Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
В случаях, когда реальные выбросы превышают предельнодопустимые величины, необходимо в системе выброса использовать аппараты для очистки газов от примесей.
Аппараты очистки вентиляционных и технологических выбросов делятся на:
Параметры, характеризующие работу аппаратов очистки:
массовые концентрации примесей в газе до и после аппарата
,
коэффициент гидравлического сопротивления аппарата
плотность и скорость газа в расчетном сечении аппарата
k коэффициент запаса мощности (1,1…1,5)
КПД передачи мощности от двигателя к вентилятору (0,92…0,95) и КПД вентилятора (0,6…0,8)
Для очистки газов от частиц используются сухие пылеуловители циклоны различых типов (цилиндрические, конические и др.).
Газовый поток вводится через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Под действием центробежной силы частицы пыли образуют на стенке циклона пылевой слой, который вместе с частью газа попадает в бункер. Отделение частиц пыли от газа, попавшего в бункер, происзодит при повороте газового потока в бункере на 180о. освободившись от пыли, газовые поток образует вихрь и выходит из бункера, давая начало вихрю газа, покидающему циклон через выходную трубу 3. Для нормальной работы необходима герметичность бункера. Если бункер негерметичен, то из-за подсоса наружного воздуха происходит вынос пыли с потоком через выходную трубу.
Цилиндрические циклоны предназначены для улавливания сухой пыли аспирационных систем. Их рекомендуется использовать для предварительной очистки газов и устанавливать пред фильтрами или электрофильтрами.
Конические циклоны обладают повышенной эффективностью за счет большего гидравлического сопротивления.
Для очистки больших масс газов батарейные циклоны (состоят из большого числа параллельно-установленных циклонных элементов). Эффективность батарейных циклонов ниже из-за перетока газов между циклонными элементами.
Электроочистка (электрофильтры) один из самых совершенных видов очистки газов от пыли и тумана. Процесс основан на ударной ионизации газа, передаче заряда ионов частицам примесей и их осаждении на осадительных и коронирующих электродах.
Аэрозольные частицы, поступая в зону между осадительными и коронирующими электродами (1 и 2), адсорбируют на своей поверхности ионы, приобретая электрический заряд, и получают тем самым ускорение, напрпавленное в сторону электрода с зарядом противоположного знака. Процесс зарядки частиц зависит от подвижности ионов, траектории движения и времени пребывания частиц в зоне коронирующего заряда. Учитывая, что в воздухе и дымовых газах подвижность отрицательных ионов выше, чем положительных, электрофильтры обычно делают с короной отрицательной полярности. Время зарядки аэрозольных частиц невелико и измеряется долями секунды. Движение заряженных частиц к осадительному электроду происходит под действием аэродинамических сил и силы взаимодействия электрического поля и заряда частицы.
Конструкцию фильтров определяют состав и свойства очищаемых газов, концентрация и свойства взвешенных частиц, параметры газового потока, требуемая эффективность очистки и т.д.
Для тонкой очистки газов применят различные фильтры. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них дисперсионных сред. фильтр представляет собой корпус 1, разделенный фильтроэлементом 2 на две полости. При прохождении через фильтроэлемент газы очищаются, части примесей остаются на фильтроэлементе.
Классификация фильтров основана на типе фильтровой перегородки, конструкции фильтра и его назначении, тонкости очистки и др.
По типу перегородки все фильтры делятся на фильтры: 1) с зернистыми слоями (неподвижные свободно насыпанные зернистые материалы, псевдоожиженные слои); 2) с гибкими пористыми перегородками (ткани, войлоки, волокнистые маты, губчатая резина, пенополиуретан и др.); 3) с полужесткими пористыми перегородками (вязаные сетки, прессованные спирали и стружка и др.); 4) с жесткими пористыми перегородками (пористая керамика, пористые металлы и Др.).
