Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
СОДЕРЖАНИЕ
1. Цепи и циклы питания.
2. Экологическая пирамида.
3. Поток веществ и энергии.
Список использованной литературы
1. Цепи и циклы питания
Как уже отмечалось, между организмами биоценоза устанавливаются прочные пищевые взаимоотношения. В результате возникают цепи питания. Они и объединяют прямо или косвенно большую группу организмов в единый комплекс. Цепь питания обычно состоит из трех основных звеньев.
Первое звено образуют так называемые продуценты или производители. Это автотрофные зеленые растения, которые в процессе фотосинтеза создают органическое вещество первичную биологическую продукцию и аккумулируют солнечную энергию.
Второе звено представлено консументами, т.е. потребителями, гетеротрофными организмами, питающимися растениями или другими гетеротрофами. Различают консументы первого порядка (фитофаги), второго порядка (плотоядные животные, питающиеся фитофагами), третьего порядка (хищники, питающиеся другими животными) и т. д.
Третье звено это редуценты, или деструкторы, разрушители органического вещества. К ним относятся микроорганизмы, грибы и организмы, питающиеся мертвым органическим веществом и минерализующие его до простых неорганических соединений.
В каждой цепи питания формируются определенные трофические уровни, характеризующиеся различной интенсивностью протекания потока веществ и энергии. Зеленые растения созидатели органического вещества образуют первый трофический уровень, фитофаги второй, плотоядные животные третий и т. д.
Все звенья цепи питания взаимосвязаны и взаимозависимы. Между ними от первого к последнему осуществляется передача вещества и энергии. Суть этого явления будет рассмотрена ниже. Сейчас важно обратить внимание на то, что при передаче энергии с одного трофического уровня на другой происходит ее потеря. В результате цепь питания не может быть длинной, как это иногда изображают графически. Скорее всего она состоит из 46 звеньев (рис. 1). Однако такие цепи в чистом виде в природе обычно не встречаются, поскольку одни и те же виды могут быть одновременно в разных звеньях. Это происходит потому, что монофагов в природе чрезвычайно мало, чаще встречаются олигофаги и полифаги. Рассмотрим, к примеру, цепь питания, основным звеном которой является капуста. Следующим звеном в ней будут гусеницы капустной белянки, капустной моли, капустной совки, зайцы, т.е. все животные, питающиеся капустой. Следовательно, капуста здесь выступает основным звеном многих цепей, поскольку от последующего звена (гусеницы, зайцы и др.) могут тянуться еще цепи. Причем каждый организм, питающийся капустой, одновременно может быть составной частью не одной, а нескольких цепей. Так, заяц, поедая разные растения, входит как консумент первого порядка в большое количество цепей питания. Хищники также питаются различными растительноядными и плотоядными животными, а потому являются звеньями многих цепей.
Рис. 1. Упрощённая схема цепи питания
Подобные общие звенья связывают цепи питания в сложную систему. В результате в каждом биоценозе исторически формируются комплексы цепей питания, представляющие собой единое целое. Так создаются циклы, или сети, питания (рис. 2). Если принять во внимание, что практически каждый организм цепи питания выступает в роли хозяина по крайней мере одного, а чаще нескольких паразитов, составляющих в свою очередь звенья других цепей, то нетрудно вообразить всю сложность циклов питания биоценоза.
Рис. 2. Пищевые связи в биоценозе арктических тундр летом (по В.М. Сдобникову из Н.П. Наумова, 1963)
2. Экологическая пирамида
В любой цепи питания не вся пища используется на рост особи, т.е. на накопление биомассы. Часть ее расходуется на удовлетворение энергетических затрат организма: на дыхание, движение, размножение, поддержание температуры тела. При этом биомасса одного звена не может быть переработана последующим полностью. В противном случае исчезли бы ресурсы для развития живой материи. В каждом последующем звене пищевой цепи происходит уменьшение биомассы. Обычно, чем больше масса начального звена, тем больше она в последующих звеньях. Это касается не только биомассы, но и численности особей, и запаса энергии.
Данное явление было изучено Ч. Элтоном и названо пирамидой чисел или пирамидой Элтона. Различают пирамиду численности (особей), пирамиду биомассы и пирамиду энергии.
Основание пирамиды образуют растения-продуценты. Над ними располагаются фитофаги. Следующее звено представлено консументами второго порядка. И так далее до вершины пирамиды, которую занимают наиболее крупные хищники. Высота пирамиды обычно соответствует длине пищевой цепи. И поскольку на верхние этажи пирамиды энергия доходит в очень малых количествах, цепь редко состоит более чем из 56 звеньев.
