот в корне, все вершины обработаны

 {ОНЛ}

вверх_до_упора_и_обработать

{инвариант: ОНЛН}

while есть_снизу do begin

if есть_справа then begin {ОНЛН, есть справа}

вправо;

{ОНЛ}

вверх_до_упора_и_обработать;

  end else begin

    {ОЛН, не есть_справа, есть_снизу}

вниз;

обработать;

  end;

end;

 {ОНЛН, Робот в корне => все вершины обработаны полностью}

Доказательство правильности алгоритма.

Докажем, что приведенная программа завершает работу (на любом конечном дереве).

Доказательство. Процедура вверх_налево завершает работу (высота Робота  не может увеличиваться бесконечно). Если программа работает бесконечно, то, поскольку листья не обрабатываются повторно, начиная с некоторого момента ни один лист не обрабатывается. А это возможно,  только если Робот все время спускается вниз. Противоречие.

Блок-схема алгоритма.

Описание переменных и программа.

Теперь реализуем операции с деревом позиций. Позицию будем представлять  с помощью переменной k: 0..n (число ферзей) и массива c: array [1..n] of 1..n (c [i] - координаты ферзя на i-ой горизонтали; при i > k значение c [i] роли не играет). Предполагается, что все позиции допустимы (если убрать верхнего ферзя, остальные не бьют друг друга).

program queens;

const n = ...;

var  k: 0..n;

c: array [1..n] of 1..n;

   procedure begin_work; {начать работу}

   begin

k := 0;

end;

function danger: boolean; {верхний ферзь под боем}

    var b: boolean;

i: integer;

begin

if k <= 1 then begin

danger := false;

end else begin

b := false; i := 1;

       {b <=> верхний ферзь под боем ферзей с номерами < i}

       while i <> k do begin

         b := b or (c[i]=c[k]) {вертикаль}

or (abs(c[i]-c[k])=abs(i-k)); {диагональ}

         i := i+ 1;

end;

danger := b;

end;

end;

   function is_up: boolean {есть_сверху}

   begin

is_up := (k < n) and not danger;

end;

   function is_right: boolean {есть_справа}

   begin

is_right := (k > 0) and (c[k] < n);

end;

   {возможна ошибка: при k=0 не определено c[k]}

   function is_down: boolean {есть_снизу}

   begin

is_up := (k > 0);

end;

   procedure up; {вверх_налево}

   begin {k < n}

k := k + 1;

c [k] := 1;

end;

   procedure right; {вправо}

   begin {k > 0,  c[k] < n}

c [k] := c [k] + 1;

end;

   procedure down; {вниз}

   begin {k > 0}

k := k - 1;

end;

   procedure work; {обработать}

     var i: integer;

begin

if (k = n) and not danger then begin

for i := 1 to n do begin

write ('<', i, ',' , c[i], '> ');

end;

writeln;

end;

end;

   procedure UW; {вверх_до_упора_и_обработать}

   begin

while is_up do begin

up;

end

work;

end;

begin

begin_work;

UW;

while is_down do begin

if is_right then begin

right;

UW;

end else begin

down;

end;

end;

end.

Расчёт вычислительной сложности.

Емкостная сложность:

В программе используется одномерный массив размерности n, поэтому объём входа и объём выхода совпадают и равны n. Количество пременных равно 3(i,b,k) + 1(const n), т.е. объём промежуточных данных равен 4.

С(n)=n+4

Временная сложность:

Если рассматривать обработку каждого листа, без проверки на пути к нему, то временная сложность T(n) = n+n+n+n+…+nn .

Но в случае, когда каждая вершина проверяется, временная сложность T(n) = o(n+n+n+n+…+nn). И это тем вернее, чем больше n. Данный вывод получен на основе приведённых ниже статистических данных:

1

Общее кол-во листьев

2

Кол-во  вершин построенного дерева.

2

Время построения(сек)

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

Общее кол-во листьев

Кол-во  вершин построенного дерева.

2057

166926

Время построения(сек)

<0.01

.21

.20

.48

.12

.29

Тестирование.

Построенная по описанному алгоритму программа при различных n выдаёт следующие данные:

n=4

<1,2><2,4><3,1><4,3>

<1,3><2,1><3,4><4,2>

Т.е. количество расстановок равно 2. Ниже приведена таблица зависимости от n количества решений (R).

n =

13

R=

Cписок литературы.

  1.  Кузнецов О.П. Адельсон-Вельский Г.М. Дискретная математика для инженера. –М.: Энергоатомиздат, 1988.
  2.  Евстигнеев В.А. Применение теории графов в программировании. –М.:Наука, 1984.
  3.  Основной алгоритм находился на BBS “Master of Univercity” в файле shen.rar в файловой области “Bardak” (тел. 43-27-03; время работы 21.00 –.00; FTN адрес –:5090/58).




1. Тактика действий танковых подразделений иностранных армий в локальных конфликтах.html
2. Александровские Мореходные Классы во Владивостоке в 1890 1902 гг
3. Контрольная работа- Критерии оценки эффективности инвестиционных проектов
4. Затверджую циклової комісії спеціальних Зав.
5. Варианты ответов А
6. Кашмир
7. практикум по биологической химии учебные указания к проведению лабораторных работ по биологической
8. іншого способу надійно з~єднати металеві конструкції і труби просто не існує
9. принятие решения о размещении эмиссионных ценных бумаг; 2 утверждение решения о выпуске дополнительном в
10. Тема- Пасха ~ Светлое Воскресение Христово