Аппараты мокрой очистки газов мокрые пылеуловители характериузются высокой эффективностью очистки от мелкодисперсных пылй от 0,3 мкм а также возможностью очистки от пыли нагретых и взрывоопасных газов. Однако мокрые пылеуловители обладают рядом недостатков, ограничивающих область применения: требуются специальные системы для переработки образовывающегося в процессе работы шлама, необходимость создания оборотных систем подачи воды в пылеуловитель.
Аппараты мокрой очистки газов работают по принципу осаждения частиц пыли на поверхность либо капель, либо пленки жидкости. Осаждение частиц пыли на жидкость происходит под действием сил инерции и броуновского движения.
Основная часть скруббера - сопло Вентури 2, в конфузорную часть которого подводится запыленный поток газа и через центробежные форсунки 1 жидкость на орошение. В конфузорной части сопла происходит разгон газа от входной скорости (ω=15-20 м/с) до скорости в узком сечении сопла 60-150 м/с и более. Процесс осаждения частиц пыли на капли жидкости обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц жидкости и пыли в конфузорной части сопла. Эффективность очистки в значительной степени зависит от равномерности распределения жидкости по сечению конфузорной части сопла. В диффузорной части сопла поток тормозится до скорости 15-20 м/с и подается в каплеуловитель 3. Каплеуловитель обычно выполняют в виде прямоточного циклона или скруббера ВТИ.
Скубберы Вентури используются в системах очистки газов и туманов. эффективность достигает 0,999, то вполне сравнимо с высокоэффективными фильтрами.
К мокрым пылеуловителям относятся барботажно-пенные пылеуловители с провальной (рис. 19, а) и переливной решетками (рис. 19,б). В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от частиц пыли за счет осаждения частиц на внутренние поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе аппарата до 2-2,5 м/с сопровождается возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Современные барботажно-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли около 0,95-0,96 при удельных расходах воды 0,4-0,5 л/м3.
Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используются волокнистые фильтры, принцип действия которых основан на осаждении капель на поверхности пор с последующим стеканием жидкости под действием сил тяжести. Осаждение капель жидкости на поверхности пор происходит под действием всех ранее рассмотренных механизмов отделения частиц загрязнителя от газовой фазы на фильтроэле-ментах.
Туманоуловители делят на низкоскоростные (ωф ≤ 0,15 м/с), в которых преобладает механизм диффузионного осаждения капель, и высокоскоростные (ωф=2-2,5 м/с), где осаждение происходит главным образом под воздействием инерционных сил.
Фильтрующий элемент низкоскоростного туманоуловителя показан на рис. 30. В пространство между двумя цилиндрами 3, изготовленными из сеток, помещается волокнистый фильтроэлемент 4, который крепится через фланец 2 к корпусу туманоуловителя 1. Жидкость, осевшая на фильтроэлементе, стекает на нижний фланец 5 и затем через трубку гидрозатвора 6 и стакан 7 сливается из фильтра. Волокнистые низкоскоростные Туманоуловители обеспечивают очень высокую эффективность очистки (до 0,999) газа от частиц размером менее 3 мкм и полностью улавливают частицы большего размера. Волокнистые слои формируются набивкой стекловолокна диаметром от 7 до 30 мкм или полимерных волокон (лавсан, ПВХ, полипропилен) диаметром от 12 до 40 мкм. Толщина слоя составляет 5-15 см. Гидравлическое сопротивление сухих фильтроэлементов равно 200-1000 Па, а в режиме очистки без образования твердого осадка 1200-2500 Па.
В реках и других водоемах происходит естественный процесс самоочищения воды. Однако он протекает медленно. Пока промышленно- бытовые сбросы были невелики, реки сами справлялись с ними. В наш индустриальный век в связи с резким увеличением отходов водоемы уже не справляются со столь значительным загрязнением. Возникла необходимость обезвреживать, очищать сточные воды и утилизировать их.
Очистка сточных вод - обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения- сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода)
Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические, когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.