Ю. Одум сделал расчеты потока энергии от звена к звену в упрощенной теоретической экосистеме, сведя ее к одной примитивной цепи, функционирующей в течение года. Он рассуждал следующим образом. Допустим, имеется посев люцерны на площади в 4 га. На этом поле кормятся телята (предполагается, что они едят только люцерну), а телятиной питается 12-летний мальчик. Результаты расчетов, представленные в виде трех пирамид численности, биомассы и энергии, свидетельствуют, что люцерна использует всего 0,24 % всей падающей на поле солнечной энергии, из которой 8 % приходится на телят; 0,7 % энергии, накопленной телятами, расходуется на развитие и рост ребенка с 12 до 13 лет. Несмотря на то что рассматриваемая схема искусственна, она все же дает четкое представление о масштабах снижения коэффициента полезного действия по мере перехода от основного звена в пирамиде к ее вершине: из всей солнечной энергии, падающей на 4 га люцернового поля, лишь немногим больше миллионной части ее хватает на пропитание мальчика в течение года.
Из трех типов экологических пирамид пирамида энергии дает наиболее полное представление о функциональной организованности сообществ, потому что количество и масса организмов зависят не от количества фиксированной энергии в данный момент на предыдущем уровне, а от скорости продуцирования пищи. Пирамида энергии отражает картину скоростей прохождения массы пищи через пищевую цепь.
Правило пирамиды чисел универсально и объективно отражает круговорот веществ и поток энергии в биосфере. В масштабе всей биосферы это правило никогда не нарушается.
Правда, на незначительных участках могут быть некоторые отклонения от него. Это имеет место при вспышках массового размножения вредителей, когда полностью уничтожается растительность и на какой-то ограниченной территории временно разрушается цепь питания. В данном случае в движение приходит все сообщество животных и растений, связанных между собой пищевыми отношениями.
3. Поток веществ и энергии
Жизнь, возникнув на Земле, вот уже на протяжении миллиардов лет находится в постоянном развитии. Это происходит благодаря тому, что элементы живого вещества, поступающие из окружающей среды, пройдя через ряд организмов, снова возвращаются во внешнюю среду, а затем опять включаются в состав живого вещества. Таким образом, каждый элемент используется живой материей многократно. Именно круговоротом веществ и обусловлено неограниченное временем существование и постоянное развитие и совершенствование жизни на Земле. Этот так называемый биогенный круговорот веществ важнейшая функция любого биогеоценоза. Его характер определяют изменения массы живых организмов (биомассы), структуры биогеоценоза, химизма среды. Однако биогенный круговорот веществ не следует понимать в абсолютном смысле. Как бы там ни было, эти вещества, переходя с одного трофического уровня на другой, высвобождаясь и вновь включаясь в состав живого вещества, частично исключаются из круговорота. В результате на Земле происходит накопление органических соединений в виде залежей полезных ископаемых (торф, уголь, нефть, газ, горючие сланцы). Но все это не отвергает общего правила. Существенно биомасса на Земле не накапливается, а удерживается на каком-то определенном уровне, поскольку она постоянно разрушается и вновь созидается из одного и того же строительного материала, т. е. в ее пределах протекает беспрерывный круговорот веществ.
Биогенный круговорот веществ принял определенный характер с появлением зеленых растений, осуществляющих процессы фотосинтеза. Рассмотрим это на примере круговорота кислорода продукта фотосинтеза растений. Практически весь молекулярный кислород земной атмосферы возник и поддерживается на определенном уровне благодаря деятельности зеленых растений. В большом количестве он расходуется организмами в процессе дыхания. Но, кроме того, обладая высокой химической активностью, кислород непрерывно вступает в соединения почти со всеми элементами земной коры. Если бы зеленые растения не выделяли такого огромного количества кислорода, он бы в конце концов полностью исчез из атмосферы, и тогда преобразился бы весь облик Земли: исчезли бы почти все организмы, прекратились бы все окислительные процессы планета наша стала бы безжизненной. Однако это ей не угрожает именно потому, что в природе происходит нескончаемый круговорот веществ. Подсчитано, что весь кислород, содержащийся в атмосфере, оборачивается через организмы (связываясь при дыхании и высвобождаясь при фотосинтезе) за 2000 лет, углекислота атмосферы совершает круговорот в обратном направлении за 300 лет, а все воды на Земле разлагаются и воссоздаются путем фотосинтеза и дыхания за 2 000 000 лет.