Сущность механического метода состоит в том, что из сточных вод путем отстаивания и фильтрации удаляются механические примеси. Грубодисперсные частицы в зависимости от размеров улавливаются решетками, ситами, песколовками, септиками, навозоуловителями различных конструкций, а поверхностные загрязнения - нефтеловушками, бензомаслоуловителями, отстойниками и др. Механическая очистка позволяет выделять из бытовых сточных вод до 60-75% нерастворимых примесей, а из промышленных до 95%, многие из которых как ценные примеси, используются в производстве.
Химический метод заключается в том, что в сточные воды добавляют различные химические реагенты, которые вступают в реакцию с загрязнителями и осаждают их в виде нерастворимых осадков. Химической очисткой достигается уменьшение нерастворимых примесей до 95% и растворимых до 25%.
При физико-химическом методе обработки из сточных вод удаляются тонко дисперсные и растворенные неорганические примеси и разрушаются органические и плохо окисляемые вещества, чаще всего из физико-химических методов применяется коагуляция, окисление, сорбция, экстракция и т.д. Широкое применение находит также электролиз. Он заключается в разрушении органических веществ в сточных водах и извлечении металлов, кислот и других неорганических веществ. Электролитическая очистка осуществляется в особых сооружениях - электролизерах. Очистка сточных вод с помощью электролиза эффективна на свинцовых и медных предприятиях, в лакокрасочной и некоторых других областях промышленности.
Загрязненные сточные воды очищают также с помощью ультразвука, озона, ионообменных смол и высокого давления, хорошо зарекомендовала себя очистка путем хлорирования.
Среди методов очистки сточных вод большую роль должен сыграть биологический метод, основанный на использовании закономерностей биохимического и физиологического самоочищения рек и других водоемов. Есть несколько типов биологических устройств по очистке сточных вод: биофильтры, биологические пруды и аэротенки.
В биофильтрах сточные воды пропускаются через слой крупнозернистого материала, покрытого тонкой бактериальной пленкой. Благодаря этой пленке интенсивно протекают процессы биологического окисления. Именно она служит действующим началом в биофильтрах.
В биологических прудах в очистке сточных вод принимают участие все организмы, населяющие водоем.
Аэротенки - огромные резервуары из железобетона. Здесь очищающее начало - активный ил из бактерий и микроскопических животных. Все эти живые существа бурно развиваются в аэротенках, чему способствуют органические вещества сточных вод и избыток кислорода, поступающего в сооружение потоком подаваемого воздуха. Бактерии склеиваются в хлопья и выделяют ферменты, минерализующие органические загрязнения. Ил с хлопьями быстро оседает, отделяясь от очищенной воды. Инфузории, жгутиковые, амебы, коловратки и другие мельчайшие животные, пожирая бактерии, неслипающиеся в хлопья, омолаживают бактериальную массу ила.
Сточные воды перед биологической очисткой подвергают механической, а после нее для удаления болезнетворных бактерий и химической очистке, хлорированию жидким хлором или хлорной известью. Для дезинфекции используют также другие физико-химические приемы (ультразвук, электролиз, озонирование и др.)
Биологический метод дает большие результаты при очистке коммунально-бытовых стоков. Он применяется также и при очистке отходов предприятий нефтеперерабатывающей, целлюлозно-бумажной промышленности, производстве искусственного волокна.