Однако для столь грандиозного биологического круговорота веществ необходима энергия. Источником ее является солнечная радиация, аккумулируемая зелеными растениями-автотрофами. Солнечная энергия также регулярно циркулирует в биогеоценозе. Но в отличие от круговорота веществ, который протекает по замкнутому кругу, переходя в цепях питания с одного трофического уровня на другой, энергия постоянно расходуется. До 30 % ее рассеивается в атмосфере или отражается облаками и поверхностью Земли, до 20 % поглощается в верхних слоях атмосферы (водяные пары, капельки воды, пылевые частицы), приблизительно 50 % достигает суши и поверхности океана и поглощается в форме теплоты. Лишь ничтожная часть, всего около 0,10,2 % энергии, получаемой Землей от Солнца, улавливается зелеными растениями и обеспечивает весь биологический круговорот веществ в биосфере.
Более половины энергии, связанной при фотосинтезе, тут же расходуется на дыхание растений, а остальная поступает в пищевые цепи.
Суммарно только около 1 % лучистой энергии Солнца, которая падает на растение, превращается в потенциальную энергию химических связей синтезированных органических веществ. Более половины этой энергии расходуется на жизнь самих растений, а остальная поступает в пищевые цепи и может быть использована гетеротрофными организмами при питании. Когда животное съедает растение, большая часть энергии, которая содержится в пище, используется на различные процессы жизнедеятельности, превращаясь при этом в теплоту и рассеиваясь в пространстве. Только 520 % энергии пищи переходит во вновь созданное живое вещество тела животного. Если растительноядное животное съедается хищником, то вновь теряется большая часть заключенной в пище энергии. В результате таких огромных потерь полезной энергии цепи питания не могут быть очень длинными.
Таким образом, энергия Солнца, утилизированная зелеными растениями, превращается в потенциальную энергию химических связей органических соединений, из которых строится тело самих растений. В организме растительноядного животного эти органические вещества окисляются с выделением такого количества энергии, которое было затрачено на их синтез растением. Часть ее используется для жизни животного, а остальная, согласно второму закону термодинамики (переход энергии из одной формы в другую сопровождается снижением количества полезной энергии), превращается в теплоту и рассеивается в пространстве, т.е. уходит из биоценоза (энтропия).
Поток энергии в экосистеме может быть проиллюстрирован схемой простой цепи питания (рис. 3). Солнечная энергия, полученная растением, лишь частично используется в процессе фотосинтеза углеводов.
Рис. 3. Поток энергии через три уровня простой пищевой цепи (по П. Дювиньо, 1973)
Фиксированная в углеводах энергия представляет собой валовую продукцию биогеоценоза (Пв). Углеводы идут на построение протоплазмы и рост растений, причем часть их энергии затрачивается на дыхание (Д1). В результате чистая продукция (Пч) определяется по формуле
Пч = Пв - Д1.
Таким образом, поток энергии, проходящий через уровень продуцентов, т.е. валовую продукцию, можно представить так:
Пв = Пч + Д1
Определенный объем созданных продуцентами веществ служит кормом (К) фитофагов, остальные в конце концов отмирают и перерабатываются редуцентами (Н). Корм, ассимилированный фитофагами (А2), лишь частично используется для образования их биомассы (П2).
В основном он растрачивается на обеспечение энергией процессов дыхания (Д2) и в некоторой степени выводится из организма в виде выделений и экскрементов (Э). Поток энергии, проходящий через второй трофический уровень, выражается следующим образом:
А2 = П2 + Д2.
Консументы второго порядка (хищники) не истребляют всю биомассу своих жертв, но и из того количества ее, которое они уничтожают, лишь часть используется на создание биомассы их собственного трофического уровня. Остальная же часть в основном затрачивается на энергию дыхания, а также выделяется с экскретами и экскрементами. Поток энергии, проходящий через уровень консументов второго порядка (плотоядные), выражается формулой:
Аз = Пз + Дз.
Анализируемая схема наглядно показывает, что поток энергии, который выражается количеством ассимилированного по цепи питания вещества, на каждом трофическом уровне уменьшается, т.е. Пч>П2>Пз и т. д.
Таким образом, поскольку определенное количество вещества может быть использовано каждым биоценозом неоднократно, а порция энергии лишь один раз, в экосистеме осуществляется не «круговорот веществ и энергии», как иногда указывается, а каскадный перенос (поток) энергии (рис. 4) и круговорот веществ, т.е. применение понятия «круговорот» правомерно только по отношению к веществам.
Рис. 4. Поток энергии в биосфере (по Ф. Рамаду, 1981)
Этот процесс протекает в природе с определенной скоростью. Поэтому биологическую продуктивность можно выразить продукцией за сезон, за год, за несколько пет или за любую другую единицу времени. Для наземных и донных организмов она определяется количеством биомассы на единицу площади, а для планктонных и почвенных на единицу объема.