Промышленные отходы делятся на твердые и жидкие. Основными направлениями ликвидации и переработки твердых отходов (кроме металлоотходов) являются вывоз и захоронение на полигонах, сжигание, складирование и хранение на территории промышленного предприятия до появления новой технологии переработки их в полезные продукты (сырье). Обработка твердых отходов Основные операции первичной обработки металлоотходов сортировка, разделка и механическая обработка. Сортировка заключается в разделении лома и отходов по видам металлов. Разделка лома состоит в удалении неметаллических включений. Механическая обработка включает рубку, резку, пакетирование и брикетирование на прессах. Каждая партия должна сопровождаться удостоверением о взрывобезопасности и безвредности. На предприятиях, где образуется большое количество металлоотходов, организуются специальные цехи (участки) для утилизации вторичных металлов. При термической обработке отходов пластмасс расходуется большое количество кислорода и выделяется много высокотоксичных продуктов (углеводороды, хлористый водород и др.). Наиболее рациональным методом ликвидации пластмассовых отходов служит высокомолекулярный нагрев без доступа воздуха (пиролиз), в результате которого из отходов пластмасс в смеси с другими отходами (дерево, резина и др.) получаются ценные продукты: пирокарбон, горючий газ и жидкая смола. На большинстве промышленных предприятий пластмассы и древесные отходы входят в состав промышленного мусора предприятий, при этом разделение мусора на отдельные его компоненты оказывается экономически нецелесообразным. Технология переработки мусора разрабатывается применительно к конкретному предприятию и определяется составом и количеством промышленного мусора, образующегося на территории. Захоронение отходов должно проводиться в специально отведенных местах по согласованию с органами государственного санитарного надзора. Пункт захоронения отходов необходимо располагать на незатопляемой территории с низким уровнем грунтовых вод, с наличием водоупорного глинистого слоя. Расстояние от места захоронения отходов до населенных мест и открытых водоемов хозяйственно-питьевого и культурно-бытового водопользования, водоемов рыбохозяйственного назначения устанавливается в каждом конкретном случае по согласованию с органами государственного санитарного надзора. Утилизация и ликвидация осадков сточных вод. Технологический цикл обработки осадков сточных вод включает следующие виды обработки, ликвидации и утилизации: уплотнение (гравитационное, флотационное, центробежное, вибрационное); кондиционирование осадков проводят для разрушения коллоидной структуры осадка органического происхождения и увеличения их водоотдачи при обезвоживании; обезвоживание (сушка на иловых площадках, вакуум-фильтрация, фильтр-прессование, центрифугирование, виброфильтрование, термическая сушка),обезвоживание термической сушкой применяется для осадков, содержащих сильно токсичные вещества, которые перед. ликвидацией и утилизацией необходимо обеззараживать; ликвидация (сжигание в печах, жидко-фазное окисление, сброс в накопитель, закачка в земляные пустоты, вывоз на свалки). При назначении на утилизацию после уплотнения идет процесс стабилизации (сбраживание, аэробная стабилизация), кондиционирование (обработка неорганическими реагентами, тепловая обработка, обработка полиэлектролитами, замораживание, электрокоагуляция), утилизация (использование в сельском хозяйстве, производстве строительных материалов, производстве сорбентов, регенерации металлов). Обезвреживание и захоронение радиоактивных отходов Сбор радиоактивных отходов должен производиться раздельно в зависимости от их физического состояния, взрыво- и огнеопасности и периода полураспада. Для сбора и транспортировки твердых и жидких радиоактивных отходов на предприятиях применяют специальные однотипные сборники, размер и конструкция которых определяются количеством отходов, видом и энергией излучений. Сборники разового пользования должны иметь достаточную прочность для транспортировки в них радиоактивных отходов. Транспортировка радиоактивных отходов к местам захоронения осуществляется на специально оборудованных автомашинах с крытым кузовом или цистерной (для жидких отходов). Проблема безопасного удаления и захоронения радиоактивных отходов еще не решена окончательно и требует дальнейшего развития. Наиболее перспективным и более разработанным считается метод подземного захоронения жидких радиоактивных отходов. между слоями водоупоров и цементной пульпы в расслаивающиеся горные породы Сбор радиоактивных отходов производится раздельно, они запрессовываются в специальные емкости, после чего ведется их захоронение в землю на достаточно большую глубину в малодоступных местах. Слаборадиоактивные отходы подвергаются очистке и сбрасываются в окружающую среду.