Следовательно, биологическая продуктивность представляет собой количество воспроизведенной биомассы на 1 м2 площади (или на 1 м3 объема) в единицу времени и выражается чаще всего в граммах углерода или сухого органического вещества. Биологическую продуктивность нельзя смешивать с биомассой. Допустим, за год планктонные водоросли на единицу площади синтезируют столько же органического вещества, сколько и высокопродуктивные леса, однако биомасса последних в сотни тысяч раз больше.
Биомасса того или иного биоценоза не дает четкого представления о его продуктивности. Это связано с тем, что скорость образования биомассы (продуктивность) в разных биоценозах неодинакова. Поэтому биоценозы различаются не только биомассой, но и продуктивностью, т. е. скоростью создания определенного количества биомассы. Луговые степи дают больший годовой прирост биомассы, чем хвойные леса. При средней фитомассе 23 т/га годовая продукция их (оставляет 10 т/га, тогда как у хвойных лесов при фитомассе 200 т/га она равна 6 т/га. Популяции мелких млекопитающих по сравнению с крупными обладают большой скоростью роста и размножения и дают более высокую продукцию при равной биомассе.
Таким образом, чтобы оценить значение вида (группы видов) для круговорота веществ и в отношении его биологической продуктивности в биоценозе или в биогеоценозе в целом, нужно знать не только его биомассу, но и относительную скорость прироста или время ее полного возобновления.
Продукция каждой популяции за определенное время представляет собой сумму прироста всех особей, включая отделившиеся от организма образования и устраненные (элиминация) по разным причинам особи (смерть, миграция).
В том случае, когда все особи доживают до конца изучаемого периода, продукция равна приросту биомассы. В природе это исключено, и продукция популяции обычно рассчитывается по формуле:
Р = (В2 В1) + Е,
где Р продукция; В1 и В2 соответственно начальная и конечная биомасса; Е элиминация.
Это так называемая чистая продукция. Валовая продукция включает в себя прирост (чистая продукция) и затраты на энергетический обмен.
Необходимо различать первичную продукцию, т.е. продукцию автотрофных организмов, и первичную продуктивность, т.е. скорость, с которой автотрофные организмы (продуценты) в процессе фотосинтеза связывают энергию и запасают ее в форме органического вещества.
Подсчитано, что солнечная энергия, достигающая поверхности Земли в течение года, исчисляется в 5-1020 ккал (21 •1020 кДж). Это составляет 9 млрд. ккал (37,8-109 кДж) на гектар. Один гектар леса в средних широтах продуцирует до 6 т древесины и 4 т листьев, сжигание которых дает 46 млн. ккал (193,2-106 кДж). Значит, эффективность первичной продуктивности леса, т. е. эффективность использования растениями солнечной энергии для создания органического вещества, составляет всего около 0,5% (46х100:9). Конечно, цифры эти чрезвычайно относительны, поскольку эффективность первичной продуктивности зависит от возраста леса, количества деревьев, погодных условий и многих других факторов. Но тем не менее они дают представление о коэффициенте полезного действия биоценоза.
Консументы образуют свою биомассу. Для обозначения биомассы и скорости ее образования консументами применяются термины «вторичная продукция», т. е. продукция гетеротрофных организмов, и «вторичная продуктивность», т. е. скорость образования продукции гетеротрофами. Как уже отмечалось, поток энергии от продуцентов к консументам сопровождается потерями ее. Дело в том, что значительная часть съеденного гетеротрофами корма расходуется на теплопродукцию, на выработку энергии, необходимой для их жизнедеятельности, и лишь небольшое количество его (1,32%) используется на создание вторичной продукции. Например, для получения 1 кг говядины требуется от 70 до 90 кг свежей травы.
При этом необходимо учитывать, что все виды, дающие вторичную продукцию, возникают на основе утилизации вещества и энергии первичной продукции. Но так как при переходе с одного трофического уровня на другой энергия частично затрачивается на нужды энергетического обмена и рассеивается, то продукция каждого последующего трофического уровня меньше продукции предыдущего. Например. продукция (ее выход) фитофагов всегда больше, чем у живущих за их счет хищников.
Большое значение в механизме биологического продуцирования имеют гетеротрофные организмы, утилизирующие поступающее со всех трофических уровней мертвое органическое вещество, частично минерализуя его, частично превращая в вещество микробных тел. Последнее служит важным источником питания многих водных и почвенных животных.
Кроме первичной и вторичной продукции биоценозов, различают промежуточную и конечную продукции. Промежуточная продукция отличается тем, что после потребления другими членами биогеоценоза возвращается в круговорот веществ этой же системы. Конечная продукция исключается из данного биогеоценоза, т. е. выводится за его пределы. Это, к примеру, продукция, получаемая человеком в процессе возделывания сельскохозяйственных культур, разведения домашних животных, охоты, промысла и т. д.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